Contrasting Photo-Switching Rates in Azobenzene Derivatives: How the Nature of the Substituent Plays a Role

Total Page:16

File Type:pdf, Size:1020Kb

Contrasting Photo-Switching Rates in Azobenzene Derivatives: How the Nature of the Substituent Plays a Role polymers Article Contrasting Photo-Switching Rates in Azobenzene Derivatives: How the Nature of the Substituent Plays a Role Domenico Pirone 1,2 , Nuno A. G. Bandeira 3 , Bartosz Tylkowski 4 , Emily Boswell 5, Regine Labeque 2, Ricard Garcia Valls 1,4 and Marta Giamberini 1,* 1 Department of Chemical Engineering (DEQ), Rovira i Virgili University, Av. Països Catalans 26, 43007 Tarragona, Spain; [email protected] (D.P.); [email protected] (R.G.V.) 2 Procter & Gamble Services Company n.v., Temselaan 100, 1853 Strombeek-Bever, Belgium; [email protected] 3 BioISI—Biosystems & Integrative Sciences Institute; C8, Faculdade de Ciências, Universidade de Lisboa Campo Grande, 1749-016 Lisboa, Portugal; [email protected] 4 Eurecat, Centre Tecnològic de Catalunya, C/Marcel-lí Domingo, 43007 Tarragona, Spain; [email protected] 5 The Procter and Gamble Company, 8611 Beckett Rd, West Chester Township, Cincinnati, OH 45069, USA; [email protected] * Correspondence: [email protected]; Tel.: +34-97755-8174 Received: 25 March 2020; Accepted: 26 April 2020; Published: 30 April 2020 Abstract: A molecular design approach was used to create asymmetrical visible light-triggered azo-derivatives that can be good candidates for polymer functionalization. The specific electron–donor substituted molecules were characterized and studied by means of NMR analyses and UV-visible spectroscopy, comparing the results with Time Dependent Density Functional (TD-DFT) calculations. A slow rate of isomerization (k = 1.5 10 4 s 1) was discovered for 4-((2-hydroxy-5methylphenyl) i × − − diazenyl)-3-methoxybenzoic acid (AZO1). By methylating this moiety, it was possible to unlock the isomerization mechanism for the second molecule, methyl 3-methoxy-4-((2-methoxy-5-methylphenyl) diazenyl)benzoate (AZO2), reaching promising isomerization rates with visible light irradiation in different solvents. It was discovered that this rate was heightened by one order of magnitude (k = 3.1 10 3 s 1) for AZO2. A computational analysis using density functional (DFT/PBE0) i × − − and wavefunction (QD-NEVPT2) methodologies provided insight into the photodynamics of these systems. Both molecules require excitation to the second (S2) excited state situated in the visible region to initiate the isomerization. Two classic mechanisms were considered, namely rotation and inversion, with the former being energetically more favorable. These azo-derivatives show potential that paves the way for future applications as building blocks of functional polymers. Likewise, they could be really effective for the modification of existing commercial polymers, thus transferring their stimuli responsive properties to polymeric bulky structures, converting them into smart materials. Keywords: photoswitching; azoaryls; azobenzene; UV-Visible; TD-DFT; kinetics; photoisomerization 1. Introduction A great attention during the past decades has been addressed to photochromic molecules in the field of materials science. These organic compounds can be included in many materials, changing the properties of the system when irradiated with light of the appropriate wavelength. The change can affect characteristics like: electronic or ionic conductivity, fluorescence, magnetism, shape, and conformation. The most studied photochromic molecules are azobenzenes [1] which have been widely investigated as promising photo-switchers [2–6] due to their simple preparation Polymers 2020, 12, 1019; doi:10.3390/polym12051019 www.mdpi.com/journal/polymers Polymers 2020, 12, 1019 2 of 20 Polymers 2019, 11, x FOR PEER REVIEW 2 of 21 affect characteristics like: electronic or ionic conductivity, fluorescence, magnetism, shape, and procedures,conformation. good processability,The most studied as well photochromic as high thermal molecules and are chemical azobenzenes stability [1] [ 7which]. However, have been the main interestingwidely characteristicinvestigated as of promisin azobenzeneg photo molecules-switchers is [2 their–6] due reversible to their simple isomerization preparation of theprocedures, double bond, betweengood the processability, thermally stable as wellE as(trans) high thermal configuration and chemical and the stability meta-stable [7]. However,Z (cis) onethe main [8–12 interesting]. This process drivescharacteristic to change theof azobenzene geometry ofmolecules the molecule. is their Structurally,reversible isomerization while the Eof formthe doubl is approximatelye bond, between planar, the Zthe-isomer thermally is three-dimensional stable E (trans) configuration and has and a ground the meta state-stable energy Z (cis) nearlyone [8–12] 0.6. This eV higherprocess drives than the E one [to13 change–15]. This the geometry interconversion of the molecule. between Structurally, the two isomerswhile the makes E form theis approximately azobenzene planar, the most the used organicZ-isomer chromophore is three-dimensional for technical and applications, has a ground including state energy optical nearly waveguides 0.6 eV higher and than shutters the E one [16 [13], optical– 15]. This interconversion between the two isomers makes the azobenzene the most used organic memories [17], photo-active artificial muscles [3–5], photo triggered carriers and membranes [18–22], chromophore for technical applications, including optical waveguides and shutters [16], optical etc. A photostationary state (PSS) will be achieved by a solution containing an azo derivate when memories [17], photo-active artificial muscles [3–5], photo triggered carriers and membranes [18–22], irradiatedetc. A byphotostationary electromagnetic state radiation(PSS) will be of achieved the right by intensity, a solution with containing a steady-state an azo derivateE–Z composition when basedirradiated on the opposingby electromagnetic effects of radiation photoisomerization of the right intensity, and thermal with a relaxationsteady-state backE–Z composition into the E state. The compositionbased on the opposing of the sample effects alsoof photoisomerization depends on the irradiationand thermal wavelength,relaxation back intensity, into the Esolvent-solute state. The interactionscomposition and temperature.of the sample Moreover,also depends the on optical the ir properties,radiation wavelength the response, intensity, time of solvent the isomerization,-solute and theinteractions spectroscopic and propertiestemperature. of anMoreover, azo molecule the optical can be fine-tunedproperties, bythe attaching responseto time the phenylof the rings differentisomerization chemical, and groups the spectroscopic [23]. For example, properties it isof usuallyan azo molecule accepted can that be fineZ–E-tunedthermal by attaching relaxation to may take placethe phenyl by means rings d ofifferent two pathways chemical groups that can [23] be. For competitive example, it (Figure is usually1): accepted rotation, that or inversionZ–E thermal of one relaxation may take place by means of two pathways that can be competitive (Figure 1): rotation, or of the nitrogen atoms [24,25]. Depending on the properties of the substituents bonded to one or both inversion of one of the nitrogen atoms [24,25]. Depending on the properties of the substituents phenyl rings, and on the polarity of the reaction medium, one of these mechanisms of relaxation may bonded to one or both phenyl rings, and on the polarity of the reaction medium, one of these be favoredmechanisms over theof relaxation other [26 may]. be favored over the other [26]. FigureFigure 1. Rotation 1. Rotation and and inversion inversion thermal thermal relaxationrelaxation mechanism mechanismss for for unsubstituted unsubstituted azobenzene azobenzene.. RauRau has has divided divided the the azobenzenes azobenzenes intointo threethree spectroscopic classes classes based based on ontheir their substitution substitution patternspatterns on on the the phenyl phenyl rings:rings: azobenzene azobenzene-type-type molecules, molecules, aminoazobenzene aminoazobenzene-type-type molecules, molecules, and and pseudo-stilbenes,pseudo-stilbenes, respecti respectivelyvely [1]. [The1]. pseudo The pseudo-stilbenes-stilbenes have presented have presented the most efficient the most photo effi-cient response. This behavior must be linked to a mixed photo-stationary state where the Z and E form are photo-response. This behavior must be linked to a mixed photo-stationary state where the Z and E form being constantly interconverted, caused by a shifted and overlapped absorption spectrum of the two are being constantly interconverted, caused by a shifted and overlapped absorption spectrum of the isomers. Consequently, for these compounds, both the forward and reverse isomerization can be two isomers.induced by Consequently, a single wavelength for these of light compounds, in the visible both region. the forwardOn the other and hand, reverse the isomerizationazobenzene-type can be inducedmolecules by a single can isomerize wavelength very ofslowly light from in the the visible Z configuration region. On back the into other the hand, E configuration the azobenzene-type when moleculesbulky cansubstituents isomerize are very introduced slowly from to delay the Z theconfiguration thermal relaxation back into [2 the7,28E]. configurationRecently, the whenstudies bulky substituentsprovided are by introducedJerca et al. revealed to delay that the, using thermal the proper relaxation solvent [27, it, 28is possible]. Recently, to yield the stable studies Z-isom provideders. by JercaT ethis al. behavior revealed can that,
Recommended publications
  • Towards Low-Energy-Light-Driven Bistable Photoswitches: Ortho-Uoroaminoazobenzenes
    Towards low-energy-light-driven bistable photoswitches: ortho-uoroaminoazobenzenes Kim Kuntze Tampere University Jani Viljakka Tampere University Evgenii Titov University of Potsdam Zafar Ahmed Tampere University Elina Kalenius University of Jyväskylä Peter Saalfrank University of Potsdam Arri Priimagi ( arri.priimagi@tuni. ) Tampere University https://orcid.org/0000-0002-5945-9671 Article Keywords: ortho-uoroaminoazobenzenes, photoswitches, photoresponsive molecules Posted Date: June 14th, 2021 DOI: https://doi.org/10.21203/rs.3.rs-608595/v1 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License Towards low-energy-light-driven bistable photoswitches: ortho- fluoroaminoazobenzenes Kim Kuntze,a Jani Viljakka,a Evgenii Titov,*b Zafar Ahmed,a Elina Kalenius,c Peter Saalfrankb and Arri Priimagi*a a Prof. A. Priimagi, Smart Photonic Materials, Faculty of Engineering and Natural Sciences, Tampere University, P.O. Box 541, FI-33101, Tampere, Finland. E-mail: [email protected] b Dr. E. Titov, Theoretical Chemistry, Institute of Chemistry, University of Potsdam, Karl-Liebknecht-Straße 24-25, 14476 Potsdam, Germany. E-mail: [email protected] c Department of Chemistry, University of Jyväskylä, P.O. Box 35, 40014 Jyväskylä, Finland Thermally stable photoswitches that are driven with low-energy light are rare, yet crucial for extending the applicability of photoresponsive molecules and materials towards, e.g., living systems. Combined ortho-fluorination and -amination couples high visible-light absorptivity of o-aminoazobenzenes with the extraordinary bistability of o-fluoroazobenzenes. Herein, we report a library of easily accessible o-aminofluoroazobenzenes and establish structure–property relationships regarding spectral qualities, visible light isomerization efficiency and thermal stability of the cis-isomer with respect to the degree of o-substitution and choice of amino substituent.
    [Show full text]
  • Colorimetric Sugar Sensing Using Boronic Acid-Substituted Azobenzenes
    Materials 2014, 7, 1201-1220; doi:10.3390/ma7021201 OPEN ACCESS materials ISSN 1996-1944 www.mdpi.com/journal/materials Review Colorimetric Sugar Sensing Using Boronic Acid-Substituted Azobenzenes Yuya Egawa *, Ryotaro Miki and Toshinobu Seki Faculty of Pharmaceutical Sciences, Josai University, Keyakidai, Sakado, Saitama 350-0295, Japan; E-Mails: [email protected] (R.M.); [email protected] (T.S.) * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +81-49-271-7686; Fax: +81-49-271-7714. Received: 30 November 2013; in revised form: 13 January 2014 / Accepted: 28 January 2014 / Published: 14 February 2014 Abstract: In association with increasing diabetes prevalence, it is desirable to develop new glucose sensing systems with low cost, ease of use, high stability and good portability. Boronic acid is one of the potential candidates for a future alternative to enzyme-based glucose sensors. Boronic acid derivatives have been widely used for the sugar recognition motif, because boronic acids bind adjacent diols to form cyclic boronate esters. In order to develop colorimetric sugar sensors, boronic acid-conjugated azobenzenes have been synthesized. There are several types of boronic acid azobenzenes, and their characteristics tend to rely on the substitute position of the boronic acid moiety. For example, o-substitution of boronic acid to the azo group gives the advantage of a significant color change upon sugar addition. Nitrogen-15 Nuclear Magnetic Resonance (NMR) studies clearly show a signaling mechanism based on the formation and cleavage of the B–N dative bond between boronic acid and azo moieties in the dye.
    [Show full text]
  • Steady State Free Radical Budgets and Ozone Photochemistry During TOPSE Christopher A
    JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 108, NO. D4, 8361, doi:10.1029/2002JD002198, 2003 Steady state free radical budgets and ozone photochemistry during TOPSE Christopher A. Cantrell,1 L. Mauldin,1 M. Zondlo,1 F. Eisele,1,2 E. Kosciuch,1 R. Shetter,1 B. Lefer,1 S. Hall,1 T. Campos,1 B. Ridley,1 J. Walega,1 A. Fried,1 B. Wert,1 F. Flocke,1 A. Weinheimer,1 J. Hannigan,1 M. Coffey,1 E. Atlas,1 S. Stephens,1 B. Heikes,3 J. Snow,3 D. Blake,4 N. Blake,4 A. Katzenstein,4 J. Lopez,4 E. V. Browell,5 J. Dibb,6 E. Scheuer,6 G. Seid,6 and R. Talbot6 Received 12 February 2002; revised 2 May 2002; accepted 21 June 2002; published 5 February 2003. [1] A steady state model, constrained by a number of measured quantities, was used to derive peroxy radical levels for the conditions of the Tropospheric Ozone Production about the Spring Equinox (TOPSE) campaign. The analysis is made using data collected aboard the NCAR/NSF C-130 aircraft from February through May 2000 at latitudes from 40° to 85°N, and at altitudes from the surface to 7.6 km. HO2 +RO2 radical concentrations were measured during the experiment, which are compared with model results over the domain of the study showing good agreement on the average. Average measurement/model ratios are 1.04 (s = 0.73) and 0.96 (s = 0.52) for the MLB and HLB, respectively. Budgets of total peroxy radical levels as well as of individual free radical members were constructed, which reveal interesting differences compared to studies at lower latitudes.
    [Show full text]
  • Study of Photo-Induced Dichroism in Sudan III Doped in Poly(Methyl Methacrylate) Thin Films B
    Vol. 127 (2015) ACTA PHYSICA POLONICA A No. 3 Study of Photo-Induced Dichroism in Sudan III Doped in Poly(Methyl Methacrylate) Thin Films B. Abbasa;* and Y.T. Salmanb aAtomic Energy Commission, P.O. Box 6091, Damascus, Syria bPhysics Department, Faculty of Science, Damascus University, Damascus, Syria (Received December 4, 2013; in nal form December 10, 2014) Linear dichroism, dichroic ratio, contrast ratio and order parameters of Sudan III/PMMA guesthost thin lms have been investigated with visible polarized laser light. Dichroism increased in an exponential fashion with increase of the pump intensity. Light-induced dichroism and polar order of the dye molecules within the polymer network were reversible. These parameters showed fast increase in their values in an exponential fashion as the pumping process takes place. Also, they decay rapidly in an exponential fashion when the pump light is cut o. Photoisomerisation and polar orientation are dependent on both the molecular structure of the dye and polymer. Two forms of Sudan III molecules (trans and cis) are responsible for the interaction with laser light and forming an anisotropic structure inside the PMMA/Sudan III lms. However, there is another set of forms of the dye (keto and enol) has to be considered, which may contribute to dichroism. DOI: 10.12693/APhysPolA.127.780 PACS: 78.20.Ek, 33.55.+b, 78.66.Qn 1. Introduction Sudan III in solvents and doped in polymeric lms using the Z-scan technique. Multiple diraction rings were ob- Photoinduced optical anisotropy in polymer/organic served when the dye doped in both the liquid and solid dyes systems is the subject of intensive care and inves- media was exposed to a diode-pumped Nd:YAG laser tigations [1].
    [Show full text]
  • Deviations from Ozone Photostationary State During the International
    JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 112, D10S07, doi:10.1029/2006JD007604, 2007 Click Here for Full Article Deviations from ozone photostationary state during the International Consortium for Atmospheric Research on Transport and Transformation 2004 campaign: Use of measurements and photochemical modeling to assess potential causes Robert J. Griffin,1,2 Pieter J. Beckman,1 Robert W. Talbot,1 Barkley C. Sive,1 and Ruth K. Varner1 Received 31 May 2006; revised 25 October 2006; accepted 28 December 2006; published 31 March 2007. [1] Nitric oxide (NO) and nitrogen dioxide (NO2) were monitored at the University of New Hampshire Atmospheric Observing Station at Thompson Farm (TF) during the ICARTT campaign of summer 2004. Simultaneous measurement of ozone (O3), temperature, and the photolysis rate of NO2 (jNO2) allow for assessment of the O3 photostationary state (Leighton ratio, F). Leighton ratios that are significantly greater than unity indicate that peroxy radicals (PO2), halogen monoxides, nitrate radicals, or some unidentified species convert NO to NO2 in excess of the reaction between NO and O3. Deviations from photostationary state occurred regularly at TF (1.0 F 5.9), particularly during times of low NOx (NOx =NO+NO2). Such deviations were not controlled by dynamics, as indicated by regressions between F and several meteorological parameters. Correlation with jNO2 was moderate, indicating that sunlight probably controls nonlinear processes that affect F values. Formation of PO2 likely is dominated by oxidation of biogenic hydrocarbons, particularly isoprene, the emission of which is driven by photosynthetically active radiation. Halogen atoms are believed to form via photolysis of halogenated methane compounds.
    [Show full text]
  • Studying Azobenzene-Modified DNA for Programmable Nanoparticle Assembly and Nucleic Acid Detection
    Studying Azobenzene-Modified DNA for Programmable Nanoparticle Assembly and Nucleic Acid Detection Yunqi Yan A dissertation submitted in partial fulfilment of the requirements for the degree of Doctor of Philosophy University of Washington 2015 Reading Committee David Ginger, Chair Daniel Chiu Lutz Maibaum Program Authorized to Offer Degree: Chemistry 1 ©Copyright 2015 Yunqi Yan 2 University of Washington Abstract Studying Azobenzene-Modified DNA for Programmable Nanoparticle Assembly and Nucleic Acid Detection Yunqi Yan Chair of the Supervisory Committee: Professor David Ginger Department of Chemistry The azobenzene-modified DNA is an oligonucleotide molecule with azobenzene moieties covalently linked to the DNA backbone via the d-threoninol bond. The reversible photoswitching capability of azobenzene allows optical irradiation (light) to control the hybridization of azobenzene-modified DNA. Meanwhile, gold nanoparticles functionalized with natural oligonucleotides show increased sensitivity in nucleic acid detection due to the DNA-directed biorecognition and nanoparticles’ plasmonic effects. In the dissertation, I present my studies of surface functionalization of gold nanoparticles with azobenzene-modified oligonucleotides and the relevant photochemical characterization of the new system. In chapter 2, I synthesize the photoswichable gold nanoparticle assemblies cross-linked with azobenzene-modified DNA. Beyond the classic DNA-directed assembly and sensing behaviors associated with DNA-modified nanoparticles, these particles exhibit reversible photoswitching of their assembly behavior. Exposure to UV light induces the dissociation of nanoparticle aggregates due to trans-to-cis isomerization of the azobenzene which destabilizes the DNA duplex. The assembly of nanoparticles is reversible upon exposure to blue light due to the reverse cis-to-trans isomerization of azobenzene-modified DNA.
    [Show full text]
  • One-Pot Preparation of Azobenzenes from Nitrobenzenes by the Combination of an Indium-Catalyzed Reductive Coupling and a Subsequent Oxidation
    Tetrahedron 70 (2014) 2027e2033 Contents lists available at ScienceDirect Tetrahedron journal homepage: www.elsevier.com/locate/tet One-pot preparation of azobenzenes from nitrobenzenes by the combination of an indium-catalyzed reductive coupling and a subsequent oxidation Norio Sakai *, Shun Asama, Satsuki Anai, Takeo Konakahara Department of Pure and Applied Chemistry, Faculty of Science and Technology, Tokyo University of Science (RIKADAI), Noda, Chiba 278-8510, Japan article info abstract Article history: We demonstrated how a reduction step with a reducing system comprised of In(OTf)3 and Et3SiH and Received 10 January 2014 a subsequent oxidation that occurred under an ambient (oxygen) atmosphere allowed the highly se- Received in revised form 18 January 2014 lective and catalytic conversion of aromatic nitro compounds into symmetrical or unsymmetrical azo- Accepted 21 January 2014 benzene derivatives. This catalytic system displayed a tolerance for the functional groups on a benzene Available online 25 January 2014 ring: an alkyl group, a halogen, an acetyl group, an ester, a nitrile group, an acetyl group, an ester moiety, and a sulfonamide group. Keywords: Ó 2014 Elsevier Ltd. All rights reserved. Azobenzene Nitrobenzene Reductive coupling Indium Hydrosilane 1. Introduction Azobenzene derivatives constitute important and central building blocks in functional materials, as well as in biologically active substances. For example, aryl azobenzene derivatives, which emit a variety of colors, have been widely utilized as the coloring matters, such as azo dyes or pigments, or as the photoresponsive functional materials, such as liquid crystals.1 Also, because en- zymes, such as azoreductase are known to selectively metabolize an azo moiety on azobenzenes for the release of a selected drug, which may show efficacy as a medicine, an azo moiety is often embedded in the drug structures.2 Based on this biological action, sulfasalazine,3 which treats rheumatoid arthritis, and olsalazine,4 which is effective against inflammatory bowel disease, were de- Scheme 1.
    [Show full text]
  • Design and Implementation of Multi-Responsive Azobenzene Triggers in Self-Immolative and Degradable Polymers
    Western University Scholarship@Western Electronic Thesis and Dissertation Repository 3-22-2016 12:00 AM Design and Implementation of Multi-Responsive Azobenzene Triggers in Self-Immolative and Degradable Polymers Andrew D. Wong The University of Western Ontario Supervisor Elizabeth R. Gillies The University of Western Ontario Graduate Program in Chemical and Biochemical Engineering A thesis submitted in partial fulfillment of the equirr ements for the degree in Doctor of Philosophy © Andrew D. Wong 2016 Follow this and additional works at: https://ir.lib.uwo.ca/etd Part of the Polymer Science Commons Recommended Citation Wong, Andrew D., "Design and Implementation of Multi-Responsive Azobenzene Triggers in Self- Immolative and Degradable Polymers" (2016). Electronic Thesis and Dissertation Repository. 3629. https://ir.lib.uwo.ca/etd/3629 This Dissertation/Thesis is brought to you for free and open access by Scholarship@Western. It has been accepted for inclusion in Electronic Thesis and Dissertation Repository by an authorized administrator of Scholarship@Western. For more information, please contact [email protected]. Abstract Self-immolative polymers are a recently developed class of degradable polymers capable of undergoing end-to-end depolymerization following the reaction of their endcaps with appropriate stimuli. Self-immolative materials originated in the field of prodrug chemistry, and evolved into self-immolative oligomers, dendrimers, and most recently, linear polymers. Many stimuli-responsive endcaps have been developed, but typically can only respond to one stimulus. Azobenzenes are a well-known class of stimuli-responsive molecules most commonly used as photoswitches, due to their facile trans-cis isomerization. In addition to their photochemistry, azobenzenes have recently been found to be selectively reduction- sensitive, and are therefore of interest as endcaps in self-immolative polymers.
    [Show full text]
  • The Oxidation of Azo Compounds to Azoxy Compounds by Means of Acyl Hydroperoxides
    A. O. Matth eu 9 The Oxidation of Azo Compounds fo A zLoxg Compounds 8 THE OXIDATION OF AZO COMPOUNDS TO AZOXY COMPOUNDS BY MEANS OF ACYL HYDROPEROXIDES BY ALBERT OTTO MATTHEUS B. S. University of Illinois, 191 THESIS Submitted in Partial Fulfillment of the Requirements for the Degree of MASTER OF SCIENCE IN ORGANIC CHEMISTRY IN THE GRADUATE SCHOOL OF THE UNIVERSITY OF ILLINOIS 1920 UNIVERSITY OF ILLINOIS THE GRADUATE SCHOOL 19£0 I HEREBY RECOMMEND THAT THE THESIS PREPARED UNDER MY SUPERVISION BY ALBERT OTTO MATTHEUS ENTITLED THE XIDATI0U OF AZQ COMPO UNDS TO AZQXY COMPOUNDS BY MEANS Off ACYL HYDROPEROXIDES BE ACCEPTED AS FULFILLING THIS PART OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE In Charge of Thesis Head of Department Recommendation concurred in* Committee on Final Examination* *Required for doctor's degree but not for master's 4T V ACKNOWLEDGMENT The author wishes to express his thanks to Professer Rodger Adams who suggested this problem and under whose super- vision the work was conducted. Digitized by the Internet Archive in 2013 http://archive.org/details/oxidationofazocoOOmatt TABLE OF CONTENTS. Page Part I Introduction 3 Part II Historical 4 Part III Theoretical 7 Part IV Experimental 10 Preparation of p-ethoxy "benzene 10 preparation of unsymraet rical azobenzenes 10 Preparation of B-phenyl hydroxylamine 11 Oxidation of B-phenyl hydroxylamine 11 Condensation of nitroso benzene 12 Preparation of p-ethoxy azobenzene 12 Preparation of p-brora azobenzene 13 Preparation of p-nitro azobenzene 13 Preparation of hydrogen
    [Show full text]
  • Herman Skolnik Award Symposium 2016
    Herman Skolnik Award Symposium 2016 Honoring Stephen Bryant and Evan Bolton A report by Wendy Warr ([email protected]) for the ACS CINF Chemical Information Bulletin Introduction Stephen Bryant and Evan Bolton were selected to receive the 2016 Herman Skolnik Award for their work on developing, maintaining, and expanding the Web-based National Center for Biotechnology Information (NCBI) PubChem database, and related software capabilities and analytical tools, to enhance the scientific discovery process. NCBI is part of the United States National Library of Medicine (NLM), a branch of the National Institutes of Health (NIH). A summary of Steve and Evan’s achievements has been published in the Chemical Information Bulletin. They were invited to present an award symposium at the Fall 2016 ACS National Meeting in Philadelphia, PA. They invited twelve speakers: L to R: Valery Tkachenko, Roger Sayle, Leah McEwen, Steve Heller, Wolf-Dietrich Ihlenfeldt (partially obscured), Yulia Borodina, Peter Linstrom, Steve Bryant, Marc Nicklaus (at front), Evan Bolton (at back), Steve Boyer, Daniel Zaharevitz, Christoph Steinbeck. Not pictured: Michel Dumontier (inset) Developing databases and standards in chemistry Steve Heller was the first speaker, with an amusing scene-setting talk. He admitted that his secret in getting to where he is now was “luck, luck, luck”. He disliked chemistry lab work; he was at the right place at the right time with the right people; he worked with supportive people; and he planned for who would take over the work next. If the problem were just technology, someone would have solved it already. The real problem is always cultural and political, not technical.
    [Show full text]
  • United States Patent (19) 11 Patent Number: 5,917,023 Hagemeyer Et Al
    USOO5917023A United States Patent (19) 11 Patent Number: 5,917,023 Hagemeyer et al. (45) Date of Patent: Jun. 29, 1999 54 REDUCTIVE COUPLING OF 3,041,377 6/1962 Harast ................................. 534/585 X NITROBENZENE OR NITROBENZENES 3,578,720 5/1971 Dodman et al. ........................ 534/572 SUBSTITUTED ON THE NUCLEUS TO GIVE 3,700,605 10/1972 Dodman et al. ........................ 502/324 3,989,764 11/1976 Wooley ................................... 568/949 ESSESSENGE 4,265,834 5/1981 Birkenstock et al. .................. 564/421 REDOX CATALYSTS 5,689,005 11/1997 Hagemeyer et al. ................... 564/420 OTHER PUBLICATIONS 75 Inventors: Alfred Hagemeyer, Rheine; Daniel Heineke, Ludwigshafen; Guido Voit, Finholt et al., J. Am. Chem. Soc., vol. 77, p. 4163, 1955. Schriesheim; Tom Witzel, Meier et al., Chem. Ber, vol. 89, pp. 2301-2305, 1965. Ludwigshafen, all of Germany Ohe et al., J. Org. Chem., vol. 54, No. 17, pp. 41.69–4174, 1989. 73 Assignee: BASF Aktiengesellshcaft, Gellner et al., J. Chem. Soc., pp. 1145-1148, 1949. Ludwigshafen, Germany Kmiewcik, J. Org. Chem, vol. 30, pp. 2014-2020, 1965. Lin et al., J. of Xiamen University, vol. 25, No. 4, Jul. 1986, pp. 449–455. 21 Appl. No.: 08/869,760 Konishi et al., Chem. Lett., vol. 11, pp. 1351-1354, 1980. 22 Filed: Jun. 5, 1997 Primary Examiner Fiona T. Powers 30 Foreign Application Priority Data Attorney, Agent, or Firm-Keil & Weinkauf Jun. 5, 1996 DEI Germany ........................... 196 22 644 57 ABSTRACT Aug. 20, 1996 DEI Germany ........................... 19633 552 Nitrobenzene or a nitrobenzene Substituted on the nucleus is 51) Int. Cl.
    [Show full text]
  • IUPAC Glossary of Terms Used in Photochemistry
    Glossary of terms used in photochemistry, 3rd Edition, 2006 1 10/10/2006 GlossaryOct10-06-corr-notrack.doc INTERNATIONAL UNION OF PURE AND APPLIED CHEMISTRY ORGANIC AND BIOMOLECULAR CHEMISTRY DIVISION* SUB-COMMITTEE ON PHOTOCHEMISTRY GLOSSARY OF TERMS USED IN PHOTOCHEMISTRY 3rd Edition (IUPAC Recommendations 2006) Prepared for publication by S. E. BRASLAVSKY‡ Max-Planck-Institut für Bioanorganische Chemie, Postfach 10 13 65, 45413 Mülheim an der Ruhr, Germany *Membership of the Division Committee during preparation of this report (2003-2006) was as follows: Organic and Biomolecular Chemistry Division (III) Committee: President: T. T. Tidwell (1998−2003), M. Isobe (2002−2005); VicePresident: D. StC. Black (1996−2003), V. T. Ivanov (1996−2005); Secretary: G. M. Blackburn (2002−2005); Past President: T. Norin (1996−2003), T. T. Tidwell (1998−2005) (initial date indicates first time elected as Division member). The list of the other Division members can be found in <http://www.iupac.org/divisions/III/members.html>. Membership of the Sub Committee on Photochemistry (2003−2005) was as follows: S. E. Braslavsky (Germany, Chairperson), A. U. Acuña (Spain), T. D. Z. Atvars (Brazil), C. Bohne (Canada), R. Bonneau (France), A. M. Braun (Germany), A. Chibisov (Russia), K. Ghiggino (Australia), A. Kutateladze (USA), H. Lemmetyinen (Finnland), M. Litter (Argentina), H. Miyasaka (Japan), M. Olivucci (Italy), D. Phillips (UK), R. O. Rahn (USA), E. San Román (Argentina), N. Serpone (Canada), M. Terazima (Japan). Contributors to the 3rd edition were: U. Acuña, F. Amat, D. Armesto, T. D. Z. Atvars, A. Bard, E. Bill, L. O. Björn, C. Bohne, J. Bolton, R. Bonneau, H.
    [Show full text]