Communication Learning Via Backpropagation in Discrete Channels with Unknown Noise

Total Page:16

File Type:pdf, Size:1020Kb

Communication Learning Via Backpropagation in Discrete Channels with Unknown Noise The Thirty-Fourth AAAI Conference on Artificial Intelligence (AAAI-20) Communication Learning via Backpropagation in Discrete Channels with Unknown Noise Benjamin Freed Guillaume Sartoretti Jiaheng Hu Howie Choset Carnegie Mellon University National University of Singapore Columbia University Carnegie Mellon University 5000 Forbes Ave 21 Lower Kent Ridge Rd 116th St and Broadway 5000 Forbes Ave Pittsburgh, PA 15213 Singapore 119077 New York, NY 10027 Pittsburgh, PA 15213 Abstract from all other agents, conditioned only on information avail- able to that particular agent (Bernstein et al. 2002; Gupta, This work focuses on multi-agent reinforcement learning Egorov, and Kochenderfer 2017; Sartoretti et al. 2019; Foer- (RL) with inter-agent communication, in which communi- ster et al. 2017). Such decentralized approaches offer major cation is differentiable and optimized through backpropaga- tion. Such differentiable approaches tend to converge more scalability and parallelizability advantages over centralized quickly to higher-quality policies compared to techniques that planning approaches. Computational complexity of decen- treat communication as actions in a traditional RL frame- tralized approaches scales linearly with the team size (as op- work. However, modern communication networks (e.g., Wi- posed to exponentially, as for typical centralized planners), Fi or Bluetooth) rely on discrete communication channels, for and action selection for each agent can occur completely in which existing differentiable approaches that consider real- parallel (Busoniu, Babuska,ˇ and De Schutter 2010). How- valued messages cannot be directly applied, or require bi- ever, decentralized approaches pay for these benefits with ased gradient estimators. Some works have overcome this potentially sub-optimal policies or lower degrees of agent problem by treating the message space as an extension of coordination. Particularly in partially-observable environ- the action space, and use standard RL to optimize message ments, a decentralized approach in which agents make deci- selection, but these methods tend to converge slower and to inferior policies. In this paper, we propose a stochastic sions based solely on their own limited observations, cannot message encoding/decoding procedure that makes a discrete make as informed decisions as a centralized planner, which communication channel mathematically equivalent to an ana- conditions all actions on all available information. log channel with additive noise, through which gradients can be backpropagated. Additionally, we introduce an encryption step for use in noisy channels that forces channel noise to We consider MARL problems in which agents have the be message-independent, allowing us to compute unbiased ability to communicate with each other. This communica- derivative estimates even in the presence of unknown chan- tion ability offers agents a way to selectively exchange in- nel noise. To the best of our knowledge, this work presents formation, potentially allowing them to make more informed the first differentiable communication learning approach that decisions, while still achieving the same scalability and par- can compute unbiased derivatives through channels with un- allelizability advantages of a purely decentralized approach. known noise. We demonstrate the effectiveness of our ap- However, the addition of communication abilities also in- proach in two example multi-robot tasks: a path finding and creases the difficulty of the learning problem, as agents now a collaborative search problem. There, we show that our ap- proach achieves learning speed and performance similar to have to make decisions not only about what actions to se- differentiable communication learning with real-valued mes- lect, but also what information to send, how to encode it, sages (i.e., unlimited communication bandwidth), while natu- and how to interpret messages received from other agents. rally handling more realistic real-world communication con- This paper focuses on multi-agent RL with communication straints. Content Areas: Multi-Agent Communication, Rein- that are readily applicable to real-world robotics problems. forcement Learning. In this paper, we present a novel approach to differen- 1 Introduction tiable communication learning that utilizes a randomized Reinforcement learning has recently been successfully ap- message encoding scheme to make discrete (and therefore plied to complex multi-agent control problems such as non-differentiable) communication channels behave mathe- DOTA, Starcraft II, and virtual capture the flag (Jaderberg et matically like a differentiable, analog communication chan- al. 2019; OpenAI 2018). Many multi-agent reinforcement- nel. We can use this technique to obtain unbiased, low vari- learning (MARL) approaches seek to learn decentralized ance gradient estimates through a discrete communication policies, meaning each agent selects actions independently channel. Additionally, we show how our approach can be generalized to communication channels with arbitrary un- Copyright c 2020, Association for the Advancement of Artificial known noise, which existing approaches to differentiable Intelligence (www.aaai.org). All rights reserved. communication learning have not been able to deal with. 7160 2 Background biased estimators typically require additional tuning pa- 2.1 Multi-agent Reinforcement Learning with rameters or more complex training techniques such as an- nealing (Foerster et al. 2016; Mordatch and Abbeel 2017; Communication Jang, Gu, and Poole 2016). Moreover, biased gradient es- Many past approaches to multi-agent reinforcement learn- timators lack the convergence guarantees of unbiased ones. ing with inter-agent communication fall into one of two Additionally, to the best of our knowledge, existing differ- general categories: 1) approaches in which communication entiable approaches cannot function with unknown chan- is treated as a differentiable process, allowing communica- nel noise, because the channel then represents an unknown tion behavior to be optimized via backpropagation (differen- stochastic function whose derivatives are consequently un- tiable approaches) (Foerster et al. 2016; Sukhbaatar, Szlam, known. The fact that differentiable approaches are restricted and Fergus 2016; Mordatch and Abbeel 2017; Paulos et al. to channels with no/known noise limits their applicability to 2019), and 2) approaches in which messages are treated as real-world robotic systems. an extension to the action space, and communication behav- In the more general context of learning-based coding, sev- ior is optimized via standard reinforcement learning (rein- eral recent works have learned a source- or channel-coding forced communication learning, RCL) (Foerster et al. 2016; method (Kim et al. 2018; Farsad, Rao, and Goldsmith 2018), Lowe et al. 2017). because a learned coding scheme can in some cases be RCL approaches tend to be more general than differen- more optimal or more computationally efficient than a hand- tiable approaches (Lowe et al. 2017). This is because the crafted one. Typically in these prior works, a coding scheme communication channel, and all downstream processing of is learned that minimizes a reconstruction metric that pe- messages selected by agents, is considered to be part of the nalizes loss of information. There is a connection between environment, and is therefore treated as a black box. No as- these works and ours, in that one can think of our agents as sumptions are made about what influence a particular mes- learning a source-coding scheme that optimizes the reward sage may have on other agents or future state transitions. signal, which implicitly penalizes loss of useful information, RCL approaches therefore naturally handle unknown chan- because agents must compress information available to them nel noise (Lowe et al. 2017). Additionally RCL naturally into a fixed-length message in a way that maximizes reward. handles discrete communication channels because RCL We believe that this emphasis on useful information allows does not require backpropagation through the communica- our agents to be even more selective with what information tion channel, so message selection can be non-differentiable. they choose to send than if a generic supervised loss function The downside of RCL’s generality is that it typically re- was used. quires significantly more learning updates to converge to a satisfactory policy, compared to differentiable approaches 3 Theory (Foerster et al. 2016). In RCL, agents are not explicitly pro- vided with knowledge of how their message selection im- In this section we explain our approach to differentiable pacts the behavioral policy of other agents, and must instead communication learning with a discrete communication deduce this influence through repeated trial and error. On the channel. We first focus on the case in which channel noise other hand, differentiable approaches allow one to explic- is not present, and then expand our approach to the noisy itly compute the derivative of recipient agents’ behavioral channel case. Throughout this paper, we assume centralized policy or action-value function with respect to the sending training, meaning that all training data (agent observations agent’s communication policy parameters. This allows dif- and ground-truth communication signals) can be thought of ferentiable approaches to converge to better policies after as being sent to a centralized server where learning updates fewer learning updates
Recommended publications
  • Training Autoencoders by Alternating Minimization
    Under review as a conference paper at ICLR 2018 TRAINING AUTOENCODERS BY ALTERNATING MINI- MIZATION Anonymous authors Paper under double-blind review ABSTRACT We present DANTE, a novel method for training neural networks, in particular autoencoders, using the alternating minimization principle. DANTE provides a distinct perspective in lieu of traditional gradient-based backpropagation techniques commonly used to train deep networks. It utilizes an adaptation of quasi-convex optimization techniques to cast autoencoder training as a bi-quasi-convex optimiza- tion problem. We show that for autoencoder configurations with both differentiable (e.g. sigmoid) and non-differentiable (e.g. ReLU) activation functions, we can perform the alternations very effectively. DANTE effortlessly extends to networks with multiple hidden layers and varying network configurations. In experiments on standard datasets, autoencoders trained using the proposed method were found to be very promising and competitive to traditional backpropagation techniques, both in terms of quality of solution, as well as training speed. 1 INTRODUCTION For much of the recent march of deep learning, gradient-based backpropagation methods, e.g. Stochastic Gradient Descent (SGD) and its variants, have been the mainstay of practitioners. The use of these methods, especially on vast amounts of data, has led to unprecedented progress in several areas of artificial intelligence. On one hand, the intense focus on these techniques has led to an intimate understanding of hardware requirements and code optimizations needed to execute these routines on large datasets in a scalable manner. Today, myriad off-the-shelf and highly optimized packages exist that can churn reasonably large datasets on GPU architectures with relatively mild human involvement and little bootstrap effort.
    [Show full text]
  • Deep Learning Based Computer Generated Face Identification Using
    applied sciences Article Deep Learning Based Computer Generated Face Identification Using Convolutional Neural Network L. Minh Dang 1, Syed Ibrahim Hassan 1, Suhyeon Im 1, Jaecheol Lee 2, Sujin Lee 1 and Hyeonjoon Moon 1,* 1 Department of Computer Science and Engineering, Sejong University, Seoul 143-747, Korea; [email protected] (L.M.D.); [email protected] (S.I.H.); [email protected] (S.I.); [email protected] (S.L.) 2 Department of Information Communication Engineering, Sungkyul University, Seoul 143-747, Korea; [email protected] * Correspondence: [email protected] Received: 30 October 2018; Accepted: 10 December 2018; Published: 13 December 2018 Abstract: Generative adversarial networks (GANs) describe an emerging generative model which has made impressive progress in the last few years in generating photorealistic facial images. As the result, it has become more and more difficult to differentiate between computer-generated and real face images, even with the human’s eyes. If the generated images are used with the intent to mislead and deceive readers, it would probably cause severe ethical, moral, and legal issues. Moreover, it is challenging to collect a dataset for computer-generated face identification that is large enough for research purposes because the number of realistic computer-generated images is still limited and scattered on the internet. Thus, a development of a novel decision support system for analyzing and detecting computer-generated face images generated by the GAN network is crucial. In this paper, we propose a customized convolutional neural network, namely CGFace, which is specifically designed for the computer-generated face detection task by customizing the number of convolutional layers, so it performs well in detecting computer-generated face images.
    [Show full text]
  • Matrix Calculus
    Appendix D Matrix Calculus From too much study, and from extreme passion, cometh madnesse. Isaac Newton [205, §5] − D.1 Gradient, Directional derivative, Taylor series D.1.1 Gradients Gradient of a differentiable real function f(x) : RK R with respect to its vector argument is defined uniquely in terms of partial derivatives→ ∂f(x) ∂x1 ∂f(x) , ∂x2 RK f(x) . (2053) ∇ . ∈ . ∂f(x) ∂xK while the second-order gradient of the twice differentiable real function with respect to its vector argument is traditionally called the Hessian; 2 2 2 ∂ f(x) ∂ f(x) ∂ f(x) 2 ∂x1 ∂x1∂x2 ··· ∂x1∂xK 2 2 2 ∂ f(x) ∂ f(x) ∂ f(x) 2 2 K f(x) , ∂x2∂x1 ∂x2 ··· ∂x2∂xK S (2054) ∇ . ∈ . .. 2 2 2 ∂ f(x) ∂ f(x) ∂ f(x) 2 ∂xK ∂x1 ∂xK ∂x2 ∂x ··· K interpreted ∂f(x) ∂f(x) 2 ∂ ∂ 2 ∂ f(x) ∂x1 ∂x2 ∂ f(x) = = = (2055) ∂x1∂x2 ³∂x2 ´ ³∂x1 ´ ∂x2∂x1 Dattorro, Convex Optimization Euclidean Distance Geometry, Mεβoo, 2005, v2020.02.29. 599 600 APPENDIX D. MATRIX CALCULUS The gradient of vector-valued function v(x) : R RN on real domain is a row vector → v(x) , ∂v1(x) ∂v2(x) ∂vN (x) RN (2056) ∇ ∂x ∂x ··· ∂x ∈ h i while the second-order gradient is 2 2 2 2 , ∂ v1(x) ∂ v2(x) ∂ vN (x) RN v(x) 2 2 2 (2057) ∇ ∂x ∂x ··· ∂x ∈ h i Gradient of vector-valued function h(x) : RK RN on vector domain is → ∂h1(x) ∂h2(x) ∂hN (x) ∂x1 ∂x1 ··· ∂x1 ∂h1(x) ∂h2(x) ∂hN (x) h(x) , ∂x2 ∂x2 ··· ∂x2 ∇ .
    [Show full text]
  • Differentiability in Several Variables: Summary of Basic Concepts
    DIFFERENTIABILITY IN SEVERAL VARIABLES: SUMMARY OF BASIC CONCEPTS 3 3 1. Partial derivatives If f : R ! R is an arbitrary function and a = (x0; y0; z0) 2 R , then @f f(a + tj) ¡ f(a) f(x ; y + t; z ) ¡ f(x ; y ; z ) (1) (a) := lim = lim 0 0 0 0 0 0 @y t!0 t t!0 t etc.. provided the limit exists. 2 @f f(t;0)¡f(0;0) Example 1. for f : R ! R, @x (0; 0) = limt!0 t . Example 2. Let f : R2 ! R given by ( 2 x y ; (x; y) 6= (0; 0) f(x; y) = x2+y2 0; (x; y) = (0; 0) Then: @f f(t;0)¡f(0;0) 0 ² @x (0; 0) = limt!0 t = limt!0 t = 0 @f f(0;t)¡f(0;0) ² @y (0; 0) = limt!0 t = 0 Note: away from (0; 0), where f is the quotient of differentiable functions (with non-zero denominator) one can apply the usual rules of derivation: @f 2xy(x2 + y2) ¡ 2x3y (x; y) = ; for (x; y) 6= (0; 0) @x (x2 + y2)2 2 2 2. Directional derivatives. If f : R ! R is a map, a = (x0; y0) 2 R and v = ®i + ¯j is a vector in R2, then by definition f(a + tv) ¡ f(a) f(x0 + t®; y0 + t¯) ¡ f(x0; y0) (2) @vf(a) := lim = lim t!0 t t!0 t Example 3. Let f the function from the Example 2 above. Then for v = ®i + ¯j a unit vector (i.e.
    [Show full text]
  • Lipschitz Recurrent Neural Networks
    Published as a conference paper at ICLR 2021 LIPSCHITZ RECURRENT NEURAL NETWORKS N. Benjamin Erichson Omri Azencot Alejandro Queiruga ICSI and UC Berkeley Ben-Gurion University Google Research [email protected] [email protected] [email protected] Liam Hodgkinson Michael W. Mahoney ICSI and UC Berkeley ICSI and UC Berkeley [email protected] [email protected] ABSTRACT Viewing recurrent neural networks (RNNs) as continuous-time dynamical sys- tems, we propose a recurrent unit that describes the hidden state’s evolution with two parts: a well-understood linear component plus a Lipschitz nonlinearity. This particular functional form facilitates stability analysis of the long-term behavior of the recurrent unit using tools from nonlinear systems theory. In turn, this en- ables architectural design decisions before experimentation. Sufficient conditions for global stability of the recurrent unit are obtained, motivating a novel scheme for constructing hidden-to-hidden matrices. Our experiments demonstrate that the Lipschitz RNN can outperform existing recurrent units on a range of bench- mark tasks, including computer vision, language modeling and speech prediction tasks. Finally, through Hessian-based analysis we demonstrate that our Lipschitz recurrent unit is more robust with respect to input and parameter perturbations as compared to other continuous-time RNNs. 1 INTRODUCTION Many interesting problems exhibit temporal structures that can be modeled with recurrent neural networks (RNNs), including problems in robotics, system identification, natural language process- ing, and machine learning control. In contrast to feed-forward neural networks, RNNs consist of one or more recurrent units that are designed to have dynamical (recurrent) properties, thereby enabling them to acquire some form of internal memory.
    [Show full text]
  • Neural Networks
    School of Computer Science 10-601B Introduction to Machine Learning Neural Networks Readings: Matt Gormley Bishop Ch. 5 Lecture 15 Murphy Ch. 16.5, Ch. 28 October 19, 2016 Mitchell Ch. 4 1 Reminders 2 Outline • Logistic Regression (Recap) • Neural Networks • Backpropagation 3 RECALL: LOGISTIC REGRESSION 4 Using gradient ascent for linear Recall… classifiers Key idea behind today’s lecture: 1. Define a linear classifier (logistic regression) 2. Define an objective function (likelihood) 3. Optimize it with gradient descent to learn parameters 4. Predict the class with highest probability under the model 5 Using gradient ascent for linear Recall… classifiers This decision function isn’t Use a differentiable function differentiable: instead: 1 T pθ(y =1t)= h(t)=sign(θ t) | 1+2tT( θT t) − sign(x) 1 logistic(u) ≡ −u 1+ e 6 Using gradient ascent for linear Recall… classifiers This decision function isn’t Use a differentiable function differentiable: instead: 1 T pθ(y =1t)= h(t)=sign(θ t) | 1+2tT( θT t) − sign(x) 1 logistic(u) ≡ −u 1+ e 7 Recall… Logistic Regression Data: Inputs are continuous vectors of length K. Outputs are discrete. (i) (i) N K = t ,y where t R and y 0, 1 D { }i=1 ∈ ∈ { } Model: Logistic function applied to dot product of parameters with input vector. 1 pθ(y =1t)= | 1+2tT( θT t) − Learning: finds the parameters that minimize some objective function. θ∗ = argmin J(θ) θ Prediction: Output is the most probable class. yˆ = `;Kt pθ(y t) y 0,1 | ∈{ } 8 NEURAL NETWORKS 9 Learning highly non-linear functions f: X à Y l f might be non-linear
    [Show full text]
  • Jointly Clustering with K-Means and Learning Representations
    Deep k-Means: Jointly clustering with k-Means and learning representations Maziar Moradi Fard Univ. Grenoble Alpes, CNRS, Grenoble INP – LIG [email protected] Thibaut Thonet Univ. Grenoble Alpes, CNRS, Grenoble INP – LIG [email protected] Eric Gaussier Univ. Grenoble Alpes, CNRS, Grenoble INP – LIG, Skopai [email protected] Abstract We study in this paper the problem of jointly clustering and learning representations. As several previous studies have shown, learning representations that are both faithful to the data to be clustered and adapted to the clustering algorithm can lead to better clustering performance, all the more so that the two tasks are performed jointly. We propose here such an approach for k-Means clustering based on a continuous reparametrization of the objective function that leads to a truly joint solution. The behavior of our approach is illustrated on various datasets showing its efficacy in learning representations for objects while clustering them. 1 Introduction Clustering is a long-standing problem in the machine learning and data mining fields, and thus accordingly fostered abundant research. Traditional clustering methods, e.g., k-Means [23] and Gaussian Mixture Models (GMMs) [6], fully rely on the original data representations and may then be ineffective when the data points (e.g., images and text documents) live in a high-dimensional space – a problem commonly known as the curse of dimensionality. Significant progress has been arXiv:1806.10069v2 [cs.LG] 12 Dec 2018 made in the last decade or so to learn better, low-dimensional data representations [13].
    [Show full text]
  • Differentiability of the Convolution
    Differentiability of the convolution. Pablo Jimenez´ Rodr´ıguez Universidad de Valladolid March, 8th, 2019 Pablo Jim´enezRodr´ıguez Differentiability of the convolution Definition Let L1[−1; 1] be the set of the 2-periodic functions f so that R 1 −1 jf (t)j dt < 1: Given f ; g 2 L1[−1; 1], the convolution of f and g is the function Z 1 f ∗ g(x) = f (t)g(x − t) dt −1 Pablo Jim´enezRodr´ıguez Differentiability of the convolution Definition Let L1[−1; 1] be the set of the 2-periodic functions f so that R 1 −1 jf (t)j dt < 1: Given f ; g 2 L1[−1; 1], the convolution of f and g is the function Z 1 f ∗ g(x) = f (t)g(x − t) dt −1 Pablo Jim´enezRodr´ıguez Differentiability of the convolution Definition Let L1[−1; 1] be the set of the 2-periodic functions f so that R 1 −1 jf (t)j dt < 1: Given f ; g 2 L1[−1; 1], the convolution of f and g is the function Z 1 f ∗ g(x) = f (t)g(x − t) dt −1 Pablo Jim´enezRodr´ıguez Differentiability of the convolution Definition Let L1[−1; 1] be the set of the 2-periodic functions f so that R 1 −1 jf (t)j dt < 1: Given f ; g 2 L1[−1; 1], the convolution of f and g is the function Z 1 f ∗ g(x) = f (t)g(x − t) dt −1 Pablo Jim´enezRodr´ıguez Differentiability of the convolution If f is Lipschitz, then f ∗ g is Lipschitz.
    [Show full text]
  • The Simple Essence of Automatic Differentiation
    The Simple Essence of Automatic Differentiation CONAL ELLIOTT, Target, USA Automatic differentiation (AD) in reverse mode (RAD) is a central component of deep learning and other uses of large-scale optimization. Commonly used RAD algorithms such as backpropagation, however, are complex and stateful, hindering deep understanding, improvement, and parallel execution. This paper develops a simple, generalized AD algorithm calculated from a simple, natural specification. The general algorithm is then specialized by varying the representation of derivatives. In particular, applying well-known constructions to a naive representation yields two RAD algorithms that are far simpler than previously known. In contrast to commonly used RAD implementations, the algorithms defined here involve no graphs, tapes, variables, partial derivatives, or mutation. They are inherently parallel-friendly, correct by construction, and usable directly from an existing programming language with no need for new data types or programming style, thanks to use of an AD-agnostic compiler plugin. CCS Concepts: · Mathematics of computing → Differential calculus; · Theory of computation → Program reasoning; Program specifications; Additional Key Words and Phrases: automatic differentiation, program calculation, category theory ACM Reference Format: Conal Elliott. 2018. The Simple Essence of Automatic Differentiation. Proc. ACM Program. Lang. 2, ICFP, Article 70 (September 2018), 29 pages. https://doi.org/10.1145/3236765 1 INTRODUCTION Accurate, efficient, and reliable computation of derivatives has become increasingly important over the last several years, thanks in large part to the successful use of backpropagation in machine learning, including multi-layer neural networks, also known as łdeep learningž [Goodfellow et al. 2016; Lecun et al. 2015]. Backpropagation is a specialization and independent invention of the reverse mode of automatic differentiation (AD) and is used to tune a parametric model to closely match observed data, using gradient descent (or stochastic gradient descent).
    [Show full text]
  • Expressivity of Deep Neural Networks∗
    Expressivity of Deep Neural Networks∗ Ingo G¨uhring yz Mones Raslan yz Gitta Kutyniokzx 10/07/2020 Abstract In this review paper, we give a comprehensive overview of the large variety of approximation results for neural networks. Approximation rates for classical function spaces as well as benefits of deep neural networks over shallow ones for specifically structured function classes are discussed. While the main body of existing results is for general feedforward architectures, we also review approximation results for convolutional, residual and recurrent neural networks. Keywords: approximation, expressivity, deep vs. shallow, function classes 1 Introduction While many aspects of the success of deep learning still lack a comprehensive mathematical explanation, the approximation properties1 of neural networks have been studied since around 1960 and are relatively well understood. Statistical learning theory formalizes the problem of approximating - in this context also called learning - a function from a finite set of samples. Next to statistical and algorithmic considerations, approximation theory plays a major role for the analysis of statistical learning problems. We will clarify this in the following by introducing some fundamental notions.2 Assume that X is an input space and Y a target space, L : Y × Y ! [0; 1] is a loss function and P(X ;Y) a (usually unknown) probability distribution on some σ-algebra of X × Y. We then aim at finding a minimizer of the risk functional3 Z X R : Y ! [0; 1]; f 7! L (f(x); y) dP(X ;Y)(x; y); X ×Y X induced by L and P(X ;Y) (where Y denotes the set of all functions from X to Y).
    [Show full text]
  • Differentiable Programming for Piecewise Polynomial
    Under review as a conference paper at ICLR 2021 DIFFERENTIABLE PROGRAMMING FOR PIECEWISE POLYNOMIAL FUNCTIONS Anonymous authors Paper under double-blind review ABSTRACT The paradigm of differentiable programming has significantly enhanced the scope of machine learning via the judicious use of gradient-based optimization. How- ever, standard differentiable programming methods (such as autodiff) typically require that the machine learning models be differentiable, limiting their applica- bility. We introduce a new, principled approach to extend gradient-based optimiza- tion to piecewise smooth models, such as k-histograms, splines, and segmentation maps. We derive an accurate form of the weak Jacobian of such functions and show that it exhibits a block-sparse structure that can be computed implicitly and efficiently. We show that using the redesigned Jacobian leads to improved per- formance in applications such as denoising with piecewise polynomial regression models, data-free generative model training, and image segmentation. 1 INTRODUCTION Motivation: Differentiable programming has been proposed as a paradigm shift in algorithm design. The main idea is to leverage gradient-based optimization to optimize the parameters of the algo- rithm, allowing for end-to-end trainable systems (such as deep neural networks) to exploit structure and patterns in data and achieve better performance. This approach has found use in a large va- riety of applications such as scientific computing (Innes, 2020; Innes et al., 2019; Schafer et al., 2020), image processing (Li et al., 2018b), physics engines (Degrave et al., 2017), computational simulations (Alnæs et al., 2015), and graphics (Li et al., 2018a; Chen et al., 2019). One way to leverage differential programming modules is to encode additional structural priors as “layers” in a larger machine learning model.
    [Show full text]
  • GAN and What It Is?
    Basics: Why GAN and what it is? The Optimization Problem of GANs How to Train GANs: An Odyssey How to Evaluate GANs? An Application Tour of GANs Summary and Open Challenges Outline Basics: Why GAN and what it is? Generative vs. Discriminative Models • Given a distribution of inputs X and labels Y • Discriminative: model the conditional distribution P(Y | X). • Generative networks model the joint distribution P(X , Y). • If the model understands the joint distribution P(X ,Y), then it • can calculate P(Y | X) using Bayes rule • can perform other tasks like P(X | Y), i.e., generating data from the label (called “conditional generation” in GANs) • understands the distribution better than a discriminative model, a scientific philosophy called “analysis by synthesis” “The analysis of the patterns generated by the world in any modality, with all their naturally occurring complexity and ambiguity, with the goal of reconstructing the processes, objects and events that produced them” - David Mumford Generative vs. Discriminative Models • Even if you only have X, you can still build a generative model • … making generative modeling amendable to unsupervised/semi-supervised representation learning • Not every problem is discriminative, but all problems could be generative! • However, generative modeling is harder! • Map from X to Y is typically many to one • Map from Y to X is typically one to many • Dimensionality of X typically >> dimensionality of Y • Hence compared to estimating P(Y | X), the estimation of P(X, Y) usually runs into the “curse of dimensionality” Setup of Generative Models Autoregressive Models RNNs for Autoregressive Language Modeling PixelRNN (van der Oord et al.
    [Show full text]