EFFORT: A New Host-Network Cooperated Framework for Efficient and Effective Bot Malware Detection Seungwon Shin, Zhaoyan Xu, and Guofei Gu
[email protected],fz0x0427,
[email protected] ABSTRACT tivates us to consider a new system with merits from both Bots are still a serious threat to Internet security. Although approaches: (i) effectiveness and (ii) efficiency. For the effec- a lot of approaches have been proposed to detect bots at tiveness, the system should detect malware with few misses. host or network level, they still have shortcomings. Host- In addition, the system should not put too much burden on level approaches can detect bots with high accuracy. How- both host and network to achieve the efficiency. ever they usually pose too much overhead on the host. While As a promising step toward such a system, we propose network-level approaches can detect bots with less overhead, EFFORT, a new detection framework balanced with high they have problems in detecting bots with encrypted, eva- accuracy and low overhead. EFFORT considers both host- sive communication C&C channels. In this paper, we pro- and network-level features that are helpful to enhance strong pose EFFORT, a new host-network cooperated detection points of each other and complement weak points of each framework attempting to overcome shortcomings of both other, and it coordinates these features to achieve the main approaches while still keeping both advantages, i.e., effec- goal (i.e., detecting bots effectively and efficiently). tiveness and efficiency. Based on intrinsic characteristics of To build EFFORT, We start with investigating several bots, we propose a multi-module approach to correlate in- notable intrinsic characteristics of recent popular botnets.