Poaceae: Eragrostideae): EVIDENCE from NRDNA ITS SEQUENCES
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Shining a Light on Species Delimitation in the Tree Genus Engelhardia
Molecular Phylogenetics and Evolution 152 (2020) 106918 Contents lists available at ScienceDirect Molecular Phylogenetics and Evolution journal homepage: www.elsevier.com/locate/ympev Shining a light on species delimitation in the tree genus Engelhardia T Leschenault ex Blume (Juglandaceae) Can-Yu Zhanga,i, Shook Ling Lowb, Yi-Gang Songc,e, Nurainasd, Gregor Kozlowskie, Truong Van Dof, Lang Lia,g,j, Shi-Shun Zhoug, Yun-Hong Tang,j, Guan-Long Caoa,i, Zhuo Zhouh, ⁎ ⁎ Hong-Hu Menga,g, , Jie Lia,g,j, a Plant Phylogenetics and Conservation Group, Center for Integrative Conservation, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming 650023, China b CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla 666303, China c Shanghai Chenshan Plant Science Research Center, Chinese Academy of Sciences, Shanghai 201602, China d Department of Biology, Faculty of Math. & Nat. Sci. Andalas University, Padang 25163, West Sumatra, Indonesia e Department of Biology and Botanic Garden, University of Fribourg, Chemin du Musée 10, CH-1700 Fribourg, Switzerland f Vietnam National Museum of Nature, Vietnam Academy of Science & Technology, 18 Hoang Quoc Viet, Hanoi, Viet Nam g Southeast Asia Biodiversity Research Institute, Chinese Academy of Sciences, Nay Pyi Taw 05282, Myanmar h CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China i University of Chinese Academy of Sciences, Beijing 100049, China j Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Mengla 666303, China ARTICLE INFO ABSTRACT Keywords: Enhanced efficacy in species delimitation is critically important in biology given the pending biodiversity crisis Species delimitation under global warming and anthropogenic activity. -
A Phylogeny of the Hubbardochloinae Including Tetrachaete (Poaceae: Chloridoideae: Cynodonteae)
Peterson, P.M., K. Romaschenko, and Y. Herrera Arrieta. 2020. A phylogeny of the Hubbardochloinae including Tetrachaete (Poaceae: Chloridoideae: Cynodonteae). Phytoneuron 2020-81: 1–13. Published 18 November 2020. ISSN 2153 733 A PHYLOGENY OF THE HUBBARDOCHLOINAE INCLUDING TETRACHAETE (CYNODONTEAE: CHLORIDOIDEAE: POACEAE) PAUL M. PETERSON AND KONSTANTIN ROMASCHENKO Department of Botany National Museum of Natural History Smithsonian Institution Washington, D.C. 20013-7012 [email protected]; [email protected] YOLANDA HERRERA ARRIETA Instituto Politécnico Nacional CIIDIR Unidad Durango-COFAA Durango, C.P. 34220, México [email protected] ABSTRACT The phylogeny of subtribe Hubbardochloinae is revisited, here with the inclusion of the monotypic genus Tetrachaete, based on a molecular DNA analysis using ndhA intron, rpl32-trnL, rps16 intron, rps16- trnK, and ITS markers. Tetrachaete elionuroides is aligned within the Hubbardochloinae and is sister to Dignathia. The biogeography of the Hubbardochloinae is discussed, its origin likely in Africa or temperate Asia. In a previous molecular DNA phylogeny (Peterson et al. 2016), the subtribe Hubbardochloinae Auquier [Bewsia Gooss., Dignathia Stapf, Gymnopogon P. Beauv., Hubbardochloa Auquier, Leptocarydion Hochst. ex Stapf, Leptothrium Kunth, and Lophacme Stapf] was found in a clade with moderate support (BS = 75, PP = 1.00) sister to the Farragininae P.M. Peterson et al. In the present study, Tetrachaete elionuroides Chiov. is included in a phylogenetic analysis (using ndhA intron, rpl32- trnL, rps16 intron, rps16-trnK, and ITS DNA markers) in order to test its relationships within the Cynodonteae with heavy sampling of species in the supersubtribe Gouiniodinae P.M. Peterson & Romasch. Chiovenda (1903) described Tetrachaete Chiov. with a with single species, T. -
Snow Disaster Early Warning in Pastoral Areas of Qinghai Province, China
remote sensing Article Snow Disaster Early Warning in Pastoral Areas of Qinghai Province, China Jinlong Gao 1, Xiaodong Huang 1,*, Xiaofang Ma 1, Qisheng Feng 1, Tiangang Liang 1 and Hongjie Xie 2 1 State Key Laboratory of Grassland Agro-Ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China; [email protected] (J.G.); [email protected] (X.M.); [email protected] (Q.F.); [email protected] (T.L.) 2 Laboratory for Remote Sensing and Geoinformatics, University of Texas at San Antonio, San Antonio, TX 78249, USA; [email protected] * Correspondence: [email protected] Academic Editors: Claudia Notarnicola, Soe Myint and Prasad Thenkabail Received: 15 March 2017; Accepted: 9 May 2017; Published: 12 May 2017 Abstract: It is important to predict snow disasters to prevent and reduce hazards in pastoral areas. In this study, we build a potential risk assessment model based on a logistic regression of 33 snow disaster events that occurred in Qinghai Province. A simulation model of the snow disaster early warning is established using a back propagation artificial neural network (BP-ANN) method and is then validated. The results show: (1) the potential risk of a snow disaster in the Qinghai Province is mainly determined by five factors. Three factors are positively associated, the maximum snow depth, snow-covered days (SCDs), and slope, and two are negative factors, annual mean temperature and per capita gross domestic product (GDP); (2) the key factors that contribute to the prediction of a snow disaster are (from the largest to smallest contribution): the mean temperature, probability of a spring snow disaster, potential risk of a snow disaster, continual days of a mean daily temperature below −5 ◦C, and fractional snow-covered area; and (3) the BP-ANN model for an early warning of snow disaster is a practicable predictive method with an overall accuracy of 80%. -
Zootaxa, New Species of Phrynocephalus
Zootaxa 1988: 61–68 (2009) ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ Article ZOOTAXA Copyright © 2009 · Magnolia Press ISSN 1175-5334 (online edition) New species of Phrynocephalus (Squamata, Agamidae) from Qinghai, Northwest China XIANG JI1, 2 ,4, YUE-ZHAO WANG3 & ZHENG WANG1 1Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210046, Jiangsu, China 2Hangzhou Key Laboratory for Animal Sciences and Technology, School of Life Sciences, Hangzhou Normal University, Hangzhou 310036, Zhejiang, China 3Chengdu Institute of Biology, Academy of Sciences, Chengdu 610041, Sichuan, China 4Corresponding author. E-mail: [email protected]; Tel: +86-25-85891597; Fax: +86-25-85891526 Abstract A new viviparous species of Phrynocephalus from Guinan, Qinghai, China, is described. Phrynocephalus guinanensis sp. nov., differs from all congeners in the following combination of characters: body large and relatively robust; dorsal ground color of head, neck, trunk, limbs and tail brown with weak light brown mottling; lateral ground color of head, neck, trunk and tail light black with weak white-gray mottling in adult males, and green with weak white-gray mottling in adult females; ventral ground color of tail white-gray to black in the distal part of the tail in adult males, and totally white-gray in adult females; ventral surfaces of hind-limbs white-gray; ventral surfaces of fore-limbs brick-red in adult males, and white-gray in adult females; ventral ground color of trunk and head black in the center but, in the periphery, brick-red in adult males and white-gray in adult females. -
A 3585-Year Ring-Width Dating Chronology of Qilian Juniper from the Northeastern Qinghai-Tibetan Plateau
IAWA Journal, Vol. 30 (4), 2009: 379–394 A 3585-YEAR RING-WIDTH DATING CHRONOLOGY OF QILIAN JUNIPER FROM THE NORTHEASTERN QINGHAI-TIBETAN PLATEAU Xuemei Shao1 *, Shuzhi Wang2, Haifeng Zhu1, Yan Xu1, Eryuan Liang3, Zhi-Yong Yin4, Xinguo Xu5 and Yongming Xiao5 SUMMARY This article documents the development of a precisely dated and well- replicated long regional tree-ring width dating chronology for Qilian juniper (Juniperus przewalskii Kom.) from the northeastern Qinghai- Tibetan Plateau. It involves specimens from 22 archeological sites, 24 living tree sites, and 5 standing snags sites in the eastern and northeastern Qaidam Basin, northwestern China. The specimens were cross-dated suc- cessfully among different groups of samples and among different sites. Based on a total of 1438 series from 713 trees, the chronology covers 3585 years and is the longest chronology by far in China. Comparisons with chronologies of the same tree species about 200 km apart suggest that this chronology can serve for dating purposes in a region larger than the study area. This study demonstrates the great potential of Qilian juniper for dendrochronological research. Key words: Northeastern Qinghai-Tibetan Plateau; Qilian juniper; den- drochronology; cross-dating; 3585-year chronology; archeological wood. INTRODUCTION One of the aims of dendrochronology is to construct long-term chronologies covering hundreds to thousands of years. These chronologies have major applications to climatic interpretations, radiocarbon analysis, and dating of past events (Lara & Villalba 1993; Scuderi 1993; Hughes & Graumlich 1996; Stahle et al. 1998, 2007; Grudd et al. 2002; Helama et al. 2002; Naurzbaev et al. 2002; Friedrich et al. 2004; Bhattacharyya & Shah 2009; Fang et al. -
22. Tribe ERAGROSTIDEAE Ihl/L^Ä Huameicaozu Chen Shouliang (W-"^ G,), Wu Zhenlan (ß^E^^)
POACEAE 457 at base, 5-35 cm tall, pubescent. Basal leaf sheaths tough, whit- Enneapogon schimperianus (A. Richard) Renvoize; Pap- ish, enclosing cleistogamous spikelets, finally becoming fi- pophorum aucheri Jaubert & Spach; P. persicum (Boissier) brous; leaf blades usually involute, filiform, 2-12 cm, 1-3 mm Steudel; P. schimperianum Hochstetter ex A. Richard; P. tur- wide, densely pubescent or the abaxial surface with longer comanicum Trautvetter. white soft hairs, finely acuminate. Panicle gray, dense, spike- Perennial. Culms compactly tufted, wiry, erect or genicu- hke, linear to ovate, 1.5-5 x 0.6-1 cm. Spikelets with 3 fiorets, late, 15^5 cm tall, pubescent especially below nodes. Basal 5.5-7 mm; glumes pubescent, 3-9-veined, lower glume 3-3.5 mm, upper glume 4-5 mm; lowest lemma 1.5-2 mm, densely leaf sheaths tough, lacking cleistogamous spikelets, not becom- villous; awns 2-A mm, subequal, ciliate in lower 2/3 of their ing fibrous; leaf blades usually involute, rarely fiat, often di- length; third lemma 0.5-3 mm, reduced to a small tuft of awns. verging at a wide angle from the culm, 3-17 cm, "i-^ mm wide, Anthers 0.3-0.6 mm. PL and &. Aug-Nov. 2« = 36. pubescent, acuminate. Panicle olive-gray or tinged purplish, contracted to spikelike, narrowly oblong, 4•18 x 1-2 cm. Dry hill slopes; 1000-1900 m. Anhui, Hebei, Liaoning, Nei Mon- Spikelets with 3 or 4 florets, 8-14 mm; glumes puberulous, (5-) gol, Ningxia, Qinghai, Shanxi, Xinjiang, Yunnan [India, Kazakhstan, 7-9-veined, lower glume 5-10 mm, upper glume 7-11 mm; Kyrgyzstan, Mongolia, Pakistan, E Russia; Africa, America, SW Asia]. -
Lessons Learned from China's Solar Policies
Lessons learned from China’s solar policies: Implications for Southeast Asia Dr Sam Geall chinadialogue [email protected] April 2019, Wilson Center 19th Party Congress, 2017: the “Driver’s Seat”? • In 3+ hours, Xi’s speech had 89 mentions of ‘environment,’ just 70 of the ‘economy’ • China now “is in the driver’s seat” on climate cooperation • Poverty alleviation focus: “Down-to-earth, adaption to local conditions, classified guidance and targeted poverty alleviation” China’s 13th Five Year Plan (2016-2020) • The “new normal”: from investment-led to consumer-led growth, innovation and services • “Ecological civilization”: focus on green policies and technologies • Energy efficiency, promotion of renewables and reduction of coal in the energy mix: 18% reduction in carbon intensity from 2015 levels by 2020 • 15% reduction in energy intensity • 15% of primary energy from non fossil sources • Reduce energy consumption below 5 billion tonnes of standard coal equivalent by 2020 Top Five Countries Annual Investment/Capacity Additions /Production in 2016 Source: REN21 2017 China’s solar industry boom • Crisis in 2010 led to government intervention; • Domestic market boom between 2010 and 2015; • 15GW installed in 2015 alone; • Hit the ceiling when power grid has no capacity for accommodation and transmission; • Curtailment reaches 50% in some areas in early 2016; • Distributed system favored by government but not by private investors Why renewables for development? • Renewable energy technologies: • help to mitigate climate change • provide cheap and reliable energy to areas where grid-based provision is unreliable or otherwise prohibited by geography or high costs • improve energy availability, energy security and economic resilience. -
Qinghai WLAN Area 1/13
Qinghai WLAN area NO. SSID Location_Name Location_Type Location_Address City Province 1 ChinaNet Quality Supervision Mansion Business Building No.31 Xiguan Street Xining City Qinghai Province No.160 Yellow River Road 2 ChinaNet Victory Hotel Conference Center Convention Center Xining City Qinghai Province 3 ChinaNet Shangpin Space Recreation Bar No.16-36 Xiguan Street Xining City Qinghai Province 4 ChinaNet Business Building No.372 Qilian Road Xining City Qinghai Province Salt Mansion 5 ChinaNet Yatai Trade City Large Shopping Mall Dongguan Street Xining City Qinghai Province 6 ChinaNet Gome Large Shopping Mall No.72 Dongguan Street Xining City Qinghai Province 7 ChinaNet West Airport Office Building Business Building No.32 Bayi Road Xining City Qinghai Province Government Agencies 8 ChinaNet Chengdong District Government Xining City Qinghai Province and Other Institutions Delingha Road 9 ChinaNet Junjiao Mansion Business Building Xining City Qinghai Province Bayi Road Government Agencies 10 ChinaNet Higher Procuratortate Office Building Xining City Qinghai Province and Other Institutions Wusi West Road 11 ChinaNet Zijin Garden Business Building No.41, Wusi West Road Xining City Qinghai Province 12 ChinaNet Qingbai Shopping Mall Large Shopping Mall Xining City Qinghai Province No.39, Wusi Avenue 13 ChinaNet CYTS Mansion Business Building No.55-1 Shengli Road Xining City Qinghai Province 14 ChinaNet Chenxiong Mansion Business Building No.15 Shengli Road Xining City Qinghai Province 15 ChinaNet Platform Bridge Shoes City Large Shopping -
Table of Codes for Each Court of Each Level
Table of Codes for Each Court of Each Level Corresponding Type Chinese Court Region Court Name Administrative Name Code Code Area Supreme People’s Court 最高人民法院 最高法 Higher People's Court of 北京市高级人民 Beijing 京 110000 1 Beijing Municipality 法院 Municipality No. 1 Intermediate People's 北京市第一中级 京 01 2 Court of Beijing Municipality 人民法院 Shijingshan Shijingshan District People’s 北京市石景山区 京 0107 110107 District of Beijing 1 Court of Beijing Municipality 人民法院 Municipality Haidian District of Haidian District People’s 北京市海淀区人 京 0108 110108 Beijing 1 Court of Beijing Municipality 民法院 Municipality Mentougou Mentougou District People’s 北京市门头沟区 京 0109 110109 District of Beijing 1 Court of Beijing Municipality 人民法院 Municipality Changping Changping District People’s 北京市昌平区人 京 0114 110114 District of Beijing 1 Court of Beijing Municipality 民法院 Municipality Yanqing County People’s 延庆县人民法院 京 0229 110229 Yanqing County 1 Court No. 2 Intermediate People's 北京市第二中级 京 02 2 Court of Beijing Municipality 人民法院 Dongcheng Dongcheng District People’s 北京市东城区人 京 0101 110101 District of Beijing 1 Court of Beijing Municipality 民法院 Municipality Xicheng District Xicheng District People’s 北京市西城区人 京 0102 110102 of Beijing 1 Court of Beijing Municipality 民法院 Municipality Fengtai District of Fengtai District People’s 北京市丰台区人 京 0106 110106 Beijing 1 Court of Beijing Municipality 民法院 Municipality 1 Fangshan District Fangshan District People’s 北京市房山区人 京 0111 110111 of Beijing 1 Court of Beijing Municipality 民法院 Municipality Daxing District of Daxing District People’s 北京市大兴区人 京 0115 -
Genetic Signatures of High-Altitude Adaptation and Geographic
www.nature.com/scientificreports OPEN Genetic signatures of high‑altitude adaptation and geographic distribution in Tibetan sheep Jianbin Liu1,2*, Chao Yuan1,2, Tingting Guo1,2, Fan Wang3, Yufeng Zeng1, Xuezhi Ding1, Zengkui Lu1,2, Dingkao Renqing4, Hao Zhang5, Xilan Xu6, Yaojing Yue1,2, Xiaoping Sun1,2, Chune Niu1,2, Deqing Zhuoga7* & Bohui Yang1,2* Most sheep breeding programs designed for the tropics and sub‑tropics have to take into account the impacts of environmental adaptive traits. However, the genetic mechanism regulating the multiple biological processes driving adaptive responses remains unclear. In this study, we applied a selective sweep analysis by combing 1% top values of Fst and ZHp on both altitude and geographic subpopulations (APS) in 636 indigenous Tibetan sheep breeds. Results show that 37 genes were identifed within overlapped genomic regions regarding Fst signifcantly associated with APS. Out of the 37 genes, we found that 8, 3 and 6 genes at chromosomes (chr.) 13, 23 and 27, respectively, were identifed in the genomic regions with 1% top values of ZHp. We further analyzed the INDEL variation of 6 genes at chr.27 (X chromosome) in APS together with corresponding orthologs of 6 genes in Capra, Pantholops, and Bos Taurus. We found that an INDEL was located within 5′UTR region of HAG1 gene. This INDEL of HAG1 was strongly associated with the variation of APS, which was further confrmed by qPCR. Sheep breeds carrying “C‑INDEL” of HAG1 have signifcantly greater body weight, shear amount, corpuscular hemoglobin and globulin levels, but lower body height, than those carrying “CA‑INDEL” of HAG1. -
Notes on Grasses (Poaceae) for the Flora of China, IV
Notes on Grasses (Poaceae) for the Flora of China, IV Sylvia M. Phillips Herbarium, Royal Botanic Gardens, Kew, Surrey TW9 3AB, United Kingdom. [email protected] Chen Shouliang Herbarium, Jiangsu Institute of Botany, Academia Sinica, 1 Qianghuhuocun, Nanjing, Jiangsu 210014, China. [email protected] ABSTRACT. The following changes are made in the preparation of the grass family account for the Poaceae, necessary for the upcoming Flora of Chi- Flora of China. na. Kengia chinensis is lectotypi®ed on a specimen of K. hackelii, and hence becomes a synonym of the ERAGROSTIDEAE latter. Kengia gracilis is synonymized under K. mu- cronata. Isachne clarkei is lectotypi®ed. Isachne be- Kengia hackelii (Honda) Packer, Bot. Not. 113: neckei (also lectotypi®ed) and I. tenuis are placed 291. 1960. Basionym: Diplachne hackelii Hon- as synonyms of I. clarkei. Isachne albens var. hir- da, J. Fac. Sci. Univ. Tokyo, Sect. 3, Bot. 3: suta is lectotypi®ed and placed as a synonym under 112. 1930. Cleistogenes hackelii (Honda) Hon- I. sylvestris. Isachne semitalis is lectotypi®ed and da, Bot. Mag. (Tokyo) 50: 437. 1936. TYPE: placed in synonymy of I. schmidtii. The distinctions Japan. Musashi Prov., Shirako, 1880, Matsu- between the closely related species I. kunthiana, I. mura 4 (holotype, TI). schmidtii, and I. repens are discussed. The new spe- Kengia chinensis (Maximowicz) Packer, Bot. Not. 113: cies Arundinella suniana, from Yunnan province 291. 1960. Basionym: Diplachne serotina var. chi- and related to A. setosa, is described. Arundinella nensis Maximowicz, Bull. Soc. Imp. Naturalistes setosa var. esetosa is validated. The name Arundi- Moscou 54: 70. -
Flora Mediterranea 26
FLORA MEDITERRANEA 26 Published under the auspices of OPTIMA by the Herbarium Mediterraneum Panormitanum Palermo – 2016 FLORA MEDITERRANEA Edited on behalf of the International Foundation pro Herbario Mediterraneo by Francesco M. Raimondo, Werner Greuter & Gianniantonio Domina Editorial board G. Domina (Palermo), F. Garbari (Pisa), W. Greuter (Berlin), S. L. Jury (Reading), G. Kamari (Patras), P. Mazzola (Palermo), S. Pignatti (Roma), F. M. Raimondo (Palermo), C. Salmeri (Palermo), B. Valdés (Sevilla), G. Venturella (Palermo). Advisory Committee P. V. Arrigoni (Firenze) P. Küpfer (Neuchatel) H. M. Burdet (Genève) J. Mathez (Montpellier) A. Carapezza (Palermo) G. Moggi (Firenze) C. D. K. Cook (Zurich) E. Nardi (Firenze) R. Courtecuisse (Lille) P. L. Nimis (Trieste) V. Demoulin (Liège) D. Phitos (Patras) F. Ehrendorfer (Wien) L. Poldini (Trieste) M. Erben (Munchen) R. M. Ros Espín (Murcia) G. Giaccone (Catania) A. Strid (Copenhagen) V. H. Heywood (Reading) B. Zimmer (Berlin) Editorial Office Editorial assistance: A. M. Mannino Editorial secretariat: V. Spadaro & P. Campisi Layout & Tecnical editing: E. Di Gristina & F. La Sorte Design: V. Magro & L. C. Raimondo Redazione di "Flora Mediterranea" Herbarium Mediterraneum Panormitanum, Università di Palermo Via Lincoln, 2 I-90133 Palermo, Italy [email protected] Printed by Luxograph s.r.l., Piazza Bartolomeo da Messina, 2/E - Palermo Registration at Tribunale di Palermo, no. 27 of 12 July 1991 ISSN: 1120-4052 printed, 2240-4538 online DOI: 10.7320/FlMedit26.001 Copyright © by International Foundation pro Herbario Mediterraneo, Palermo Contents V. Hugonnot & L. Chavoutier: A modern record of one of the rarest European mosses, Ptychomitrium incurvum (Ptychomitriaceae), in Eastern Pyrenees, France . 5 P. Chène, M.