Structure of Nerve, Neuron, Blood Brain Barrier Generating Nerve Impulse

Total Page:16

File Type:pdf, Size:1020Kb

Structure of Nerve, Neuron, Blood Brain Barrier Generating Nerve Impulse Paper 12: Membrane Biophysics Module 25: Structure of Nerve, Neuron, Blood brain barrier generating nerve impulse Nervous system contains millions of neurons (nerve cells). Neurons are highly specialized to transmit messages from (nerve impulses) one part of your body to another. All neurons have a cell body and one or more fibres. The length of these fibres varies from microscopic to over one metre. There are two different kinds of nerve fibres: a. fibres that carry information towards the cell body, called dendrites, and b. fibres that carry information away from it, called axons. Nerves are tight bundles of nerve fibres. Neurons are sensitive to various types of stimuli such as heat, cold, light, dark and pressure. Objectives: Structure of nerve Types of neurons Conduction of nerve signals Blood-brain barrier Types of glia Introduction The nervous system coordinates voluntary and involuntary actions of the body and transmits signals to and from different parts of its body. In vertebrates it consists of two main parts, the central nervous system (CNS) and the peripheral nervous system (PNS). The CNS includes the brain and spinal cord. The PNS consists mainly of nerves. Nerves that convey signals from the brain are called motor or efferent nerves, while those nerves that send out information from the body to the CNS are called sensory or afferent. Most nerves serve both functions and are called mixed nerves. ‘Neuron’ is a common term for a nerve cell. ‘Nerve’ commonly refers to bundles of nerve fibres from different neurons. Neurons originate process, transmit, and receive nerve impulses. They are connected to other neurons or to cells in muscles, organs, or glands. Nerve impulses travel electrically along the neuron and are transmitted by chemical messengers (neurotransmitters) to the next neuron across a tiny gap, called a synapse, between the neuron and the neighboring cell, which is known as the target cell. In addition to neurons, the nervous system contains large numbers of other cell types, known as neuroglia. The functions of neuroglia are to protect, nourish, and support neurons. Although neurons come in different shapes and sizes they have some common characteristics. 1. Structure of Nerve Neuron: a Nerve cell with all its processes. Neuron is the structural and functional unit of the nervous system. A typical neuron consists of a cell body or soma and two types of processes, axons and dendrites (fig.1). 1.1 Parts of nerve cell and their functions Dendrites, Cell body, Neuronal membrane, Axon, Nerve ending 1.1.a. Dendrites: The short cytoplasmic processes of cell body are called dendrites. Dendrites receive stimulus/impulse from the axon of another neuron through synapse and conduct nerve impulses induced by stimuli towards the cell body. The dendrites at their origin from cell body are 5-10 µm in thickness but gradually their thickness decreases by profuse branching they are also called receptive organ. Dendrites branch out in treelike fashion and serve as the main apparatus for receiving signals from other nerve cells. The dendritic membrane under the synapse (the post-synaptic membrane) has many receptors that detect the neurotransmitters in the synaptic cleft. A nerve cell can have many dendrites which branch many times, their surface is irregular and covered in dendritic spines which are where the synaptic input connections are made. 1.1. b. Cell body: The cell body (soma) is nucleated cytoplasmic portion of a neuron. The size of each cell body which varies from 4 to 100µm in diameter and it may be pyramidal, fusiform, pyriform or irregular stellate in shape. The cell body have a large spherical central nucleus along with large number of Nissl's Bodies or granules (groups of ribosomes used for protein synthesis) within the cytoplasm (neuroplasm). It makes all the proteins for the other neuronal parts; dendrites, axons and synaptic terminals and contains specialized organelles such as the mitochondria, Golgi apparatus, endoplasmic reticulum, secretory granules, ribosomes and polysomes (fig. 2). The amount of the cell organelles vary with the functional activity of the cell. Delicate cytoplasmic threads called neurofibrils are there throughout the entire length of axon and dendrites arising from cell body. The cell body and its processes are surrounded externally by a thin membrane called the neuron membrane. The cell body is present in grey matter of the central nervous system-brain and spinal cord. 1.1.c. Neuronal membrane: The neuronal membrane serves as a barrier to surround the neoplasm inside the neuron, and to exclude various substances. The membrane is made of lipids and proteins - fats and chains of amino acids. The basic structure of neuronal membrane is a bilayer or sandwich of phospholipids. The external side of the membrane have the receptors for some molecules. Whenever a molecule attaches to receptors; some changes of the membrane and in the interior of the cell ensue, such as the alteration of permeability to some ions. The neuronal membrane performs many important functions: It allows entry of some ions and small molecules into the cell while keeping others out of the cell, Establishing an electrical potential inside the cell, Conducting an impulse being responsive to particular neurotransmitters and modulators. Figure 1. Structure of a typical neuron. Figure 2. Anatomy of multipolar neuron. 1.1.d. Axon: The long cytoplasmic process of cell body which transmits impulse from soma to other neuron is called axon. Axon is much longer than dendrites. The axon arises from the cell body in a conical elevation called axon hillock. The length of axon is variable and depends on the functional relationship of the neuron. The cytoplasm of axon known as axoplasm. The membrane covering axon is called axolemma. Axon is present in white matter of central nervous system and peripheral nervous system. The axon, with its surrounded sheath, is called a nerve fibre. The nerve fibres or axon are wrapped in myelin sheath. The myelin sheath is formed by Schwann cells (because they were first described by Theodor Schwann) and each Schwann cell covers a part of the nerve fibre. The region where axon is not covered by myelin sheath is the joint of neighbouring myelinated parts is known as node of Ranvier. The cells that surround peripheral nerve fibres (outside brain and spinal cord) are called Schwann cells. The cells that surround axons within the CNS (brain and spinal cord) are called oligodendrocytes. The axon is the main conducting unit of the neuron, capable of conveying electrical signals a long distances that range from as short as 0.1 mm to as long as 2 m. Many axon split into numerous branches, thereby transmitting information to diverse targets. Many neurons do not have axons. In these so-called amacrine neurons, all the neuronal processes are dendrites. Neurons with very short axons are also found. 1.1.e. Nerve Ending (Presynaptic Terminals): Axon can give of branches, termed collaters along its course and near the end it undergoes substantial branching into axon terminals or end brush, the last part of which is enlarged to form end bulb. 2. Types of neurons 2.1 Most neurons can be anatomically characterized as: a. Unipolar neuron or peudounipolar: dendrite and axon emerging from same process. Examples: touch and pain sensory neurons (fig. 3). b. Bipolar neuron: axon and single dendrite on opposite ends of the soma. Examples:.retinal, olfactory c. Multipolar neuron: two or more dendrites, separate from the axon. Examples: motor, pyramidal cells, Purkinje cells, and anterior horn cells, granule cell. d. Anaxonic neuron: where axon cannot be distinguished from dendrites. Amacrice cells. Unipolar neurons are unusual as they do not have dendrites. However they still relay a signal from one cell to another. Although there is always only one axon but it can branch out before it reaches its target Figure 3. Different kinds of neurons: 1 Unipolar neuron, 2 Bipolar neuron, 3 Multipolar neuron, 4 Pseudounipolar neuron. 2.2. Conduction of nerve signals Nerve signals or impulses pass through neurons in the form of electrical signals. These signals cross the synapses (small gaps) between one neuron and the following neuron in chemical form before being transmitted again in electrical form. Signals are also chemically passed on to other target cells, like muscles, which make proper responses. 2.2.a. Electrical and chemical signals As an electrical signal arrives at the end of a nerve fibre, it activates the discharge of neurotransmitter, which then sends the signal in chemical form to the next neuron. Neurotransmitters are the brain chemicals that pass the information throughout brain and body and also relay signals between neuron. There are two types of neurotrans mitters; excitatory and inhibitory. They are made in the neuronal cell body and then transferred to the axon terminal or nerve ending. Each nerve ending is coupled to other neurons across a synapse. The physical and chemical nature of each synapse determines the strength and polarity of the new input signal. At this place the brain is the most flexible, and the mainly vulnerable. Altering the constitution of different neurotransmitter can amplify or reduce the amount of stimulation that the firing axon passes on to the adjacent dendrite. Changing the neurotransmitters can also modify whether the stimulation is excitatory or inhibitory. 2.2.b. Synapses The synapse contains a tiny gap separating neurons. Synapses are the junctions formed with other nerve cells where the presynaptic terminal of one cell comes in contact with the postsynaptic membrane of another. At these synapses neurons are excited, inhibited, or modulated. Two types of synapses are there, electrical and chemical (fig. 4). 2.2.b.i. An electrical synapse is a mechanical and electrically conductive link between two adjacent neurons that is formed at a tiny gap between the pre- and postsynaptic neurons known as gap junction.
Recommended publications
  • Nervous Tissue
    Department of Histology and Embryology Medical faculty KU Bratislava NERVOUS TISSUE RNDr. Mária Csobonyeiová, PhD ([email protected]) Nerve tissue neurons /main cells/ (perikaryon = cell body=soma,dendrites,axon), 4 -150 µm glial cells /supporting cells/ - 10 times more abudant CNS- oligodendrocytes, astrocytes, ependymal cells,microglia PNS - Schwann cells, satelite cells Neuron independentNeuron anatomical and functional unit responsible for: receiving of different types of stimuli transducing them into the nerve impulses conducting them to the nerve centers development – embryonal neuroectoderm Morphology of the neurons Pseudounipolar neuron! (spinal ganglion) Methods used in neurohistology Staining methods: Luxol blue and cresyl violet (nucleus+nucleolus+Nissl body) Luxol blue (myelin sheath) and nuclear red (nucleus + nucleolus+Nissl body) Impregnations according - Holmes – neurons, axon, dendrites - neurofibrils (brown-violet) Golgi – neurons + astrocytes (black) with golden background Cajal – astrocytes (black) with red background Rio del Hortega – microglia (black) with gray-violet background OsO4 - myelin sheath (black), staining for lipids and lipoproteins (myelin) Microglia (phagocytosis) Astrocytes (supporting role, Oligodendrocytes nutrition, healing (formation of myelin of defects - glial sheath) scars, formation of BBB) Ependymal cells (regulation of stable chemical constitution of CSF) CSN Gray matter: White matter: - bodies of neurons, dendrites - myelinated and unmyelinated axons - initial portion
    [Show full text]
  • Neurons and Glia
    CHAPTER TWO Neurons and Glia INTRODUCTION THE NEURON DOCTRINE The Golgi Stain Cajal’s Contribution BOX 2.1 OF SPECIAL INTEREST: Advances in Microscopy THE PROTOTYPICAL NEURON The Soma The Nucleus Neuronal Genes, Genetic Variation, and Genetic Engineering BOX 2.2 BRAIN FOOD: Expressing One’s Mind in the Post-Genomic Era BOX 2.3 PATH OF DISCOVERY: Gene Targeting in Mice, by Mario Capecchi Rough Endoplasmic Reticulum Smooth Endoplasmic Reticulum and the Golgi Apparatus The Mitochondrion The Neuronal Membrane The Cytoskeleton Microtubules BOX 2.4 OF SPECIAL INTEREST: Alzheimer’s Disease and the Neuronal Cytoskeleton Microfilaments Neurofilaments The Axon The Axon Terminal The Synapse Axoplasmic Transport BOX 2.5 OF SPECIAL INTEREST: Hitching a Ride with Retrograde Transport Dendrites BOX 2.6 OF SPECIAL INTEREST: Intellectual Disability and Dendritic Spines CLASSIFYING NEURONS Classification Based on Neuronal Structure Number of Neurites Dendrites Connections Axon Length Classification Based on Gene Expression BOX 2.7 BRAIN FOOD: Understanding Neuronal Structure and Function with Incredible Cre GLIA Astrocytes Myelinating Glia Other Non-Neuronal Cells CONCLUDING REMARKS 23 © Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION. 24 PART ONE FOUNDATIONS INTRODUCTION All tissues and organs in the body consist of cells. The specialized func- tions of cells and how they interact determine the functions of organs. The brain is an organ—to be sure, the most sophisticated and complex organ that nature has devised. But the basic strategy for unraveling its functions is no different from that used to investigate the pancreas or the lung. We must begin by learning how brain cells work individually and then see how they are assembled to work together.
    [Show full text]
  • L03 Neurons to Post.Key
    Vert Phys PCB3743 Neurons Fox Chapter 7 pt 1 © T. Houpt, Ph.D. Structure of Vertebrates Two major compartments of the body Peripheral Compartment Everything outside of the brain and spinal cord (heart, lungs, gastrointestinal tract, liver, kidneys, skeletal muscle, skin etc.) Central Nervous System (CNS) • Brain at front of body • Spinal cord running down the back • Protected by skull and vertebra • Sensory receptors clustered in head (vision, hearing, taste, smell) T http://bookdome.com/health/anatomy/Human-Body/Man-Is-A-Vertebrate-Animal.html Vertebrate Central Nervous System: brain & spinal cord cerebellum cerebrum back brainstem Vertebra Skull spinal cord head tail GI tract stomach Vertebrate Central Nervous System: brain & spinal cord cerebellum cerebrum back brainstem spinal cord head tail GI tract stomach Peripheral Nervous System: Neurons and nerve fibers outside the brain and spinal cord back motor neurons sensory ganglion autonomic ganglion head autonomic motor sensory tail nerve nerve nerve GI tract enteric NS stomach Functions of the Nervous System Sensory Motor Integration Detect changes in the environment or in the body via sensory receptors; coordinate responses across the body. Initiate responses via skeletal muscle (somatic nerves for voluntary movement) or via smooth muscle and glands (autonomic nervous system). Neurons (nerve cells) Point to point communication across the body to coordinate responses Integrate electrical and chemical signals at dendrites & cell body; depending on inputs, neuron sends electrical and chemical signal down axon to synapse on target cell. Sensory neurons (afferents) carry sensory information into the CNS Motor neurons (efferents) carry impulses out of CNS to make muscles move or effect target organs (e.g.
    [Show full text]
  • Nervous System Overview
    [Type here] [Type here] Psychobiology Nervous System Overview Neurons classification of the anatomy of the neuron neuron dendrites by anatomy by function soma /cell body Nucleus Axon Hillock multipolar bipolar unipolar sensory motor interneurons Axon neuron neuron neuron neurons neurons Mylein Sheath Nodes of Ranvier Axon terminal / terminal buttons Anatomy of the neuron - Neurons are nerve cells and the basic unit of the nervous system and transmit information to the brain - Human brains has 86 billion neurons - 160,000km end to end Dendrites - Branch like structures that receive information from other cells Soma / Cell body - Includes the nucleus, it protects the nucleus and cell contents - The phospholipid bilayer maintains the negative charge within the cell Nucleus - ‘engine room’ of the cell - Contains the genetic material - If neuron receives simulation from dendrites it passes the manipulated input through the axon and to the dendrite of the next neuron. Nucleus produces neurotransmitters Page 1 of 5 [Type here] [Type here] Psychobiology Axon Hillock - The gatekeeper of transmission: this is where it is decided whether or not action potential is fired Axon terminals/ terminal buttons - Chemical messages are sent from these terminals - Gap between neurons are called synapses. Axon terminals are considered ‘pre-synaptic’ and dendrites are ‘post-synaptic’ Axon - Long nerve fibre - Transmits information to other neurons - Conducts the electrical signals from the cell body Myelin sheath - Coating that insulates the axon, composed of primarily of lipids (fats) - Allows for faster signalling - Produced by Schwan cells - Myelinated axons give some portions of the brain a white appearance Nodes of Ranvier - Bare axon - Allows the transmission to continue down the axon Classification of Neuron by Anatomy Multipolar Neuron Bipolar Neuron Unipolar Neuron - Long axon and lots of - 2 extensions from - 1 extension from the dendrites cell body cell body - (i.e.
    [Show full text]
  • Normal Cells of Cns
    NORMAL CELLS OF CNS OBJECTIVES: At the end of this lecture, you should describe the microscopic structure and the function of: 1- Neurons: - Cell body (perikaryon). - Processes: An axon and dendrites. 2- Neuroglia: - Astrocytes. - Oligodendrocytes. - Microglia. - Ependymal cells. Neuron Components: 1. Cell body (Perikaryon) 2. Processes : a. An axon: only one b. Dendrites: one or more TYPES OF NEURONS Based on number of processes 1. Pseudounipolar neurons. 2. Bipolar neurons. 3. Multipolar neurons. TYPES OF NEURONS Based on number of processes 1. Unipolar (Pseudounipolar) neuron (rounded neuron): Has one process only, that divides into two branches; one Dendrite acts as a dendrite and the other as an axon. e.g. Mesencephalic nucleus of Axon trigeminal nerve and dorsal root (spinal) ganglion. TYPES OF NEURONS Based on number of processes 2. Bipolar Neuron (spindle-shaped neuron): Has two processes (one arising from each pole of the cell body). One of them is the dendrite and the other is the axon, e.g. retina & Dendrite olfactory epithelium. TYPES OF NEURONS Based on number of processes 3. Multipolar neuron: Has one axon and multiple dendrites. Types of multipolar neurons: A. Stellate neuron: • The commonest type. • Distributed in most areas of CNS, e.g. anterior horn cells of the spinal cord TYPES OF NEURONS Based on number of processes B. Pyramidal neurons: • Distributed in motor area 4 of the cerebral cortex. C. Pyriform neurons: • Pear-shaped, e.g. Purkinje cells of cerebellar cortex CELL BODY (Perikaryon) Structure of cell body: 1. Nucleus: • Single, usually central, rounded and vesicular with prominent nucleolus. 2. Cytoplasm. CELL BODY (Perikaryon) Cytoplasm: Its main components include: 1.
    [Show full text]
  • The Unipolar Neuron
    The Unipolar Neuron The unipolar neuron is a sensory neuron and carries an electrical signal to the CNS. However, the anatomy of unipolar neurons is subject to different interpretations. As the unipolar neuron develops, there is a single protoplasmic process which extends from the neuron’s soma. This process splits immediately into two segments: 1) a proximal segment which enters the spinal cord; 2) a distal segment which extends out into the body and terminates in tissue as a “receptor”. Some refer to the two processes as “axons” while others refer to only the proximal process as an axon and the distal process as the dendrite. Saladin chooses the former while others (including myself!) choose the latter interpretation. Here is the critical issue. The receptor (i.e. dendrite) in the target tissue is stimulated and generates an action potential that moves towards the spinal cord (either in the dendrite or axon depending on which interpretation you choose). As the electrical signal approaches the soma, it does not need to create a local potential within the soma and the action potential continues to propagate the signal beyond the protoplasmic process of the soma. At the point of the soma’s protoplasmic process, the action potential does not enter the soma, but simply continues uninterrupted along the path to the spinal cord. Competing Definitions: 1. Unipolar neurons have but one process from the cell body. However, that single, very short, process splits into longer processes (a dendrite plus an axon). Unipolar neurons are sensory neurons - conducting impulses into the central nervous system.
    [Show full text]
  • Normal Cells of the Cns
    NORMAL CELLS OF THE CNS Color index: Slides.. Important ..Notes ..Extra.. Objectives: At the end of this lecture, you should describe the microscopic structure and the function of: 1- Neurons: Cell body (perikaryon). Processes: An axon and dendrites. 2- Neuroglia: Astrocytes. Oligodendrocytes. Microglia. Ependymal cells. Axon: only one Processes Neuron components Dendrites: one or more Cell body (Perikaryon) Types of neurons based on number of processes: Unipolar neuron Has one process only, that divides into two branches; (Pseudounipolar) one acts as a dendrite and the other as an axon. (rounded neuron) e.g. Mesencephalic nucleus of trigeminal nerve Not directly connected to the cell body and dorsal root (spinal) ganglion. Bipolar Neuron Has two processes (one arising from each pole of the cell body) (spindle-shaped neuron) One of them is the dendrite and the other is the axon. like having 2 necks e.g. retina & olfactory epithelium. Multipolar neuron: Stellate Neurons (star shape) Pyramidal Neurons (wide base) Pyriform Neurons Has one axon and multiple - The commonest type. - Distributed in motor area 4 - Pear-shaped dendrites. - Distributed in most areas of CNS of the cerebral cortex. e.g. Purkinje cells of cerebellar -Its outline is irregular in shape e.g. anterior horn cells of the -Neuroglial cells are much more cortex. number than neurons in the CNS spinal cord. they can divide and regenerate normally. Cell body (perikaryon) Cytoplasm: Cytoplasm with mitochondria and ribosomes and rough Nucleus: ER only in dendrites not in axons Single, usually central, rounded and Its main components include: vesicular with prominent nucleolus. Nissl Neuro- Micro- Golgi Mito- Centriole Pigments Other bodies filaments tubles apparatus chondria Depend on age Are * Are Most basophilic intermediate *lipofuscin patches of filaments adult pigment: in rough which are Are neurons old age bundled Endoplasmic found in have Some fat Reticulum together to the cell Surrounds *Melanin (rER) and form the Are only one and rudimentary pigments: in free neurofibrils.
    [Show full text]
  • Guillain-Barre Syndrome (GBS)
    Nervous tissue Anatomically Central nervous system (CNS) brain and spinal cord Peripheral nervous system (PNS) - cranial, spinal, and peripheral nerves - ganglia: nerve cell bodies outside the CNS Major cell types Neuron: nerve cell Supporting / Glial cells - Schwann cells, satellite cells (in PNS) - glia/neuroglia (in CNS) Neurone / Neuron Cell body Nucleus Cytoplasm (perikaryon) Process Axon Dendrites Axons (nerve fibers) Axon hillock Terminal boutons Dorsal root ganglia (DRG) nucleus ganglion/ganglia DRG neurons Basic neuron types Multipolar neuron Multiple dendrites Single axons Types: Interneurons Motor neurons Sympathetic neurons Bipolar neuron Single dendrite Single axon Types: Receptor neurons Vision Smell Balance Pseudo-unipolar neuron peripheral Single axon (Stem process) with stem 2 branches: Central process to spinal cord Peripheral process to terminal tissues (muscle, joints, skin et al) functionally: dendrite structurally: axon Type: Dorsal root ganglia (DRG neuron) central Pseudo-unipolar neuron Neuron: ultrastructure Rough endoplamic reticulum (rER) Nissl substance Cytoskeleton Microtubule Intermediate filaments: Neurofilaments Microfilaments: Actin Specialization of neuron/axon Cytoskeleton Axonal transport Neuron: ultrastructure rER: rough ER M: mitochondria L: lysosome G: Golgi Microscopic methods H & E (Hematoxylin and eosin) Nissl method Heavy metal impregnation Golgi, Cajal Thick sections / Spread preparations gold, silver: deposited in microtubules / neurofilaments Immunohistochemistry Microscopic methods: H & E
    [Show full text]
  • Multilineage Differentiation Potential of CNS Cell Progenitors in a Recent
    ssing oce & pr B o io i t e B f c Santacroce et al., J Bioproces Biotech 2014, 4:7 h o n l i a q n u DOI: 10.4172/2155-9821.1000186 r e u s o J Journal of Bioprocessing & Biotechniques ISSN: 2155-9821 Research Article Open Access Multilineage Differentiation Potential of CNS Cell Progenitors in a Recent Developed Gilthead Seabream (Sparus aurata L.) Nervous Model Maria Pia Santacroce1*, Antonella Tinelli2, Anna Selene Pastore1, Michele Colamonaco3 and Giuseppe Crescenzo3 1Unit of Aquaculture and Zooculture, Department of Veterinary Medicine, University of Bari “Aldo Moro”, Italy 2Unit of Pathology, Deptartment of Veterinary Medicine, University of Bari “Aldo Moro”, Italy 3Unit of Pharmacology and Toxicology, Department of Veterinary Medicine, University of Bari “Aldo Moro”, Italy Abstract Neural Progenitor Cells (NPCs) have gathered more and more attention in the field of Neural Stem Cells (NSCs). However, the multilineage differentiating behavior of these cells and their contribution to tissue regeneration, almost in lower vertebrate taxa, remain unknown. Since the early 1970s, many comparative studies have been performed using immunocytochemical screening on the brains of several vertebrate taxa, including teleosts, in order to identify these cells, even if the data are sometimes contrasting. This study aims: (1) to investigate in vitro the potential proliferative role of NPCs and Radial Glia Progenitors (RGP) in seabream neurogenesis; (2) to reveal the strict ability of fish NSCs to undertake the multilineage development and differentiation in neurons, astrocytes and oligodendrocytes. By the use of double Immunofluorescence (IF) analysis and phase contrast microscopy, we identified the multilineage differentiation and the exact cell morphology.
    [Show full text]
  • Nerve Cell Impulses
    • Localization of Certain Neurons Neurotransmitters Nerve Conduction by: Mary V. Andrianopoulos, Ph.D Clarification: Types of Neuron • There may be none, one, or many dendrites composing part of a neuron. • No dendrite = a unipolar neuron • One dendrite = bipolar neuron • More than one dendrite = multipolar neuron. Multipolar neuron Bipolar neuron Unipolar neuron Localization of Neuron types • Unipolar: – found in most of body's sensory neurons – dendrites are the exposed branches connected to receptors – axon carries the action potential in to the CNS – Examples: posterior root ganglia + cranial nerves – Usually: have peripheral + central connections Localization of Neuron types • Bipolar: – retina, sensory cochlear, vestibular ganglion • Multipolar: (fibers) brain + spinal cord – found as motor neurons and interneurons – neuronal tractsÆ CNS – peripheral nervesÆ PNS Size of Neurons + their localization • Golgi I: – Fiber tracts: brain + spinal cord (PNS + motor) – (i.e., Pyramidal tract + Purkinje cells) • Golgi II: – Cerebral + cerebellar cortex – Often inhibitory – Out number Golgi I – Star-shaped appearance 2° short dendrites Histology of the Nervous System A review of Cell types 1) Neurons - the functional cells of the nervous system 2) Neuroglia (glial cells) - Long described as supporting cells of the nervous system, there is also a functional interdependence of neuroglial cells and neurons a) astrocytes - anchor neurons to blood vessels, regulate the micro-environment of neurons, and regulate transport of nutrients and wastes to and from neurons b) microglia- are phagocytic to defend against pathogens and monitor the condition of neurons c) ependymal - line the fluid-filled cavities of the brain and spinal column and play a role in production, transport, and circulation of the CSF.
    [Show full text]
  • Methodic Materials Sensation
    Medical Academy named after S.I. Georgievsky of Vernadsky CFU Department of Neurology and Neurosurgery Class 1. Anatomy and Physiology of Sensation. Elements of the Nervous System. Anatomy, physiology, morphology of the Nervous System. Somatosensory System. Pathways. Aids to the examination of the Somatosensory System. Somatosensory Deficits due to Lesions at Specific Sites along the Somatosensory Pathways. Key poin ts: 1. Elements o f the Nervous System. 2. Peripheral Components of the Somatosensory System 3. Posterior Columns. 4. Spinothalamic Tracts. 5. Central Components o f the Somatosensory System 7. Testing for somatosensory deficits. 8. Somatosensory Deficits due to Lesions at Specific Sites along the Somatosensory Pathways Questions for students: Define the following terms: neuron, Nissl substance, axonal transport, Wallerian degeneration, chromatolysis, regeneration of nerve cells, glial cells, pigments and inclusions, nerve fibers, receptor, peripheral nerve, nerve plexus, posterior root, dorsal root ganglion, superficial sensation, deep sensation, posterior columns, spinothalamic pathway, dermatome, conscious proprioception, stereognosis, graphesthesia, 2-point discrimination, anesthesia, hypoesthesia, hyperpathia, allodynia, hyperesthesia, dysesthesia, paresthesia. 1. What are the steps involved in the sensory exam? 2. How is it possible to lose some types of sensations and not others? 3. What sensations are conveyed by the small-diameter sensory nerve fibers in a peripheral nerve? 4. What sensations are conveyed by large-diameter sensory nerve fibers in a peripheral nerve? 5. What sensations are conveyed by the dorsal columns? 6. What sensations are conveyed by the spinothalamic tract? 7. What is tested by double simultaneous stimulation? 8. Where would the lesion be if the patient was able to detect all modalities of sensation but could not recognize an object placed in the right hand? 9.
    [Show full text]
  • The Nervous System
    THE NERVOUS SYSTEM The nervous system primarily consists neurons and neuroglia. The functional unit of the nervous system are the neurons. A neuron can be defined as a nerve cell. The unique structure of neurons makes them specialized for receiving and transmitting electrical impulses throughout the body. The neuron acts like a miniature self-contained information processor. It receives inputs, processes information, and generates outputs. Neuron as the functional unit of nervous system was demonstrated by R.Y. Cajal while the nerve cell or the neuron was first described by Camillo Golgi in 1873. 3.1Structure of neuron The membrane, which surrounds the nerve cell, is made up of a double layer of lipid and contains protein molecules that play many important roles in transporting and blocking substances from coming in and out of the cell. A neuron has three main functional parts: the structure most associated with receiving signal is the dendrite, the body or soma , which accumulates signals coming from the input (dendrites) and which produces at the axonal hillock a series of bursts (impulses) when the accumulated signal reaches a critical threshold. These impulses are propagated to other neurons through an output called axon. The structure of neuron is described below: a) Neurocyton The cell body (soma or neurocyton or perikaryon) contains a granular cytoplasm due to the presence of basophilic granules called Nissl’s bodies. Nucleus is single and centrally located. Other cell organelles present are mitochondria, Golgi apparatus, ribosomes, endoplasmic reticulum , neurofibrillae and centrioles. The Nissl’s granules which are sometimes referred to as chromatophilic substances are composed of ribonucleoproteins are produced in the nucleus and play important role in.
    [Show full text]