11 Matrices and Graphs: Transitive Closure
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Perron–Frobenius Theory of Nonnegative Matrices
Buy from AMAZON.com http://www.amazon.com/exec/obidos/ASIN/0898714540 CHAPTER 8 Perron–Frobenius Theory of Nonnegative Matrices 8.1 INTRODUCTION m×n A ∈ is said to be a nonnegative matrix whenever each aij ≥ 0, and this is denoted by writing A ≥ 0. In general, A ≥ B means that each aij ≥ bij. Similarly, A is a positive matrix when each aij > 0, and this is denoted by writing A > 0. More generally, A > B means that each aij >bij. Applications abound with nonnegative and positive matrices. In fact, many of the applications considered in this text involve nonnegative matrices. For example, the connectivity matrix C in Example 3.5.2 (p. 100) is nonnegative. The discrete Laplacian L from Example 7.6.2 (p. 563) leads to a nonnegative matrix because (4I − L) ≥ 0. The matrix eAt that defines the solution of the system of differential equations in the mixing problem of Example 7.9.7 (p. 610) is nonnegative for all t ≥ 0. And the system of difference equations p(k)=Ap(k − 1) resulting from the shell game of Example 7.10.8 (p. 635) has Please report violations to [email protected] a nonnegativeCOPYRIGHTED coefficient matrix A. Since nonnegative matrices are pervasive, it’s natural to investigate their properties, and that’s the purpose of this chapter. A primary issue concerns It is illegal to print, duplicate, or distribute this material the extent to which the properties A > 0 or A ≥ 0 translate to spectral properties—e.g., to what extent does A have positive (or nonnegative) eigen- values and eigenvectors? The topic is called the “Perron–Frobenius theory” because it evolved from the contributions of the German mathematicians Oskar (or Oscar) Perron 89 and 89 Oskar Perron (1880–1975) originally set out to fulfill his father’s wishes to be in the family busi- Buy online from SIAM Copyright c 2000 SIAM http://www.ec-securehost.com/SIAM/ot71.html Buy from AMAZON.com 662 Chapter 8 Perron–Frobenius Theory of Nonnegative Matrices http://www.amazon.com/exec/obidos/ASIN/0898714540 Ferdinand Georg Frobenius. -
Relations 21
2. CLOSURE OF RELATIONS 21 2. Closure of Relations 2.1. Definition of the Closure of Relations. Definition 2.1.1. Given a relation R on a set A and a property P of relations, the closure of R with respect to property P , denoted ClP (R), is smallest relation on A that contains R and has property P . That is, ClP (R) is the relation obtained by adding the minimum number of ordered pairs to R necessary to obtain property P . Discussion To say that ClP (R) is the “smallest” relation on A containing R and having property P means that • R ⊆ ClP (R), • ClP (R) has property P , and • if S is another relation with property P and R ⊆ S, then ClP (R) ⊆ S. The following theorem gives an equivalent way to define the closure of a relation. \ Theorem 2.1.1. If R is a relation on a set A, then ClP (R) = S, where S∈P P = {S|R ⊆ S and S has property P }. Exercise 2.1.1. Prove Theorem 2.1.1. [Recall that one way to show two sets, A and B, are equal is to show A ⊆ B and B ⊆ A.] 2.2. Reflexive Closure. Definition 2.2.1. Let A be a set and let ∆ = {(x, x)|x ∈ A}. ∆ is called the diagonal relation on A. Theorem 2.2.1. Let R be a relation on A. The reflexive closure of R, denoted r(R), is the relation R ∪ ∆. Proof. Clearly, R ∪ ∆ is reflexive, since (a, a) ∈ ∆ ⊆ R ∪ ∆ for every a ∈ A. -
Scalability of Reflexive-Transitive Closure Tables As Hierarchical Data Solutions
Scalability of Reflexive- Transitive Closure Tables as Hierarchical Data Solutions Analysis via SQL Server 2008 R2 Brandon Berry, Engineer 12/8/2011 Reflexive-Transitive Closure (RTC) tables, when used to persist hierarchical data, present many advantages over alternative persistence strategies such as path enumeration. Such advantages include, but are not limited to, referential integrity and a simple structure for data queries. However, RTC tables grow exponentially and present a concern with scaling both operational performance of the RTC table and volume of the RTC data. Discovering these practical performance boundaries involves understanding the growth patterns of reflexive and transitive binary relations and observing sample data for large hierarchical models. Table of Contents 1 Introduction ......................................................................................................................................... 2 2 Reflexive-Transitive Closure Properties ................................................................................................. 3 2.1 Reflexivity ...................................................................................................................................... 3 2.2 Transitivity ..................................................................................................................................... 3 2.3 Closure .......................................................................................................................................... 4 3 Scalability -
4.6 Matrices Dimensions: Number of Rows and Columns a Is a 2 X 3 Matrix
Matrices are rectangular arrangements of data that are used to represent information in tabular form. 1 0 4 A = 3 - 6 8 a23 4.6 Matrices Dimensions: number of rows and columns A is a 2 x 3 matrix Elements of a matrix A are denoted by aij. a23 = 8 1 2 Data about many kinds of problems can often be represented by Matrix of coefficients matrix. Solutions to many problems can be obtained by solving e.g Average temperatures in 3 different cities for each month: systems of linear equations. For example, the constraints of a problem are represented by the system of linear equations 23 26 38 47 58 71 78 77 69 55 39 33 x + y = 70 A = 14 21 33 38 44 57 61 59 49 38 25 21 3 cities 24x + 14y = 1180 35 46 54 67 78 86 91 94 89 75 62 51 12 months Jan - Dec 1 1 rd The matrix A = Average temp. in the 3 24 14 city in July, a37, is 91. is the matrix of coefficient for this system of linear equations. 3 4 In a matrix, the arrangement of the entries is significant. Square Matrix is a matrix in which the number of Therefore, for two matrices to be equal they must have rows equals the number of columns. the same dimensions and the same entries in each location. •Main Diagonal: in a n x n square matrix, the elements a , a , a , …, a form the main Example: Let 11 22 33 nn diagonal of the matrix. -
Recent Developments in Boolean Matrix Factorization
Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence (IJCAI-20) Survey Track Recent Developments in Boolean Matrix Factorization Pauli Miettinen1∗ and Stefan Neumann2y 1University of Eastern Finland, Kuopio, Finland 2University of Vienna, Vienna, Austria pauli.miettinen@uef.fi, [email protected] Abstract analysts, and van den Broeck and Darwiche [2013] to lifted inference community, to name but a few examples. Even more The goal of Boolean Matrix Factorization (BMF) is recently, Ravanbakhsh et al. [2016] studied the problem in to approximate a given binary matrix as the product the framework of machine learning, increasing the interest of of two low-rank binary factor matrices, where the that community, and Chandran et al. [2016]; Ban et al. [2019]; product of the factor matrices is computed under Fomin et al. [2019] (re-)launched the interest in the problem the Boolean algebra. While the problem is computa- in the theory community. tionally hard, it is also attractive because the binary The various fields in which BMF is used are connected by nature of the factor matrices makes them highly in- the desire to “keep the data binary”. This can be because terpretable. In the last decade, BMF has received a the factorization is used as a pre-processing step, and the considerable amount of attention in the data mining subsequent methods require binary input, or because binary and formal concept analysis communities and, more matrices are more interpretable in the application domain. In recently, the machine learning and the theory com- the latter case, Boolean algebra is often preferred over the field munities also started studying BMF. -
MATH 213 Chapter 9: Relations
MATH 213 Chapter 9: Relations Dr. Eric Bancroft Fall 2013 9.1 - Relations Definition 1 (Relation). Let A and B be sets. A binary relation from A to B is a subset R ⊆ A×B, i.e., R is a set of ordered pairs where the first element from each pair is from A and the second element is from B. If (a; b) 2 R then we write a R b or a ∼ b (read \a relates/is related to b [by R]"). If (a; b) 2= R, then we write a R6 b or a b. We can represent relations graphically or with a chart in addition to a set description. Example 1. A = f0; 1; 2g;B = f1; 2; 3g;R = f(1; 1); (2; 1); (2; 2)g Example 2. (a) \Parent" (b) 8x; y 2 Z; x R y () x2 + y2 = 8 (c) A = f0; 1; 2g;B = f1; 2; 3g; a R b () a + b ≥ 3 1 Note: All functions are relations, but not all relations are functions. Definition 2. If A is a set, then a relation on A is a relation from A to A. Example 3. How many relations are there on a set with. (a) two elements? (b) n elements? (c) 14 elements? Properties of Relations Definition 3 (Reflexive). A relation R on a set A is said to be reflexive if and only if a R a for all a 2 A. Definition 4 (Symmetric). A relation R on a set A is said to be symmetric if and only if a R b =) b R a for all a; b 2 A. -
Properties of Binary Transitive Closure Logics Over Trees S K
8 Properties of binary transitive closure logics over trees S K Abstract Binary transitive closure logic (FO∗ for short) is the extension of first-order predicate logic by a transitive closure operator of binary relations. Deterministic binary transitive closure logic (FOD∗) is the restriction of FO∗ to deterministic transitive closures. It is known that these logics are more powerful than FO on arbitrary structures and on finite ordered trees. It is also known that they are at most as powerful as monadic second-order logic (MSO) on arbitrary structures and on finite trees. We will study the expressive power of FO∗ and FOD∗ on trees to show that several MSO properties can be expressed in FOD∗ (and hence FO∗). The following results will be shown. A linear order can be defined on the nodes of a tree. The class EVEN of trees with an even number of nodes can be defined. On arbitrary structures with a tree signature, the classes of trees and finite trees can be defined. There is a tree language definable in FOD∗ that cannot be recognized by any tree walking automaton. FO∗ is strictly more powerful than tree walking automata. These results imply that FOD∗ and FO∗ are neither compact nor do they have the L¨owenheim-Skolem-Upward property. Keywords B 8.1 Introduction The question aboutthe best suited logic for describing tree properties or defin- ing tree languages is an important one for model theoretic syntax as well as for querying treebanks. Model theoretic syntax is a research program in mathematical linguistics concerned with studying the descriptive complex- Proceedings of FG-2006. -
A Complete Bibliography of Publications in Linear Algebra and Its Applications: 2010–2019
A Complete Bibliography of Publications in Linear Algebra and its Applications: 2010{2019 Nelson H. F. Beebe University of Utah Department of Mathematics, 110 LCB 155 S 1400 E RM 233 Salt Lake City, UT 84112-0090 USA Tel: +1 801 581 5254 FAX: +1 801 581 4148 E-mail: [email protected], [email protected], [email protected] (Internet) WWW URL: http://www.math.utah.edu/~beebe/ 12 March 2021 Version 1.74 Title word cross-reference KY14, Rim12, Rud12, YHH12, vdH14]. 24 [KAAK11]. 2n − 3[BCS10,ˇ Hil13]. 2 × 2 [CGRVC13, CGSCZ10, CM14, DW11, DMS10, JK11, KJK13, MSvW12, Yan14]. (−1; 1) [AAFG12].´ (0; 1) 2 × 2 × 2 [Ber13b]. 3 [BBS12b, NP10, Ghe14a]. (2; 2; 0) [BZWL13, Bre14, CILL12, CKAC14, Fri12, [CI13, PH12]. (A; B) [PP13b]. (α, β) GOvdD14, GX12a, Kal13b, KK14, YHH12]. [HW11, HZM10]. (C; λ; µ)[dMR12].(`; m) p 3n2 − 2 2n3=2 − 3n [MR13]. [DFG10]. (H; m)[BOZ10].(κ, τ) p 3n2 − 2 2n3=23n [MR14a]. 3 × 3 [CSZ10, CR10c]. (λ, 2) [BBS12b]. (m; s; 0) [Dru14, GLZ14, Sev14]. 3 × 3 × 2 [Ber13b]. [GH13b]. (n − 3) [CGO10]. (n − 3; 2; 1) 3 × 3 × 3 [BH13b]. 4 [Ban13a, BDK11, [CCGR13]. (!) [CL12a]. (P; R)[KNS14]. BZ12b, CK13a, FP14, NSW13, Nor14]. 4 × 4 (R; S )[Tre12].−1 [LZG14]. 0 [AKZ13, σ [CJR11]. 5 Ano12-30, CGGS13, DLMZ14, Wu10a]. 1 [BH13b, CHY12, KRH14, Kol13, MW14a]. [Ano12-30, AHL+14, CGGS13, GM14, 5 × 5 [BAD09, DA10, Hil12a, Spe11]. 5 × n Kal13b, LM12, Wu10a]. 1=n [CNPP12]. [CJR11]. 6 1 <t<2 [Seo14]. 2 [AIS14, AM14, AKA13, [DK13c, DK11, DK12a, DK13b, Kar11a]. -
COMPUTING RELATIVELY LARGE ALGEBRAIC STRUCTURES by AUTOMATED THEORY EXPLORATION By
COMPUTING RELATIVELY LARGE ALGEBRAIC STRUCTURES BY AUTOMATED THEORY EXPLORATION by QURATUL-AIN MAHESAR A thesis submitted to The University of Birmingham for the degree of DOCTOR OF PHILOSOPHY School of Computer Science College of Engineering and Physical Sciences The University of Birmingham March 2014 University of Birmingham Research Archive e-theses repository This unpublished thesis/dissertation is copyright of the author and/or third parties. The intellectual property rights of the author or third parties in respect of this work are as defined by The Copyright Designs and Patents Act 1988 or as modified by any successor legislation. Any use made of information contained in this thesis/dissertation must be in accordance with that legislation and must be properly acknowledged. Further distribution or reproduction in any format is prohibited without the permission of the copyright holder. Abstract Automated reasoning technology provides means for inference in a formal context via a multitude of disparate reasoning techniques. Combining different techniques not only increases the effectiveness of single systems but also provides a more powerful approach to solving hard problems. Consequently combined reasoning systems have been successfully employed to solve non-trivial mathematical problems in combinatorially rich domains that are intractable by traditional mathematical means. Nevertheless, the lack of domain specific knowledge often limits the effectiveness of these systems. In this thesis we investigate how the combination of diverse reasoning techniques can be employed to pre-compute additional knowledge to enable mathematical discovery in finite and potentially infinite domains that is otherwise not feasible. In particular, we demonstrate how we can exploit bespoke symbolic computations and automated theorem proving to automatically compute and evolve the structural knowledge of small size finite structures in the algebraic theory of quasigroups. -
Descriptive Complexity: a Logician's Approach to Computation
Descriptive Complexity a Logicians Approach to Computation Neil Immerman Computer Science Dept University of Massachusetts Amherst MA immermancsumassedu App eared in Notices of the American Mathematical Society A basic issue in computer science is the complexity of problems If one is doing a calculation once on a mediumsized input the simplest algorithm may b e the b est metho d to use even if it is not the fastest However when one has a subproblem that will havetobesolved millions of times optimization is imp ortant A fundamental issue in theoretical computer science is the computational complexity of problems Howmuch time and howmuch memory space is needed to solve a particular problem Here are a few examples of such problems Reachability Given a directed graph and two sp ecied p oints s t determine if there is a path from s to t A simple lineartime algorithm marks s and then continues to mark every vertex at the head of an edge whose tail is marked When no more vertices can b e marked t is reachable from s i it has b een marked Mintriangulation Given a p olygon in the plane and a length L determine if there is a triangulation of the p olygon of total length less than or equal to L Even though there are exp onentially many p ossible triangulations a dynamic programming algorithm can nd an optimal one in O n steps ThreeColorability Given an undirected graph determine whether its vertices can b e colored using three colors with no two adjacentvertices having the same color Again there are exp onentially many p ossibilities -
Relations April 4
math 55 - Relations April 4 Relations Let A and B be two sets. A (binary) relation on A and B is a subset R ⊂ A × B. We often write aRb to mean (a; b) 2 R. The following are properties of relations on a set S (where above A = S and B = S are taken to be the same set S): 1. Reflexive: (a; a) 2 R for all a 2 S. 2. Symmetric: (a; b) 2 R () (b; a) 2 R for all a; b 2 S. 3. Antisymmetric: (a; b) 2 R and (b; a) 2 R =) a = b. 4. Transitive: (a; b) 2 R and (b; c) 2 R =) (a; c) 2 R for all a; b; c 2 S. Exercises For each of the following relations, which of the above properties do they have? 1. Let R be the relation on Z+ defined by R = f(a; b) j a divides bg. Reflexive, antisymmetric, and transitive 2. Let R be the relation on Z defined by R = f(a; b) j a ≡ b (mod 33)g. Reflexive, symmetric, and transitive 3. Let R be the relation on R defined by R = f(a; b) j a < bg. Symmetric and transitive 4. Let S be the set of all convergent sequences of rational numbers. Let R be the relation on S defined by f(a; b) j lim a = lim bg. Reflexive, symmetric, transitive 5. Let P be the set of all propositional statements. Let R be the relation on P defined by R = f(a; b) j a ! b is trueg. -
A Transitive Closure Algorithm for Test Generation
A Transitive Closure Algorithm for Test Generation Srimat T. Chakradhar, Member, IEEE, Vishwani D. Agrawal, Fellow, IEEE, and Steven G. Rothweiler Abstract-We present a transitive closure based test genera- Cox use reduction lists to quickly determine necessary as- tion algorithm. A test is obtained by determining signal values signments [5]. that satisfy a Boolean equation derived from the neural net- These algorithms solve two main problems: (1) they work model of the circuit incorporating necessary conditions for fault activation and path sensitization. The algorithm is a determine logical consequences of a partial set of signal sequence of two main steps that are repeatedly executed: tran- assignments and (2) they determine the order in which sitive closure computation and decision-making. To compute decisions on fixing signals should be made. the transitive closure, we start with an implication graph whose In spite of making extensive use of the circuit structure vertices are labeled as the true and false states of all signals. A directed edge (x, y) in this graph represents the controlling in- and function, most algorithms have several shortcomings. fluence of the true state of signal x on the true state of signal y First, they do not guarantee the identification of all logi- that are connected through a wire or a gate. Since the impli- cal consequences of a partial set of signal assignments. In cation graph only includes local pairwise (or binary) relations, other words, local conditions are easier to identify than it is a partial representation of the netlist. Higher-order signal the global ones.