Hyperspy Documentation Release 1.0

Total Page:16

File Type:pdf, Size:1020Kb

Hyperspy Documentation Release 1.0 HyperSpy Documentation Release 1.0 The HyperSpy Developers Mar 04, 2017 Contents 1 HyperSpy User Guide (DRAFT)1 1.1 Introduction...............................................1 1.1.1 What is HyperSpy........................................1 1.1.2 Our vision............................................1 1.1.3 HyperSpy’s character......................................1 1.2 What’s new................................................2 1.2.1 v1.0...............................................2 1.2.2 v0.8.5..............................................4 1.2.3 v0.8.4..............................................4 1.2.4 v0.8.3..............................................4 1.2.5 v0.8.2..............................................4 1.2.6 v0.8.1..............................................4 1.2.7 v0.8...............................................5 1.2.8 v0.7.3..............................................6 1.2.9 v0.7.2..............................................6 1.2.10 v0.7.1..............................................7 1.2.11 v0.7...............................................7 1.2.12 v0.6...............................................9 1.2.13 v0.5.1.............................................. 10 1.2.14 v0.5............................................... 11 1.2.15 v0.4.1.............................................. 12 1.2.16 v0.4............................................... 13 1.3 Installing HyperSpy........................................... 16 1.3.1 HyperSpy Bundle for Microsoft Windows........................... 16 1.3.2 Quick instructions to install HyperSpy using Anaconda (Linux, MacOs, Windows)..... 16 1.3.3 Install using Python installers.................................. 17 1.3.4 Creating Conda environment for HyperSpy.......................... 17 1.3.5 Install from a binary...................................... 17 1.3.6 Install from source....................................... 17 1.3.7 Installing the required libraries................................. 18 1.3.8 Known issues.......................................... 19 1.4 Getting started.............................................. 19 1.4.1 Starting Python in Windows.................................. 19 1.4.2 Starting Python in Linux and MacOS............................. 19 1.4.3 Starting HyperSpy in the notebook (or terminal)........................ 20 1.4.4 Getting help........................................... 20 i 1.4.5 Autocompletion......................................... 21 1.4.6 Loading data.......................................... 21 1.4.7 “Loading” data from a numpy array.............................. 21 1.4.8 Loading example data and data from online databases..................... 21 1.4.9 The navigation and signal dimensions............................. 22 1.4.10 Setting axis properties..................................... 22 1.4.11 Saving Files........................................... 23 1.4.12 Accessing and setting the metadata............................... 23 1.4.13 Configuring HyperSpy..................................... 24 1.4.14 Messages log.......................................... 24 1.5 Tools: the Signal class.......................................... 24 1.5.1 The Signal class and its subclasses............................... 24 1.5.2 The navigation and signal dimensions............................. 26 1.5.3 Binned and unbinned signals.................................. 28 1.5.4 Generic tools.......................................... 29 1.5.5 Basic statistical analysis.................................... 39 1.5.6 Setting the noise properties................................... 41 1.5.7 Speeding up operations..................................... 43 1.5.8 Interactive operations...................................... 43 1.5.9 Region Of Interest (ROI).................................... 44 1.5.10 Calculate the angle / phase / argument............................. 49 1.5.11 Phase unwrapping........................................ 49 1.5.12 Add a linear phase ramp.................................... 49 1.6 Signal1D Tools.............................................. 50 1.6.1 Cropping............................................ 50 1.6.2 Background removal...................................... 50 1.6.3 Calibration........................................... 50 1.6.4 Alignment............................................ 50 1.6.5 Integration............................................ 50 1.6.6 Data smoothing......................................... 50 1.6.7 Spike removal.......................................... 51 1.6.8 Peak finding........................................... 51 1.6.9 Other methods......................................... 51 1.7 Signal2D Tools.............................................. 51 1.7.1 Two dimensional signal registration (alignment)........................ 52 1.7.2 Cropping an image....................................... 52 1.7.3 Add a linear ramp........................................ 52 1.8 Data visualization............................................ 52 1.8.1 Multidimensional spectral data................................. 52 1.8.2 Multidimensional image data.................................. 54 1.8.3 Customising image plot..................................... 54 1.8.4 Customizing the “navigator”.................................. 55 1.8.5 Using Mayavi to visualize 3D data............................... 60 1.8.6 Plotting multiple signals.................................... 62 1.8.7 Markers............................................. 74 1.9 Machine learning............................................. 76 1.9.1 Introduction........................................... 76 1.9.2 Nomenclature.......................................... 76 1.9.3 Decomposition......................................... 76 1.9.4 Blind Source Separation.................................... 81 1.9.5 Visualizing results....................................... 82 1.9.6 Obtaining the results as BaseSignal instances......................... 82 1.9.7 Saving and loading results................................... 82 1.10 Model fitting............................................... 83 ii 1.10.1 Creating a model........................................ 83 1.10.2 Adding components to the model................................ 84 1.10.3 Indexing model......................................... 88 1.10.4 Getting and setting parameter values and attributes...................... 89 1.10.5 Fitting the model to the data.................................. 91 1.10.6 Storing models......................................... 97 1.10.7 Batch setting of parameter attributes.............................. 98 1.10.8 Smart Adaptive Multi-dimensional Fitting (SAMFire)..................... 98 1.11 Electron Energy Loss Spectroscopy................................... 100 1.11.1 Tools for EELS data analysis.................................. 100 1.11.2 EELS curve fitting....................................... 102 1.12 Energy-Dispersive X-ray Spectrometry (EDS)............................. 104 1.12.1 Signal1D loading and parameters................................ 104 1.12.2 Describing the sample..................................... 108 1.12.3 Plotting............................................. 110 1.12.4 Geting the intensity of an X-ray line.............................. 111 1.12.5 EDS Quantification....................................... 115 1.12.6 EDS curve fitting........................................ 116 1.13 Dielectric function tools......................................... 119 1.13.1 Number of effective electrons................................. 119 1.13.2 Compute the electron energy-loss signal............................ 119 1.14 Loading and saving data......................................... 119 1.14.1 Loading files: the load function................................. 120 1.14.2 Saving data to files....................................... 121 1.14.3 Supported formats....................................... 122 1.15 Events.................................................. 127 1.15.1 Connecting to events...................................... 127 1.15.2 Suppressing events....................................... 128 1.15.3 Triggering events........................................ 128 1.16 Metadata structure............................................ 129 1.16.1 General............................................. 130 1.16.2 Acquisition_instrument..................................... 130 1.16.3 Sample............................................. 132 1.16.4 Signal.............................................. 132 1.16.5 _Internal_parameters...................................... 133 1.17 Bibliography............................................... 133 1.17.1 Bibliography.......................................... 133 1.17.2 Peer-review articles with results obtained using HyperSpy.................. 133 2 hyperspy 135 2.1 hyperspy package............................................ 135 2.1.1 Subpackages.......................................... 135 2.1.2 Submodules........................................... 207 2.1.3 hyperspy.Release module.................................... 207 2.1.4 hyperspy.api module...................................... 207 2.1.5 hyperspy.axes module...................................... 207 2.1.6 hyperspy.component module.................................. 207 2.1.7 hyperspy.components1d module................................ 207 2.1.8 hyperspy.components2d module................................ 207 2.1.9 hyperspy.decorators module.................................. 207
Recommended publications
  • Management of Large Sets of Image Data Capture, Databases, Image Processing, Storage, Visualization Karol Kozak
    Management of large sets of image data Capture, Databases, Image Processing, Storage, Visualization Karol Kozak Download free books at Karol Kozak Management of large sets of image data Capture, Databases, Image Processing, Storage, Visualization Download free eBooks at bookboon.com 2 Management of large sets of image data: Capture, Databases, Image Processing, Storage, Visualization 1st edition © 2014 Karol Kozak & bookboon.com ISBN 978-87-403-0726-9 Download free eBooks at bookboon.com 3 Management of large sets of image data Contents Contents 1 Digital image 6 2 History of digital imaging 10 3 Amount of produced images – is it danger? 18 4 Digital image and privacy 20 5 Digital cameras 27 5.1 Methods of image capture 31 6 Image formats 33 7 Image Metadata – data about data 39 8 Interactive visualization (IV) 44 9 Basic of image processing 49 Download free eBooks at bookboon.com 4 Click on the ad to read more Management of large sets of image data Contents 10 Image Processing software 62 11 Image management and image databases 79 12 Operating system (os) and images 97 13 Graphics processing unit (GPU) 100 14 Storage and archive 101 15 Images in different disciplines 109 15.1 Microscopy 109 360° 15.2 Medical imaging 114 15.3 Astronomical images 117 15.4 Industrial imaging 360° 118 thinking. 16 Selection of best digital images 120 References: thinking. 124 360° thinking . 360° thinking. Discover the truth at www.deloitte.ca/careers Discover the truth at www.deloitte.ca/careers © Deloitte & Touche LLP and affiliated entities. Discover the truth at www.deloitte.ca/careers © Deloitte & Touche LLP and affiliated entities.
    [Show full text]
  • Bioimage Analysis Tools
    Bioimage Analysis Tools Kota Miura, Sébastien Tosi, Christoph Möhl, Chong Zhang, Perrine Paul-Gilloteaux, Ulrike Schulze, Simon Norrelykke, Christian Tischer, Thomas Pengo To cite this version: Kota Miura, Sébastien Tosi, Christoph Möhl, Chong Zhang, Perrine Paul-Gilloteaux, et al.. Bioimage Analysis Tools. Kota Miura. Bioimage Data Analysis, Wiley-VCH, 2016, 978-3-527-80092-6. hal- 02910986 HAL Id: hal-02910986 https://hal.archives-ouvertes.fr/hal-02910986 Submitted on 3 Aug 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. 2 Bioimage Analysis Tools 1 2 3 4 5 6 Kota Miura, Sébastien Tosi, Christoph Möhl, Chong Zhang, Perrine Pau/-Gilloteaux, - Ulrike Schulze,7 Simon F. Nerrelykke,8 Christian Tischer,9 and Thomas Penqo'" 1 European Molecular Biology Laboratory, Meyerhofstraße 1, 69117 Heidelberg, Germany National Institute of Basic Biology, Okazaki, 444-8585, Japan 2/nstitute for Research in Biomedicine ORB Barcelona), Advanced Digital Microscopy, Parc Científic de Barcelona, dBaldiri Reixac 1 O, 08028 Barcelona, Spain 3German Center of Neurodegenerative
    [Show full text]
  • Cellanimation: an Open Source MATLAB Framework for Microscopy Assays Walter Georgescu1,2,3,∗, John P
    Vol. 28 no. 1 2012, pages 138–139 BIOINFORMATICS APPLICATIONS NOTE doi:10.1093/bioinformatics/btr633 Systems biology Advance Access publication November 24, 2011 CellAnimation: an open source MATLAB framework for microscopy assays Walter Georgescu1,2,3,∗, John P. Wikswo1,2,3,4,5 and Vito Quaranta1,3,6 1Vanderbilt Institute for Integrative Biosystems Research and Education, 2Department of Biomedical Engineering, Vanderbilt University, 3Center for Cancer Systems Biology at Vanderbilt, Vanderbilt University Medical Center, Nashville, TN, USA, 4Department of Molecular Physiology and Biophysics, 5Department of Physics and Astronomy, Vanderbilt University and 6Department of Cancer Biology, Vanderbilt University Medical Center, Nashville, TN, USA Associate Editor: Jonathan Wren ABSTRACT 1 INTRODUCTION Motivation: Advances in microscopy technology have led to At present there are a number of microscopy applications on the the creation of high-throughput microscopes that are capable of market, both open-source and commercial, and addressing both generating several hundred gigabytes of images in a few days. very specific and broader microscopy needs. In general, commercial Analyzing such wealth of data manually is nearly impossible and software packages such as Imaris® and MetaMorph® tend to requires an automated approach. There are at present a number include more complete sets of algorithms, covering different kinds of open-source and commercial software packages that allow the of experimental setups, at the cost of ease of customization and user
    [Show full text]
  • Inviwo — a Visualization System with Usage Abstraction Levels
    IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL X, NO. Y, MAY 2019 1 Inviwo — A Visualization System with Usage Abstraction Levels Daniel Jonsson,¨ Peter Steneteg, Erik Sunden,´ Rickard Englund, Sathish Kottravel, Martin Falk, Member, IEEE, Anders Ynnerman, Ingrid Hotz, and Timo Ropinski Member, IEEE, Abstract—The complexity of today’s visualization applications demands specific visualization systems tailored for the development of these applications. Frequently, such systems utilize levels of abstraction to improve the application development process, for instance by providing a data flow network editor. Unfortunately, these abstractions result in several issues, which need to be circumvented through an abstraction-centered system design. Often, a high level of abstraction hides low level details, which makes it difficult to directly access the underlying computing platform, which would be important to achieve an optimal performance. Therefore, we propose a layer structure developed for modern and sustainable visualization systems allowing developers to interact with all contained abstraction levels. We refer to this interaction capabilities as usage abstraction levels, since we target application developers with various levels of experience. We formulate the requirements for such a system, derive the desired architecture, and present how the concepts have been exemplary realized within the Inviwo visualization system. Furthermore, we address several specific challenges that arise during the realization of such a layered architecture, such as communication between different computing platforms, performance centered encapsulation, as well as layer-independent development by supporting cross layer documentation and debugging capabilities. Index Terms—Visualization systems, data visualization, visual analytics, data analysis, computer graphics, image processing. F 1 INTRODUCTION The field of visualization is maturing, and a shift can be employing different layers of abstraction.
    [Show full text]
  • A Client/Server Based Online Environment for the Calculation of Medical Segmentation Scores
    A Client/Server based Online Environment for the Calculation of Medical Segmentation Scores Maximilian Weber, Daniel Wild, Jürgen Wallner, Jan Egger Abstract— Image segmentation plays a major role in medical for medical image segmentation are often very large due to the imaging. Especially in radiology, the detection and development broadly ranged possibilities offered for all areas of medical of tumors and other diseases can be supported by image image processing. Often huge updates are needed, which segmentation applications. Tools that provide image require nightly builds, even if only the functionality of segmentation and calculation of segmentation scores are not segmentation is needed by the user. Examples are 3D Slicer available at any time for every device due to the size and scope [8], MeVisLab [9] and MITK [10], [11], which have installers of functionalities they offer. These tools need huge periodic that are already over 1 GB. In addition, in sensitive updates and do not properly work on old or weak systems. environments, like hospitals, it is mostly not allowed at all to However, medical use-cases often require fast and accurate install these kind of open-source software tools, because of results. A complex and slow software can lead to additional security issues and the potential risk that patient records and stress and thus unnecessary errors. The aim of this contribution data is leaked to the outside. is the development of a cross-platform tool for medical segmentation use-cases. The goal is a device-independent and The second is the need of software for easy and stable always available possibility for medical imaging including manual segmentation training.
    [Show full text]
  • Medical Image Processing Software
    Wohlers Report 2018 Medical Image Processing Software Medical image Patient-specific medical devices and anatomical models are almost always produced using radiological imaging data. Medical image processing processing software is used to translate between radiology file formats and various software AM file formats. Theoretically, any volumetric radiological imaging dataset by Andy Christensen could be used to create these devices and models. However, without high- and Nicole Wake quality medical image data, the output from AM can be less than ideal. In this field, the old adage of “garbage in, garbage out” definitely applies. Due to the relative ease of image post-processing, computed tomography (CT) is the usual method for imaging bone structures and contrast- enhanced vasculature. In the dental field and for oral- and maxillofacial surgery, in-office cone-beam computed tomography (CBCT) has become popular. Another popular imaging technique that can be used to create anatomical models is magnetic resonance imaging (MRI). MRI is less useful for bone imaging, but its excellent soft tissue contrast makes it useful for soft tissue structures, solid organs, and cancerous lesions. Computed tomography: CT uses many X-ray projections through a subject to computationally reconstruct a cross-sectional image. As with traditional 2D X-ray imaging, a narrow X-ray beam is directed to pass through the subject and project onto an opposing detector. To create a cross-sectional image, the X-ray source and detector rotate around a stationary subject and acquire images at a number of angles. An image of the cross-section is then computed from these projections in a post-processing step.
    [Show full text]
  • Getting Started First Steps with Mevislab
    Getting Started First Steps with MeVisLab 1 Getting Started Getting Started Copyright © 2003-2021 MeVis Medical Solutions Published 2021-05-11 2 Table of Contents 1. Before We Start ................................................................................................................... 10 1.1. Welcome to MeVisLab ............................................................................................... 10 1.2. Coverage of the Document ........................................................................................ 10 1.3. Intended Audience ..................................................................................................... 11 1.4. Conventions Used in This Document .......................................................................... 11 1.4.1. Activities ......................................................................................................... 11 1.4.2. Formatting ...................................................................................................... 11 1.5. How to Read This Document ..................................................................................... 12 1.6. Related MeVisLab Documents ................................................................................... 12 1.7. Glossary (abbreviated) ............................................................................................... 13 2. The Nuts and Bolts of MeVisLab ........................................................................................... 15 2.1. MeVisLab Basics ......................................................................................................
    [Show full text]
  • Titel Untertitel
    KNIME Image Processing Nycomed Chair for Bioinformatics and Information Mining Department of Computer and Information Science Konstanz University, Germany Why Image Processing with KNIME? KNIME UGM 2013 2 The “Zoo” of Image Processing Tools Development Processing UI Handling ImgLib2 ImageJ OMERO OpenCV ImageJ2 BioFormats MatLab Fiji … NumPy CellProfiler VTK Ilastik VIGRA CellCognition … Icy Photoshop … = Single, individual, case specific, incompatible solutions KNIME UGM 2013 3 The “Zoo” of Image Processing Tools Development Processing UI Handling ImgLib2 ImageJ OMERO OpenCV ImageJ2 BioFormats MatLab Fiji … NumPy CellProfiler VTK Ilastik VIGRA CellCognition … Icy Photoshop … → Integration! KNIME UGM 2013 4 KNIME as integration platform KNIME UGM 2013 5 Integration: What and How? KNIME UGM 2013 6 Integration ImgLib2 • Developed at MPI-CBG Dresden • Generic framework for data (image) processing algoritms and data-structures • Generic design of algorithms for n-dimensional images and labelings • http://fiji.sc/wiki/index.php/ImgLib2 → KNIME: used as image representation (within the data cells); basis for algorithms KNIME UGM 2013 7 Integration ImageJ/Fiji • Popular, highly interactive image processing tool • Huge base of available plugins • Fiji: Extension of ImageJ1 with plugin-update mechanism and plugins • http://rsb.info.nih.gov/ij/ & http://fiji.sc/ → KNIME: ImageJ Macro Node KNIME UGM 2013 8 Integration ImageJ2 • Next-generation version of ImageJ • Complete re-design of ImageJ while maintaining backwards compatibility • Based on ImgLib2
    [Show full text]
  • Getting Started First Steps with Mevislab
    Getting Started First Steps with MeVisLab 1 Getting Started Getting Started Published April 2009 Copyright © MeVis Medical Solutions, 2003-2009 2 Table of Contents 1. Before We Start ..................................................................................................................... 1 1.1. Welcome to MeVisLab ................................................................................................. 1 1.2. Coverage of the Document .......................................................................................... 1 1.3. Intended Audience ....................................................................................................... 1 1.4. Requirements .............................................................................................................. 2 1.5. Conventions Used in This Document ............................................................................ 2 1.5.1. Activities ........................................................................................................... 2 1.5.2. Formatting ........................................................................................................ 2 1.6. How to Read This Document ....................................................................................... 2 1.7. Related MeVisLab Documents ..................................................................................... 3 1.8. Glossary (abbreviated) ................................................................................................. 4 2. The Nuts
    [Show full text]
  • An Open-Source Visualization System
    OpenWalnut { An Open-Source Visualization System Sebastian Eichelbaum1, Mario Hlawitschka2, Alexander Wiebel3, and Gerik Scheuermann1 1Abteilung f¨urBild- und Signalverarbeitung, Institut f¨urInformatik, Universit¨atLeipzig, Germany 2Institute for Data Analysis and Visualization (IDAV), and Department of Biomedical Imaging, University of California, Davis, USA 3 Max-Planck-Institut f¨urKognitions- und Neurowissenschaften, Leipzig, Germany [email protected] Abstract In the last years a variety of open-source software packages focusing on vi- sualization of human brain data have evolved. Many of them are designed to be used in a pure academic environment and are optimized for certain tasks or special data. The open source visualization system we introduce here is called OpenWalnut. It is designed and developed to be used by neuroscientists during their research, which enforces the framework to be designed to be very fast and responsive on the one side, but easily extend- able on the other side. OpenWalnut is a very application-driven tool and the software is tuned to ease its use. Whereas we introduce OpenWalnut from a user's point of view, we will focus on its architecture and strengths for visualization researchers in an academic environment. 1 Introduction The ongoing research into neurological diseases and the function and anatomy of the brain, employs a large variety of examination techniques. The different techniques aim at findings for different research questions or different viewpoints of a single task. The following are only a few of the very common measurement modalities and parts of their application area: computed tomography (CT, for anatomical information using X-ray measurements), magnetic-resonance imag- ing (MRI, for anatomical information using magnetic resonance esp.
    [Show full text]
  • An Efficient Support for Visual Computing in Surgical Planning and Training
    Nr.: FIN-004-2008 The Medical Exploration Toolkit - An efficient support for visual computing in surgical planning and training Konrad Mühler, Christian Tietjen, Felix Ritter, Bernhard Preim Arbeitsgruppe Visualisierung (ISG) Fakultät für Informatik Otto-von-Guericke-Universität Magdeburg Impressum (§ 10 MDStV): Herausgeber: Otto-von-Guericke-Universität Magdeburg Fakultät für Informatik Der Dekan Verantwortlich für diese Ausgabe: Otto-von-Guericke-Universität Magdeburg Fakultät für Informatik Konrad Mühler Postfach 4120 39016 Magdeburg E-Mail: [email protected] http://www.cs.uni-magdeburg.de/Preprints.html Auflage: 50 Redaktionsschluss: Juni 2008 Herstellung: Dezernat Allgemeine Angelegenheiten, Sachgebiet Reproduktion Bezug: Universitätsbibliothek/Hochschulschriften- und Tauschstelle The Medical Exploration Toolkit – An efficient support for visual computing in surgical planning and training Konrad M¨uhler, Christian Tietjen, Felix Ritter, and Bernhard Preim Abstract—Application development is often guided by the usage of software libraries and toolkits. For medical applications, the currently available toolkits focus on image analysis and volume rendering. Advanced interactive visualizations and user interface issues are not adequately supported. Hence, we present a toolkit for application development in the field of medical intervention planning, training and presentation – the MEDICALEXPLORATIONTOOLKIT (METK). The METK is based on rapid prototyping platform MeVisLab and offers a large variety of facilities for an easy and efficient application development process. We present dedicated techniques for advanced medical visualizations, exploration, standardized documentation and interface widgets for common tasks. These include, e.g., advanced animation facilities, viewpoint selection, several illustrative rendering techniques, and new techniques for object selection in 3d surface models. No extended programming skills are needed for application building, since a graphical programming approach can be used.
    [Show full text]
  • Arxiv:1904.08610V1 [Cs.CV] 18 Apr 2019
    A Client/Server Based Online Environment for Manual Segmentation of Medical Images Daniel Wild∗ Maximilian Webery Jan Eggerz Institute of Computer Graphics and Vision Graz University of Technology Graz / Austria Computer Algorithms for Medicine Lab Graz / Austria Abstract 1 Introduction Segmentation is a key step in analyzing and processing Image segmentation is an important step in the analysis medical images. Due to the low fault tolerance in medical of medical images. It helps to study the anatomical struc- imaging, manual segmentation remains the de facto stan- ture of body parts and is useful for treatment planning and dard in this domain. Besides, efforts to automate the seg- monitoring of diseases over time. Segmentation can ei- mentation process often rely on large amounts of manu- ther be done manually by outlining the regions of an im- ally labeled data. While existing software supporting man- age by hand or with the help of semi-automatic or au- ual segmentation is rich in features and delivers accurate tomatic algorithms. A lot of research focuses on semi- results, the necessary time to set it up and get comfort- automatic and automatic algorithms, as manual segmenta- able using it can pose a hurdle for the collection of large tion can be quite tedious and time-consuming work. But datasets. even for the development of automated segmentation sys- This work introduces a client/server based online envi- tems, some ground truth has to be found, telling the system ronment, referred to as Studierfenster, that can be used to what exactly constitutes a correct segmentation. As the perform manual segmentations directly in a web browser.
    [Show full text]