Forum Review Article
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Identification of the S-Transferase Like Superfamily Bacillithiol Transferases Encoded by Bacillus Subtilis
UC San Diego UC San Diego Previously Published Works Title Identification of the S-transferase like superfamily bacillithiol transferases encoded by Bacillus subtilis. Permalink https://escholarship.org/uc/item/1tn9d97t Journal PloS one, 13(2) ISSN 1932-6203 Authors Perera, Varahenage R Lapek, John D Newton, Gerald L et al. Publication Date 2018 DOI 10.1371/journal.pone.0192977 Peer reviewed eScholarship.org Powered by the California Digital Library University of California RESEARCH ARTICLE Identification of the S-transferase like superfamily bacillithiol transferases encoded by Bacillus subtilis Varahenage R. Perera1, John D. Lapek, Jr.2, Gerald L. Newton1, David J. Gonzalez2, Kit Pogliano1* 1 Division of Biological Sciences, University of California, San Diego, La Jolla, CA, United States of America, 2 Department of Pharmacology and Pharmacy, School of Medicine, University of California, San Diego, La a1111111111 Jolla, CA, United States of America a1111111111 a1111111111 * [email protected] a1111111111 a1111111111 Abstract Bacillithiol is a low molecular weight thiol found in Firmicutes that is analogous to glutathi- one, which is absent in these bacteria. Bacillithiol transferases catalyze the transfer of bacil- OPEN ACCESS lithiol to various substrates. The S-transferase-like (STL) superfamily contains over 30,000 Citation: Perera VR, Lapek JD, Jr., Newton GL, putative members, including bacillithiol transferases. Proteins in this family are extremely Gonzalez DJ, Pogliano K (2018) Identification of the divergent and are related by structural rather than sequence similarity, leaving it unclear if all S-transferase like superfamily bacillithiol transferases encoded by Bacillus subtilis. PLoS share the same biochemical activity. Bacillus subtilis encodes eight predicted STL super- ONE 13(2): e0192977. -
The Significance of N-Methylation of Bacillithiol on Its Biological Activity As a Redox Cofactor
THE SIGNIFICANCE OF N-METHYLATION OF BACILLITHIOL ON ITS BIOLOGICAL ACTIVITY AS A REDOX COFACTOR Hazel Nicole Moxham A thesis submitted for the Degree of Master of Science by Research University of East Anglia School of Pharmacy September 2018 This copy of the thesis has been supplied on condition that anyone who consults it is understood to recognise that its copyright rests with the author and that use of any information derived therefrom must be in accordance with current UK Copyright Law. In addition, any quotation or extract must include full attribution. 1 Abstract Low molecular weight thiols play a crucial role in a multitude of biological processes such as maintaining redox homeostasis and the detoxification of chemical stressors. Different classes of microorganisms utilise different low molecular weight thiols. For example: glutathione is found eukaryotes and most gram-negative bacteria, mycothiol is found in the actinomycetes, and bacillithiol is found in the firmicutes. This study focused on N-methyl-bacillithiol, the novel low molecular weight thiol found in the green sulfur bacteria. Due to the unavailability of the thiol, the biophysical properties of a series of related derivatives were analysed and compared. Six thiols were examined so that each of their macroscopic and microscopic pKa values as well as their thiol-disulfide exchange rate constants and their copper catalysed autoxidation rates were isolated. The results determined that each thiol maintains its own set of biophysical properties that are unique to each compound. These were then observed alongside others within the literature to compare and contrast. Predictions were made regarding the properties of N-methylated bacillithiol by associating the data of those with similar structural differences. -
Insight Into the Genome of Staphylococcus Xylosus, a Ubiquitous Species Well Adapted to Meat Products Sabine Leroy, Aurore Vermassen, Geoffrey Ras, Régine Talon
Insight into the genome of staphylococcus xylosus, a ubiquitous species well adapted to meat products Sabine Leroy, Aurore Vermassen, Geoffrey Ras, Régine Talon To cite this version: Sabine Leroy, Aurore Vermassen, Geoffrey Ras, Régine Talon. Insight into the genome of staphylo- coccus xylosus, a ubiquitous species well adapted to meat products. Microorganisms, MDPI, 2017, 5 (3), 10.3390/microorganisms5030052. hal-01607624 HAL Id: hal-01607624 https://hal.archives-ouvertes.fr/hal-01607624 Submitted on 25 May 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution - ShareAlike| 4.0 International License microorganisms Review Insight into the Genome of Staphylococcus xylosus, a Ubiquitous Species Well Adapted to Meat Products Sabine Leroy, Aurore Vermassen, Geoffrey Ras and Régine Talon * Université Clermont-Auvergne, INRA, MEDIS, F-63000 Clermont-Ferrand, France; [email protected] (S.L.); [email protected] (A.V.); [email protected] (G.R.) * Correspondence: [email protected]; Tel.: +33-473-624-170 Received: 29 June 2017; Accepted: 25 August 2017; Published: 29 August 2017 Abstract: Staphylococcus xylosus belongs to the vast group of coagulase-negative staphylococci. It is frequently isolated from meat products, either fermented or salted and dried, and is commonly used as starter cultures in sausage manufacturing. -
Bacillus Pumilus Reveals a Remarkably High Resistance to Hydrogen Peroxide Provoked Oxidative Stress
Bacillus pumilus Reveals a Remarkably High Resistance to Hydrogen Peroxide Provoked Oxidative Stress Stefan Handtke1., Rebecca Schroeter2., Britta Ju¨ rgen2, Karen Methling3, Rabea Schlu¨ ter1, Dirk Albrecht1 , Sacha A. F. T. van Hijum4 , Johannes Bongaerts5 , Karl-Heinz Maurer6 , Michael3 Lalk , Thomas Schweder2,7, Michael Hecker1,7, Birgit Voigt1,7* 1 Institute for Microbiology, University of Greifswald, Greifswald, Germany, 2 Pharmaceutical Biotechnology, Institute of Pharmacy, University of Greifswald, Greifswald, Germany, 3 Institute of Biochemistry, University of Greifswald, Greifswald, Germany, 4 Centre for Molecular and Biomolecular Informatics (CMBI), Nijmegen Centre for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands; and Division Processing and Safety, NIZO Food Research B.V., Ede, The Netherlands, 5 Department of Chemistry and Biotechnology, Aachen University of Applied Sciences, Ju¨lich, Germany, 6 AB Enzymes GmbH, Darmstadt, Germany, 7 Institute of Marine Biotechnology, Greifswald, Germany Abstract Bacillus pumilus is characterized by a higher oxidative stress resistance than other comparable industrially relevant Bacilli such as B. subtilis or B. licheniformis. In this study the response of B. pumilus to oxidative stress was investigated during a treatment with high concentrations of hydrogen peroxide at the proteome, transcriptome and metabolome level. Genes/ proteins belonging to regulons, which are known to have important functions in the oxidative stress response of other organisms, were found to be upregulated, such as the Fur, Spx, SOS or CtsR regulon. Strikingly, parts of the fundamental PerR regulon responding to peroxide stress in B. subtilis are not encoded in the B. pumilus genome. Thus, B. pumilus misses the catalase KatA, the DNA-protection protein MrgA or the alkyl hydroperoxide reductase AhpCF. -
Developing a Riboswitch-Mediated Regulatory System for Metabolic Flux Control in Thermophilic Bacillus Methanolicus
International Journal of Molecular Sciences Article Developing a Riboswitch-Mediated Regulatory System for Metabolic Flux Control in Thermophilic Bacillus methanolicus Marta Irla , Sigrid Hakvåg and Trygve Brautaset * Department of Biotechnology and Food Sciences, Norwegian University of Science and Technology, 7034 Trondheim, Norway; [email protected] (M.I.); [email protected] (S.H.) * Correspondence: [email protected]; Tel.: +47-73593315 Abstract: Genome-wide transcriptomic data obtained in RNA-seq experiments can serve as a re- liable source for identification of novel regulatory elements such as riboswitches and promoters. Riboswitches are parts of the 50 untranslated region of mRNA molecules that can specifically bind various metabolites and control gene expression. For that reason, they have become an attractive tool for engineering biological systems, especially for the regulation of metabolic fluxes in industrial microorganisms. Promoters in the genomes of prokaryotes are located upstream of transcription start sites and their sequences are easily identifiable based on the primary transcriptome data. Bacillus methanolicus MGA3 is a candidate for use as an industrial workhorse in methanol-based biopro- cesses and its metabolism has been studied in systems biology approaches in recent years, including transcriptome characterization through RNA-seq. Here, we identify a putative lysine riboswitch in B. methanolicus, and test and characterize it. We also select and experimentally verify 10 putative B. methanolicus-derived promoters differing in their predicted strength and present their functionality in combination with the lysine riboswitch. We further explore the potential of a B. subtilis-derived purine riboswitch for regulation of gene expression in the thermophilic B. methanolicus, establishing a Citation: Irla, M.; Hakvåg, S.; novel tool for inducible gene expression in this bacterium. -
Staphylococcus Aureus Responds to Allicin by Global S-Thioallylation – Role of the Brx/BSH/Ypda Pathway and the Disulfide Reductase Mera to Overcome T Allicin Stress
Free Radical Biology and Medicine 139 (2019) 55–69 Contents lists available at ScienceDirect Free Radical Biology and Medicine journal homepage: www.elsevier.com/locate/freeradbiomed Original article Staphylococcus aureus responds to allicin by global S-thioallylation – Role of the Brx/BSH/YpdA pathway and the disulfide reductase MerA to overcome T allicin stress Vu Van Loia, Nguyen Thi Thu Huyena,1, Tobias Buschea,b, Quach Ngoc Tunga, Martin Clemens Horst Gruhlkec, Jörn Kalinowskib, Jörg Bernhardta,d, Alan John Slusarenkoc, ∗ Haike Antelmanna, a Freie Universität Berlin, Institute for Biology-Microbiology, D-14195, Berlin, Germany b Center for Biotechnology, Bielefeld University, D-33594, Bielefeld, Germany c Department of Plant Physiology, RWTH Aachen University, D-52056, Aachen, Germany d Institute for Microbiology, University of Greifswald, D-17489, Greifswald, Germany ARTICLE INFO ABSTRACT Keywords: The prevalence of methicillin-resitant Staphylococcus aureus (MRSA) in hospitals and the community poses an Staphylococcus aureus increasing health burden, which requires the discovery of alternative antimicrobials. Allicin (diallyl thiosulfi- Allicin nate) from garlic exhibits broad-spectrum antimicrobial activity against many multidrug resistant bacteria. The Bacillithiol thiol-reactive mode of action of allicin involves its S-thioallylations of low molecular weight (LMW) thiols and S-thioallylation protein thiols. To investigate the mode of action and stress response caused by allicin in S. aureus, we analyzed MerA the transcriptome signature, the targets for S-thioallylation in the proteome and the changes in the bacillithiol BrxAB fi YpdA (BSH) redox potential (EBSH) under allicin stress. Allicin caused a strong thiol-speci c oxidative and sulfur stress response and protein damage as revealed by the induction of the PerR, HypR, QsrR, MhqR, CstR, CtsR, HrcA and CymR regulons in the RNA-seq transcriptome. -
Report on “Thiol Levels in Bacillus Species
Report on “Thiol levels in Bacillus species exposed to ultraviolet radiation” (NASA Astrobiology Program - Minority Institution Support Faculty Research Awards: August 22, 2011- May 21, 2012) Submitted November 25, 2012 As mandated by the Committee of Space Research, space-faring nations must take precautions in preventing contamination of extraterrestrial bodies by limiting the amount of microbes present to the greatest possible extent. Surveys of spacecraft assembly clean rooms for microbes have revealed the existence of strains of bacteria resistant to high levels of ultraviolet (UV) radiation and vaporous hydrogen peroxide, which are used to sterilize clean rooms. In order to develop effective ways to eradicate these bacteria prior to the spacecraft leaving Earth, we must understand how these bacteria are able to survive these extremophilic conditions. We are particularly concerned about spore forming bacteria, such as Bacillus pumilus SAFR-032 and Bacillus horneckaie, which are highly resistant to UV and oxidative stress. First, we have demonstrated that these species like other Bacilli contains a novel low molecular weight thiol (LMW), bacillithiol. LMW thiols like bacillithiol play a critical role in maintaining a reducing environment and are involved in protection of organisms against a variety of stresses. Bacillithiol has been shown to protect against hypochlorite stress by S-bacillithiolation of cysteines in critical proteins such as glyceraldehyde- 3-phosphate dehydrogenase. We have examined samples of B. pumilus SAFR-032 spores exposed to four different extreme conditions at the International Space Center: (1) deep space, (2) Martian atmosphere, (3) deep space with UV radiation, and (4) Martian atmosphere with UV radiation. Thiol analysis of the surviving spores indicates that levels of bacillithiol are ten times higher in UV radiation treated samples exposed to both deep space and Martian atmosphere conditions. -
Genomics of Methylotrophy in Gram-Positive Methylamine-Utilizing Bacteria
Lawrence Berkeley National Laboratory Recent Work Title Genomics of Methylotrophy in Gram-Positive Methylamine-Utilizing Bacteria. Permalink https://escholarship.org/uc/item/44j757z8 Journal Microorganisms, 3(1) ISSN 2076-2607 Authors McTaggart, Tami L Beck, David AC Setboonsarng, Usanisa et al. Publication Date 2015-03-20 DOI 10.3390/microorganisms3010094 Peer reviewed eScholarship.org Powered by the California Digital Library University of California Microorganisms 2015, 3, 94-112; doi:10.3390/microorganisms3010094 OPEN ACCESS microorganisms ISSN 2076-2607 www.mdpi.com/journal/microorganisms Article Genomics of Methylotrophy in Gram-Positive Methylamine-Utilizing Bacteria Tami L. McTaggart 1,†, David A. C. Beck 1,3, Usanisa Setboonsarng 1,‡, Nicole Shapiro 4, Tanja Woyke 4, Mary E. Lidstrom 1,2, Marina G. Kalyuzhnaya 2,§ and Ludmila Chistoserdova 1,* 1 Department of Chemical Engineering, University of Washington, Seattle, WA 98195, USA; E-Mails: [email protected] (T.L.M.); [email protected] (D.A.C.B.); [email protected] (U.S.); [email protected] (M.E.L.) 2 Department of Microbiology, University of Washington, Seattle, WA 98195, USA; E-Mail: [email protected] 3 eScience Institute, University of Washington, Seattle, WA 98195, USA 4 DOE Joint Genome Institute, Walnut Creek, CA 94598, USA; E-Mails: [email protected] (N.S.); [email protected] (T.W.) † Present address: Department of Chemical Engineering and Materials Science, University of California Irvine, Irvine, CA 92697, USA. ‡ Present address: Denali Advanced Integration, Redmond, WA 98052, USA. § Present address: Biology Department, San Diego State University, San Diego, CA 92182, USA. * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +1-206-616-1913. -
Production of Value-Added Chemicals by Bacillus Methanolicus Strains Cultivated on Mannitol and Extracts of Seaweed Saccharina Latissima at 50◦C
fmicb-11-00680 April 8, 2020 Time: 19:50 # 1 ORIGINAL RESEARCH published: 09 April 2020 doi: 10.3389/fmicb.2020.00680 Production of Value-Added Chemicals by Bacillus methanolicus Strains Cultivated on Mannitol and Extracts of Seaweed Saccharina latissima at 50◦C Sigrid Hakvåg1, Ingemar Nærdal2, Tonje M. B. Heggeset2, Kåre A. Kristiansen1, Inga M. Aasen2 and Trygve Brautaset1* 1 Department of Biotechnology and Food Sciences, Norwegian University of Science and Technology, Trondheim, Norway, 2 Department of Biotechnology and Nanomedicine, SINTEF Industry, Trondheim, Norway The facultative methylotroph Bacillus methanolicus MGA3 has previously been genetically engineered to overproduce the amino acids L-lysine and L-glutamate and their derivatives cadaverine and g-aminobutyric acid (GABA) from methanol at 50◦C. We here explored the potential of utilizing the sugar alcohol mannitol and seaweed extract (SWE) containing mannitol, as alternative feedstocks for production of chemicals by fermentation using B. methanolicus. Extracts of the brown algae Saccharina latissima Edited by: harvested in the Trondheim Fjord in Norway were prepared and found to contain 12– Nuno Pereira Mira, ∼ University of Lisbon, Portugal 13 g/l of mannitol, with conductivities corresponding to a salt content of 2% NaCl. Reviewed by: Initially, 12 B. methanolicus wild type strains were tested for tolerance to various SWE Stefan Junne, concentrations, and some strains including MGA3 could grow on 50% SWE medium. Technical University of Berlin, Non-methylotrophic and methylotrophic growth of B. methanolicus rely on differences Germany Hao Zhou, in regulation of metabolic pathways, and we compared production titers of GABA Dalian University of Technology, China and cadaverine under such growth conditions. -
Bacillus Methanolicus Sp
University of Groningen Bacillus methanolicus sp. nov., a New Species of Thermotolerant, Methanol-Utilizing, Endospore-Forming Bacteria Arfman, Nico; Dijkhuizen, Lubbert; Kirchhof, Gudrun; Ludwig, Wolfgang; Schleifer, Karl-Heinz; Bulygina, Eugenia S.; Chumakov, Konstantin M.; Govorukhina, Natalya I.; Trotsenko, Yuri A.; White, Duncan Published in: International Journal of Systematic Bacteriology DOI: 10.1099/00207713-42-3-439 IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below. Document Version Publisher's PDF, also known as Version of record Publication date: 1992 Link to publication in University of Groningen/UMCG research database Citation for published version (APA): Arfman, N., Dijkhuizen, L., Kirchhof, G., Ludwig, W., Schleifer, K-H., Bulygina, E. S., Chumakov, K. M., Govorukhina, N. I., Trotsenko, Y. A., White, D., & Sharp, R. J. (1992). Bacillus methanolicus sp. nov., a New Species of Thermotolerant, Methanol-Utilizing, Endospore-Forming Bacteria. International Journal of Systematic Bacteriology, 42(3), 439-445. https://doi.org/10.1099/00207713-42-3-439 Copyright Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons). The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license. More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne- amendment. -
The Genera Staphylococcus and Macrococcus
Prokaryotes (2006) 4:5–75 DOI: 10.1007/0-387-30744-3_1 CHAPTER 1.2.1 ehT areneG succocolyhpatS dna succocorcMa The Genera Staphylococcus and Macrococcus FRIEDRICH GÖTZ, TAMMY BANNERMAN AND KARL-HEINZ SCHLEIFER Introduction zolidone (Baker, 1984). Comparative immu- nochemical studies of catalases (Schleifer, 1986), The name Staphylococcus (staphyle, bunch of DNA-DNA hybridization studies, DNA-rRNA grapes) was introduced by Ogston (1883) for the hybridization studies (Schleifer et al., 1979; Kilp- group micrococci causing inflammation and per et al., 1980), and comparative oligonucle- suppuration. He was the first to differentiate otide cataloguing of 16S rRNA (Ludwig et al., two kinds of pyogenic cocci: one arranged in 1981) clearly demonstrated the epigenetic and groups or masses was called “Staphylococcus” genetic difference of staphylococci and micro- and another arranged in chains was named cocci. Members of the genus Staphylococcus “Billroth’s Streptococcus.” A formal description form a coherent and well-defined group of of the genus Staphylococcus was provided by related species that is widely divergent from Rosenbach (1884). He divided the genus into the those of the genus Micrococcus. Until the early two species Staphylococcus aureus and S. albus. 1970s, the genus Staphylococcus consisted of Zopf (1885) placed the mass-forming staphylo- three species: the coagulase-positive species S. cocci and tetrad-forming micrococci in the genus aureus and the coagulase-negative species S. epi- Micrococcus. In 1886, the genus Staphylococcus dermidis and S. saprophyticus, but a deeper look was separated from Micrococcus by Flügge into the chemotaxonomic and genotypic proper- (1886). He differentiated the two genera mainly ties of staphylococci led to the description of on the basis of their action on gelatin and on many new staphylococcal species. -
Biomolecular Signatures of Disease Via Ion Mobility And
BIOMOLECULAR SIGNATURES OF DISEASE VIA ION MOBILITY AND MASS SPECTROMETRY TECHNIQUES By Kelly M. Hines Dissertation Submitted to the Faculty of the Graduate School of Vanderbilt University in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY in Chemistry May, 2014 Nashville, Tennessee Approved: John A. McLean, Ph.D. David E. Cliffel, Ph.D. Donna J. Webb, Ph.D. Eva M. Harth, Ph.D. ACKNOWLEDGEMENTS Firstly, I would like to thank my dissertation advisor Dr. John A. McLean for allowing me to explore my own interests, and for providing encouragement and direction in times when I was uncertain in my abilities or the merits of my research. The advice to not “let perfection get in the way of good enough,” has been particularly helpful. Thank you for being an excellent mentor. I would like to thank my dissertation committee members Dr. David E. Cliffel, Dr. Donna J. Webb, and Dr. Eva M. Harth for their guidance and advice, and for challenging me to see the broader impacts of my work. I would like to acknowledge the many collaborators who have contributed to my dissertation research: Dr. John P. Wikswo, Dr. Dana R. Marshall, Dr. Donna J. Webb, Dr. Kristie L. Rose, Dr. Jeffrey M. Davidson, and Dr. Susan R. Opalenik. I learned many new things through our work together. I would like to thank my colleagues, past and present, in the McLean lab for being good co-workers and good friends. In particular, I would like to thank Dr. Jeffrey R. Enders, Dr. Michal Kliman and Dr.