Species Identification by Polymerase Chain Reaction of Staphylococcal

Total Page:16

File Type:pdf, Size:1020Kb

Species Identification by Polymerase Chain Reaction of Staphylococcal Species Identification by Polymerase Chain Reaction of Staphylococcal Isolates from the Skin and Ears of Dogs and Evaluation of Clinical Laboratory Standards Institute Interpretive Criteria for Canine Methcillin-resistant Staphylococcus pseudintermedius Thesis Presented in Partial Fulfillment of the Requirements for the Degree of Master of Science in the Graduate School of The Ohio State University By Jennifer Ruth Schissler, DVM Graduate Program in Veterinary Clinical Sciences The Ohio State University 2009 Thesis Committee Dr. Andrew Hillier, Advisor Dr. Lynette Cole Dr. Wondwossen Gebreyes Dr. Paivi Rajala-Schultz Dr. Joshua Daniels Copyright by Jennifer Schissler, DVM 2009 [Type a quote from the document or the summary of an interesting point. You can position the text box anywhere in the document. Use the Text Box Tools tab to change the formatting ofii the pull quote text box.] Abstract The Clinical and Laboratory Standards Institute has published (2008) new interpretive criteria for identification of methicillin resistance in veterinary staphylococci. The sensitivity of the 2008 interpretive criteria compared to previous (2004) criteria was established in thirty canine clinical isolates of mecA gene–positive Staphylococcus pseudintermedius. The minimum inhibitory concentration for oxacillin was determined by broth microdilution. The 2008 breakpoint of > 4µg/ml for methicillin resistance resulted in a sensitivity of 73.3% (22/30). The 2004 breakpoint guideline of ≥ 0.5 µg/ml resulted in a sensitivity of 97% (29/30). For oxacillin disk diffusion, the 2008 interpretive criterion of ≤10 mm for methicillin resistance resulted in a sensitivity of 70% (21/30). Application of the 2004 interpretive criterion of ≤ 17mm resulted in a sensitivity of 100% (30/30). For cefoxitin disk diffusion, the interpretive criterion of ≤ 21mm for methicillin resistance (as used for S. aureus) resulted in a diagnostic sensitivity of 6.7% (2/30). The interpretive criterion of ≤ 24mm (as used for coagulase negative staphylococci) resulted in a diagnostic sensitivity of 43.3% (13/30). The 2008 interpretive criteria produced what we consider to be an unacceptable level of false negative results. This study also established that cefoxitin disk diffusion is an inappropriate screening test for methicillin resistance of canine S. pseudintermedius. ii Pilot experiments to screen novel PCR primers for S. aureus, S. schleiferi, S. intermedius, and S. pseudintermedius were performed using type culture control strains. Target genes included hsp60, sodA, femA, and nuc. Three of 15 primers (20%) failed to produce an amplicon of predicted size. Three (20%) successfully functioned for S. aureus and S. schleiferi. All 4 functional S. intermedius primers demonstrated cross- amplification in S. pseudintermedius type strains. After S. pseudintermedius sequences were available, it was determined that identical to near- identical S .intermedius primer annealing site sequences were present in this species. A primer targeting nuc gene differentiated S. intermedius from S. pseudintermedius type strains. Three sodA primers for S. aureus, S. schleiferi, S. intermedius/pseudintermedius and one nuc primer for S. pseudintermedius were selected for further investigation. A total of 91 isolates of S. pseudintermedius, S. schleiferi, and S. aureus previously identified via select biochemical testing or API ID 32 STAPH identification were used for PCR validation experiments. Identity was confirmed via VITEK2 system. There was 29% (26/91) disagreement between VITEK2 results and results of previous identification methods. Previously identified S. schleiferi provided the greatest disagreement, 82 % (22/28). Supplemental testing was necessary for identification in a majority of isolates. iii The sodA- based primer for S. pseudintermedius provided a sensitivity of 100% and a specificity range of 6.7-22%. The sodA-based primer for S. schleiferi provided a sensitivity of 83% and a specificity range of 56-75%. The sodA-based primer for S. aureus provided a sensitivity of 97% and a specificity of 91%. The nuc- based primer for S. pseudintermedius provided a sensitivity range of 94-100% and specificity range of 22-96%. These primers did not provide sufficient sensitivity and specificity to discriminate between S. pseudintermedius, S. schleiferi, and S. aureus as a sole diagnostic test. iv Dedication This thesis is dedicated first and foremost to my parents Fred and Linda. Thank you for nurturing my intellectual curiousity and supporting me wherever it may take me, even if it is far from home. You have provided great mentorship and friendship. To my brother Eric: I wish you all the best in your future academic endeavors. I am very proud of you- may we celebrate the completion of our theses together. To my brother Bryan: you have my respect for being a good husband and father. It is unfortunate that I couldn’t spend as much time with Freddy and Abby as I would liked the last three years, but I hope they get to know Aunt Jenny and Uncle Aaron soon. To Aaron: I started this journey alone and somehow found the most interesting person I know to spend the rest of it with. Your steadfastness and dedication to us is a blessing. You have been incredibly supportive during the construction of this weighty script. May this thesis be one of our many collective achievements. I hope this tome spends many a dusty year on a bookshelf in our home. To our future children: if you are reading this now, stop here you have already read the most interesting parts. v Acknowledgement Andy Hillier and Lynette Cole, thank you for your guidance, sense of humor and demand for excellence throughout my residency. These three years have been the most challenging and formative thus far on both a personal and professional level. Thank you for this life-changing opportunity. It was my goal to earn your professional trust and respect during my residency. Whever my future may take me, I hope to continue to earn it. Do not be surprised if I continue to seek your input in the future, as your opinions and experiences will remain valuable to me. Wendy Lorch, I admire greatly your academic achievements, your intellect, and your cheerful and helping spirit. Thank you for your friendship in and your guidance. I wish you continued success in the future. Michele Fox, thank you for your friendship. I look forward to our daily conversations and will miss your company. You have been a great model of patience, organization, and proficiency- an ideal technician. I would like to thank the members of my thesis committee: Dr. Gebreyes, Dr. Daniels, Dr. Rajala-Schultz, and Dr. Bannerman for their technical advice and encouragement. vi Vita February 3, 1980………………………………………...Born- Westminster, Colorado 2005……………………………………………........DVM, Colorado State University 2006- Present…………………………….Graduate Teaching and Research Associate, The Ohio State University Publications 1. Schissler JR, Lorch G. Bacterial Dermatitis-Superficial. In: Lavoie J, Hinchcliff KW. Blackwell’s Five –Minute Veterinary Consult: Equine. 2nd Ed. Ames, Wiley-Blackwell. 2008; 122-123. 2. Smirnova NJ, Troyer JL, Schissler J, Terwee J, Poss M, Vandewoude S. Feline lentiviruses demonstrate differences in receptor repertoire and envelope structural elements. Virology 2005 Nov 10; 342(1): 60-76. Fields of Study Major Field: Veterinary Clinical Sciences Studies in Veterinary Dermatology vii Table of Contents Abstract………………………………………………………………………………..ii Dedication……………………………………………………………………………..v Acknowledgement……………………………………………………………………vi Vita……………………………………………………………………………..........vii List of Tables………………………………………………………………………..xvi Chapter 1:Introduction…………………………………………………………….1 Chapter 2: Literature Review……………………………………………………...5 2.1 The Genus Staphylococcus……………………………………………………..5 2.1.1 Taxonomy…………………………………………………….....5 2.1.2 Staphylococci of Veterinary Interest……………………………6 2.1.2.1 S. intermedius and S. pseudintermedius………………...6 2.1.2.2. S. aureus………………………………………………8 2.1.2.3 S. schleiferi subsp. schleiferi and S. schleiferi subsp. coagulans…………………………………………….10 2.2 Methicillin resistance in veterinary medicine……………………………………10 2.2.1 Methicillin- resistant S. pseudintermedius……………………………………..10 2.2.2 Methicillin- resistant S. aureus…………………………………...14 2.2.3 Methicillin- resistant S. schleiferi……………………………...17 viii 2.3 Identification of Staphylococcus species………………………...19 2.3.1 Phenotypic Identification………………………………19 2.3.1.1 Morphology…………………………………..19 2.3.1.2 Gram stain……………………………………20 2.3.1.3 Coagulase activity……………………………21 2.3.1.4 Catalase activity…………………………….. 21 2.3.1.5 Biochemical tests……………………………21 2.3.1.6.1 Expected results for S. pseudintermedius, S. intermedius, S. schleiferi, S. aureus…………………………………………..22 2.3.1.6.2 Phenotypic testing technologies……………31 2.3.1.6.3 Difficulties and discrepancies in phenotypic technologies …………………………………………32 2.3.2 Genotypic identification……………………………………….34 2.3.2.1 Technologies…………………………………………34 2.3.2.2 PCR for identification of staphylococci……………..35 2.3.2.2.1 Genes of interest for identification………..36 2.3.2.2.2 femA gene…………………………………37 2.3.2.2.3 hsp60 gene…………………………………38 ix 2.3.2.2.4 sodA gene………………………………..38 2.3.2.2.5 nuc gene…………………………………39 2.4 Detection of Methicillin resistance in staphylococci ……………………..40 2.4.1 Phenotypic identification………………………………………40 2.4.1.1 Oxacillin salt agar……………………………………41 2.4.1.2 Oxacillin minimum inhibitory concentration by broth microdilution…………………………………………………42 2.4.1.3 Oxacillin disk diffusion………………………………43 2.4.1.4
Recommended publications
  • Succession and Persistence of Microbial Communities and Antimicrobial Resistance Genes Associated with International Space Stati
    Singh et al. Microbiome (2018) 6:204 https://doi.org/10.1186/s40168-018-0585-2 RESEARCH Open Access Succession and persistence of microbial communities and antimicrobial resistance genes associated with International Space Station environmental surfaces Nitin Kumar Singh1, Jason M. Wood1, Fathi Karouia2,3 and Kasthuri Venkateswaran1* Abstract Background: The International Space Station (ISS) is an ideal test bed for studying the effects of microbial persistence and succession on a closed system during long space flight. Culture-based analyses, targeted gene-based amplicon sequencing (bacteriome, mycobiome, and resistome), and shotgun metagenomics approaches have previously been performed on ISS environmental sample sets using whole genome amplification (WGA). However, this is the first study reporting on the metagenomes sampled from ISS environmental surfaces without the use of WGA. Metagenome sequences generated from eight defined ISS environmental locations in three consecutive flights were analyzed to assess the succession and persistence of microbial communities, their antimicrobial resistance (AMR) profiles, and virulence properties. Metagenomic sequences were produced from the samples treated with propidium monoazide (PMA) to measure intact microorganisms. Results: The intact microbial communities detected in Flight 1 and Flight 2 samples were significantly more similar to each other than to Flight 3 samples. Among 318 microbial species detected, 46 species constituting 18 genera were common in all flight samples. Risk group or biosafety level 2 microorganisms that persisted among all three flights were Acinetobacter baumannii, Haemophilus influenzae, Klebsiella pneumoniae, Salmonella enterica, Shigella sonnei, Staphylococcus aureus, Yersinia frederiksenii,andAspergillus lentulus.EventhoughRhodotorula and Pantoea dominated the ISS microbiome, Pantoea exhibited succession and persistence. K. pneumoniae persisted in one location (US Node 1) of all three flights and might have spread to six out of the eight locations sampled on Flight 3.
    [Show full text]
  • Desulfuribacillus Alkaliarsenatis Gen. Nov. Sp. Nov., a Deep-Lineage
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by PubMed Central Extremophiles (2012) 16:597–605 DOI 10.1007/s00792-012-0459-7 ORIGINAL PAPER Desulfuribacillus alkaliarsenatis gen. nov. sp. nov., a deep-lineage, obligately anaerobic, dissimilatory sulfur and arsenate-reducing, haloalkaliphilic representative of the order Bacillales from soda lakes D. Y. Sorokin • T. P. Tourova • M. V. Sukhacheva • G. Muyzer Received: 10 February 2012 / Accepted: 3 May 2012 / Published online: 24 May 2012 Ó The Author(s) 2012. This article is published with open access at Springerlink.com Abstract An anaerobic enrichment culture inoculated possible within a pH range from 9 to 10.5 (optimum at pH with a sample of sediments from soda lakes of the Kulunda 10) and a salt concentration at pH 10 from 0.2 to 2 M total Steppe with elemental sulfur as electron acceptor and for- Na? (optimum at 0.6 M). According to the phylogenetic mate as electron donor at pH 10 and moderate salinity analysis, strain AHT28 represents a deep independent inoculated with sediments from soda lakes in Kulunda lineage within the order Bacillales with a maximum of Steppe (Altai, Russia) resulted in the domination of a 90 % 16S rRNA gene similarity to its closest cultured Gram-positive, spore-forming bacterium strain AHT28. representatives. On the basis of its distinct phenotype and The isolate is an obligate anaerobe capable of respiratory phylogeny, the novel haloalkaliphilic anaerobe is suggested growth using elemental sulfur, thiosulfate (incomplete as a new genus and species, Desulfuribacillus alkaliar- T T reduction) and arsenate as electron acceptor with H2, for- senatis (type strain AHT28 = DSM24608 = UNIQEM mate, pyruvate and lactate as electron donor.
    [Show full text]
  • The Oral and Conjunctival Microbiotas in Cats with and Without Feline
    The oral and conjunctival microbiotas in cats with and without feline immunodeficiency virus infection Scott J Weese, Jamieson Nichols, Mohammad Jalali, Annette Litster To cite this version: Scott J Weese, Jamieson Nichols, Mohammad Jalali, Annette Litster. The oral and conjunctival microbiotas in cats with and without feline immunodeficiency virus infection. Veterinary Research, BioMed Central, 2015, 46 (1), pp.21. 10.1186/s13567-014-0140-5. hal-01290670 HAL Id: hal-01290670 https://hal.archives-ouvertes.fr/hal-01290670 Submitted on 18 Mar 2016 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Weese et al. Veterinary Research (2015) 46:21 DOI 10.1186/s13567-014-0140-5 VETERINARY RESEARCH RESEARCH Open Access The oral and conjunctival microbiotas in cats with and without feline immunodeficiency virus infection Scott J Weese1*, Jamieson Nichols2, Mohammad Jalali1 and Annette Litster2 Abstract The oral and conjunctival microbiotas likely play important roles in protection from opportunistic infections, while also being the source of potential pathogens. Yet, there has been limited investigation in cats, and the impact of comorbidities such as feline immunodeficiency virus (FIV) infection has not been reported. Oral and conjunctival swabs were collected from cats with FIV infection and FIV-uninfected controls, and subjected to 16S rRNA gene (V4) PCR and next generation sequencing.
    [Show full text]
  • Biodegradability of Woody Film Produced by Solvent Volatilisation Of
    www.nature.com/scientificreports OPEN Biodegradability of woody flm produced by solvent volatilisation of Japanese Beech solution Yuri Nishiwaki-Akine1*, Sui Kanazawa2, Norihisa Matsuura3 & Ryoko Yamamoto-Ikemoto3 To address the problem of marine pollution from discarded plastics, we developed a highly biodegradable woody flm, with almost the same components as wood, from the formic acid solution of ball-milled wood. We found that the woody flm was not easily degraded by cultured solution of hand bacteria (phylum Proteobacteria was dominant). However, the flm was easily biodegraded when in cultured solution of soil (Firmicutes, especially class Bacilli, was dominant) for 4 weeks at 37 °C, or when buried in the soil itself, both under aerobic conditions (Acidobacteria and Proteobacteria were dominant) for 40 days at room temperature and under anaerobic conditions (Firmicutes, especially family Ruminococcaceae, was dominant) for 5 weeks at 37 °C. Moreover, when flm was buried in the soil, more carbon dioxide was generated than from soil alone. Therefore, the flm was not only brittle but formed of decomposable organic matter. We showed that the flm does not decompose at the time of use when touched by the hand, but it decomposes easily when buried in the soil after use. We suggest that this biodegradable woody flm can be used as a sustainable raw material in the future. In recent years, plastics dumped as garbage afer use have ofen been released into the sea, leading to frequent ingestion of microplastics by marine organisms. Terefore, the low biodegradability of plastics has become a major social problem. Development of materials with high biodegradability is an important approach to help solve this problem.
    [Show full text]
  • Insight Into the Genome of Staphylococcus Xylosus, a Ubiquitous Species Well Adapted to Meat Products Sabine Leroy, Aurore Vermassen, Geoffrey Ras, Régine Talon
    Insight into the genome of staphylococcus xylosus, a ubiquitous species well adapted to meat products Sabine Leroy, Aurore Vermassen, Geoffrey Ras, Régine Talon To cite this version: Sabine Leroy, Aurore Vermassen, Geoffrey Ras, Régine Talon. Insight into the genome of staphylo- coccus xylosus, a ubiquitous species well adapted to meat products. Microorganisms, MDPI, 2017, 5 (3), 10.3390/microorganisms5030052. hal-01607624 HAL Id: hal-01607624 https://hal.archives-ouvertes.fr/hal-01607624 Submitted on 25 May 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution - ShareAlike| 4.0 International License microorganisms Review Insight into the Genome of Staphylococcus xylosus, a Ubiquitous Species Well Adapted to Meat Products Sabine Leroy, Aurore Vermassen, Geoffrey Ras and Régine Talon * Université Clermont-Auvergne, INRA, MEDIS, F-63000 Clermont-Ferrand, France; [email protected] (S.L.); [email protected] (A.V.); [email protected] (G.R.) * Correspondence: [email protected]; Tel.: +33-473-624-170 Received: 29 June 2017; Accepted: 25 August 2017; Published: 29 August 2017 Abstract: Staphylococcus xylosus belongs to the vast group of coagulase-negative staphylococci. It is frequently isolated from meat products, either fermented or salted and dried, and is commonly used as starter cultures in sausage manufacturing.
    [Show full text]
  • Extensive Microbial Diversity Within the Chicken Gut Microbiome Revealed by Metagenomics and Culture
    Extensive microbial diversity within the chicken gut microbiome revealed by metagenomics and culture Rachel Gilroy1, Anuradha Ravi1, Maria Getino2, Isabella Pursley2, Daniel L. Horton2, Nabil-Fareed Alikhan1, Dave Baker1, Karim Gharbi3, Neil Hall3,4, Mick Watson5, Evelien M. Adriaenssens1, Ebenezer Foster-Nyarko1, Sheikh Jarju6, Arss Secka7, Martin Antonio6, Aharon Oren8, Roy R. Chaudhuri9, Roberto La Ragione2, Falk Hildebrand1,3 and Mark J. Pallen1,2,4 1 Quadram Institute Bioscience, Norwich, UK 2 School of Veterinary Medicine, University of Surrey, Guildford, UK 3 Earlham Institute, Norwich Research Park, Norwich, UK 4 University of East Anglia, Norwich, UK 5 Roslin Institute, University of Edinburgh, Edinburgh, UK 6 Medical Research Council Unit The Gambia at the London School of Hygiene and Tropical Medicine, Atlantic Boulevard, Banjul, The Gambia 7 West Africa Livestock Innovation Centre, Banjul, The Gambia 8 Department of Plant and Environmental Sciences, The Alexander Silberman Institute of Life Sciences, Edmond J. Safra Campus, Hebrew University of Jerusalem, Jerusalem, Israel 9 Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, UK ABSTRACT Background: The chicken is the most abundant food animal in the world. However, despite its importance, the chicken gut microbiome remains largely undefined. Here, we exploit culture-independent and culture-dependent approaches to reveal extensive taxonomic diversity within this complex microbial community. Results: We performed metagenomic sequencing of fifty chicken faecal samples from Submitted 4 December 2020 two breeds and analysed these, alongside all (n = 582) relevant publicly available Accepted 22 January 2021 chicken metagenomes, to cluster over 20 million non-redundant genes and to Published 6 April 2021 construct over 5,500 metagenome-assembled bacterial genomes.
    [Show full text]
  • Gut Dysbiosis with Bacilli Dominance and Accumulation of Fermentation
    Clinical Infectious Diseases MAJOR ARTICLE Gut Dysbiosis With Bacilli Dominance and Accumulation Downloaded from https://academic.oup.com/cid/advance-article-abstract/doi/10.1093/cid/ciy882/5133426 by Zentrale Hochschulbibliothek Luebeck user on 29 January 2019 of Fermentation Products Precedes Late-onset Sepsis in Preterm Infants S. Graspeuntner,1,a S. Waschina,2,a S. Künzel,3 N. Twisselmann,4 T. K. Rausch,4,5 K. Cloppenborg-Schmidt,6 J. Zimmermann,2 D. Viemann,7 E. Herting,4 W. Göpel,4 J. F. Baines,3,5 C. Kaleta,2 J. Rupp,1,8 C. Härtel,4 and J. Pagel1,4,8, 1Department of Infectious Diseases and Microbiology, University of Lübeck, 2Research Group Medical Systems Biology, Christian Albrechts University of Kiel, 3Max Planck Institute for Evolutionary Biology, Evolutionary Genomics, Plön, 4Department of Pediatrics and 5Institute for Medical Biometry and Statistics, University of Lübeck, 6Institute for Experimental Medicine, Christian Albrechts University of Kiel, 7Department of Pediatric Pneumology, Allergy and Neonatology, Hannover Medical School, and 8German Center for Infection Research, partner site Hamburg-Lübeck-Borstel- Riems, Lübeck, Germany Background. Gut dysbiosis has been suggested as a major risk factor for the development of late-onset sepsis (LOS), a main cause of mortality and morbidity in preterm infants. We aimed to assess specific signatures of the gut microbiome, including meta- bolic profiles, in preterm infants <34 weeks of gestation preceding LOS. Methods. In a single-center cohort, fecal samples from preterm infants were prospectively collected during the period of highest vulnerability for LOS (days 7, 14, and 21 of life). Following 16S rRNA gene profiling, we assessed microbial community function using microbial metabolic network modeling.
    [Show full text]
  • A Novel Flow Cytometry Assay Based on Bacteriophage-Derived Proteins
    www.nature.com/scientificreports OPEN A novel fow cytometry assay based on bacteriophage-derived proteins for Staphylococcus detection in blood Susana P. Costa1,2, Nicolina M. Dias1, Luís D. R. Melo1, Joana Azeredo1, Sílvio B. Santos1 & Carla M. Carvalho1,2* Bloodstream infections (BSIs) are considered a major cause of death worldwide. Staphylococcus spp. are one of the most BSIs prevalent bacteria, classifed as high priority due to the increasing multidrug resistant strains. Thus, a fast, specifc and sensitive method for detection of these pathogens is of extreme importance. In this study, we have designed a novel assay for detection of Staphylococcus in blood culture samples, which combines the advantages of a phage endolysin cell wall binding domain (CBD) as a specifc probe with the accuracy and high-throughput of fow cytometry techniques. In order to select the biorecognition molecule, three diferent truncations of the C-terminus of Staphylococcus phage endolysin E-LM12, namely the amidase (AMI), SH3 and amidase+SH3 (AMI_SH3) were cloned fused with a green fuorescent protein. From these, a higher binding efciency to Staphylococcus cells was observed for AMI_SH3, indicating that the amidase domain possibly contributes to a more efcient binding of the SH3 domain. The novel phage endolysin-based fow cytometry assay provided highly reliable and specifc detection of 1–5 CFU of Staphylococcus in 10 mL of spiked blood, after 16 hours of enrichment culture. Overall, the method developed herein presents advantages over the standard BSIs diagnostic methods, potentially contributing to an early and efective treatment of BSIs. Bloodstream infections (BSIs) are severe diseases caused by the presence of microorganisms, mainly bacteria, in blood and are characterized by high morbidity and mortality1,2.
    [Show full text]
  • Demonstrating the Potential of Abiotic Stress-Tolerant Jeotgalicoccus Huakuii NBRI 13E for Plant Growth Promotion and Salt Stress Amelioration
    Annals of Microbiology (2019) 69:419–434 https://doi.org/10.1007/s13213-018-1428-x ORIGINAL ARTICLE Demonstrating the potential of abiotic stress-tolerant Jeotgalicoccus huakuii NBRI 13E for plant growth promotion and salt stress amelioration Sankalp Misra1,2 & Vijay Kant Dixit 1 & Shashank Kumar Mishra1,2 & Puneet Singh Chauhan1,2 Received: 10 September 2018 /Accepted: 20 December 2018 /Published online: 2 January 2019 # Università degli studi di Milano 2019 Abstract The present study aimed to demonstrate the potential of abiotic stress-tolerant Jeotgalicoccus huakuii NBRI 13E for plant growth promotion and salt stress amelioration. NBRI 13E was characterized for abiotic stress tolerance and plant growth-promoting (PGP) attributes under normal and salt stress conditions. Phylogenetic comparison of NBRI 13E was carried out with known species of the same genera based on 16S rRNA gene. Plant growth promotion and rhizosphere colonization studies were determined under greenhouse conditions using maize, tomato, and okra. Field experiment was also performed to assess the ability of NBRI 13E inoculation for improving growth and yield of maize crop in alkaline soil. NBRI 13E demonstrated abiotic stress tolerance and different PGP attributes under in vitro conditions. Phylogenetic and differential physiological analysis revealed considerable differences in NBRI 13E as compared with the reported species for Jeotgalicoccus genus. NBRI 13E colonizes in the rhizosphere of the tested crops, enhances plant growth, and ameliorates salt stress in a greenhouse experiment. Modulation in defense enzymes, chlorophyll, proline, and soluble sugar content in NBRI 13E-inoculated plants leads to mitigate the deleterious effect of salt stress. Furthermore, field evaluation of NBRI 13E inoculation using maize was carried out with recommended 50 and 100% chemical fertilizer controls, which resulted in significant enhancement of all vegetative parameters and total yield as compared to respective controls.
    [Show full text]
  • Production of Bacteriocin Like Substances As Antipathogenic Metabolites by Staphylococcus Warneri Isolated from Healthy Human Skin
    Universal Journal of Microbiology Research 5(3): 40-48, 2017 http://www.hrpub.org DOI: 10.13189/ujmr.2017.050302 Production of Bacteriocin Like Substances as Antipathogenic Metabolites by Staphylococcus warneri Isolated from Healthy Human Skin Reazul Karim*, Mohammad Nuruddin Mahmud, M. A. Hakim Department of Microbiology, University of Chittagong, Chittagong-4331, Bangladesh Copyright©2017 by authors, all rights reserved. Authors agree that this article remains permanently open access under the terms of the Creative Commons Attribution License 4.0 International License Abstract Antibiotic resistance is a serious problem of Microbes that colonize the human body during birth or present world and development of viable alternative is urgent. shortly thereafter, remaining throughout life, are referred to The research work was designed to mitigate this problem. as normal flora [1]. A diverse microbial flora is associated Different types of bacterial colony were isolated from skin of with the skin and mucous membranes of every human being 30 healthy human and their antipathogenic activity was from shortly after birth until death [2]. Human skin is not a tested against 9 pathogens. The isolate showed activity particularly rich place for microbes to live. This is an against four pathogens- Klebsiella. pneumoniae subsp. environment that prevents the growth of many pneumoniae, Klebsiella. pneumoniae subsp. ozaenae, microorganisms, but a few have adapted to life on our skin Staphylococcus. aureus and Pseudomonas. aeruginosa was [3]. The effects of the normal flora are inferred by identified as Staphylococcus. warneri. Variation was found microbiologists from experimental comparisons in optimization of cultural conditions (incubation period, between "germ-free" animals (which are not colonized by incubation temperature and pH) for the most potent any microbes) and conventional animals (which are antipathogenic metabolites production.
    [Show full text]
  • Data of Read Analyses for All 20 Fecal Samples of the Egyptian Mongoose
    Supplementary Table S1 – Data of read analyses for all 20 fecal samples of the Egyptian mongoose Number of Good's No-target Chimeric reads ID at ID Total reads Low-quality amplicons Min length Average length Max length Valid reads coverage of amplicons amplicons the species library (%) level 383 2083 33 0 281 1302 1407.0 1442 1769 1722 99.72 466 2373 50 1 212 1310 1409.2 1478 2110 1882 99.53 467 1856 53 3 187 1308 1404.2 1453 1613 1555 99.19 516 2397 36 0 147 1316 1412.2 1476 2214 2161 99.10 460 2657 297 0 246 1302 1416.4 1485 2114 1169 98.77 463 2023 34 0 189 1339 1411.4 1561 1800 1677 99.44 471 2290 41 0 359 1325 1430.1 1490 1890 1833 97.57 502 2565 31 0 227 1315 1411.4 1481 2307 2240 99.31 509 2664 62 0 325 1316 1414.5 1463 2277 2073 99.56 674 2130 34 0 197 1311 1436.3 1463 1899 1095 99.21 396 2246 38 0 106 1332 1407.0 1462 2102 1953 99.05 399 2317 45 1 47 1323 1420.0 1465 2224 2120 98.65 462 2349 47 0 394 1312 1417.5 1478 1908 1794 99.27 501 2246 22 0 253 1328 1442.9 1491 1971 1949 99.04 519 2062 51 0 297 1323 1414.5 1534 1714 1632 99.71 636 2402 35 0 100 1313 1409.7 1478 2267 2206 99.07 388 2454 78 1 78 1326 1406.6 1464 2297 1929 99.26 504 2312 29 0 284 1335 1409.3 1446 1999 1945 99.60 505 2702 45 0 48 1331 1415.2 1475 2609 2497 99.46 508 2380 30 1 210 1329 1436.5 1478 2139 2133 99.02 1 Supplementary Table S2 – PERMANOVA test results of the microbial community of Egyptian mongoose comparison between female and male and between non-adult and adult.
    [Show full text]
  • The Genera Staphylococcus and Macrococcus
    Prokaryotes (2006) 4:5–75 DOI: 10.1007/0-387-30744-3_1 CHAPTER 1.2.1 ehT areneG succocolyhpatS dna succocorcMa The Genera Staphylococcus and Macrococcus FRIEDRICH GÖTZ, TAMMY BANNERMAN AND KARL-HEINZ SCHLEIFER Introduction zolidone (Baker, 1984). Comparative immu- nochemical studies of catalases (Schleifer, 1986), The name Staphylococcus (staphyle, bunch of DNA-DNA hybridization studies, DNA-rRNA grapes) was introduced by Ogston (1883) for the hybridization studies (Schleifer et al., 1979; Kilp- group micrococci causing inflammation and per et al., 1980), and comparative oligonucle- suppuration. He was the first to differentiate otide cataloguing of 16S rRNA (Ludwig et al., two kinds of pyogenic cocci: one arranged in 1981) clearly demonstrated the epigenetic and groups or masses was called “Staphylococcus” genetic difference of staphylococci and micro- and another arranged in chains was named cocci. Members of the genus Staphylococcus “Billroth’s Streptococcus.” A formal description form a coherent and well-defined group of of the genus Staphylococcus was provided by related species that is widely divergent from Rosenbach (1884). He divided the genus into the those of the genus Micrococcus. Until the early two species Staphylococcus aureus and S. albus. 1970s, the genus Staphylococcus consisted of Zopf (1885) placed the mass-forming staphylo- three species: the coagulase-positive species S. cocci and tetrad-forming micrococci in the genus aureus and the coagulase-negative species S. epi- Micrococcus. In 1886, the genus Staphylococcus dermidis and S. saprophyticus, but a deeper look was separated from Micrococcus by Flügge into the chemotaxonomic and genotypic proper- (1886). He differentiated the two genera mainly ties of staphylococci led to the description of on the basis of their action on gelatin and on many new staphylococcal species.
    [Show full text]