Laparoscopic Renal Surgery for Benign Disease

Total Page:16

File Type:pdf, Size:1020Kb

Laparoscopic Renal Surgery for Benign Disease Laparoscopic Renal Surgery for Benign Disease Joseph C. Liao, MD, Alberto Breda, MD, and Peter G. Schulam, MD, PhD Corresponding author fibrosis could pose immense challenges toward surgical dis- Joseph C. Liao, MD section. Patients with xanthogranulomatous pyelonephritis Department of Urology, Stanford University School of Medicine and VA Palo Alto Health Care System, 3801 Miranda Avenue, (XGP), tuberculous nephritis, and prior renal surgery should MC112, Palo Alto, CA 94304, USA. be reserved for the most experienced laparoscopic surgeons. E-mail: [email protected] These patients should be counseled regarding the increased Current Urology Reports 2007, 8:12–18 likelihood of complications and possible open conversion. Current Medicine Group LLC ISSN 1527-2737 With improvement in instrumentation and dissemina- Copyright © 2007 by Current Medicine Group LLC tion of skills, laparoscopic renal surgery is now routinely practiced in many centers around the world. Since the last review [10], there has been continued improvement in Fifteen years after the first report, laparoscopic nephrec- instrumentation including smaller scopes (5 mm), visual tomy has demonstrated proven efficacy and safety obturator trocars, and a new generation of digital cameras comparable with an open approach, with a significant [11,12]. The use of a morcellator for specimen removal advantage of a faster recovery. Wide dissemination of does not lead to reduction in operating or recovery time these surgical techniques and continued improvement and remains as the surgeon’s preference [13]. in instrumentation has made laparoscopy the preferred In this review, the current state of laparoscopic renal approach for treating benign pathologic conditions of surgery for benign disease, with particular emphasis the kidney. In this review, the expanding indications of on simple nephrectomy, is discussed. We cover patient laparoscopic simple nephrectomy and the outcomes selection, technical aspects of transperitoneal and retro- of the larger clinical series are examined. We discuss peritoneal nephrectomy, and review the outcomes of the the technical aspects of both transperitoneal and larger clinical series to date. Other applications including retroperitoneal approaches. Finally, laparoscopic cyst laparoscopic cyst decortication and some of the newer decortication and some of the novel applications of procedures are highlighted. Reconstructive procedures laparoscopic renal surgery are highlighted. such as pyeloplasty are not covered in this review. Introduction Patient Selection Since the first report of transperitoneal laparoscopic Laparoscopic simple nephrectomy should be considered nephrectomy by Clayman et al. [1] in 1991 and the report for any benign pathologic conditions of the kidney indi- of retroperitoneal approach using a dissecting balloon by cated for removal (Table 1). Indications for nephrectomy Gaur et al. [2] in 1993, laparoscopy has emerged as the include refractory pain, bleeding, chronic infection, or standard of care for benign renal disease requiring surgical hypertension. Absolute contraindications are similar to intervention. More than 1200 cases have been reported those for open nephrectomy, which include uncorrected in the literature. The advantages of reduced postoperative coagulopathy, active peritonitis, and severe cardiopulmo- pain, a shorter hospital stay, earlier return to normal nary disease. Renal anatomic anomalies, such as horseshoe activities, and improved cosmesis compared with the open [14–16] or ectopic kidney [17], do not preclude the laparo- approach are well-documented [3,4,5•,6–9]. scopic approach, provided adequate preoperative imaging The most common indication for laparoscopic renal is obtained. Relative contraindications are directly related surgery for benign disease is simple nephrectomy. Although to the surgeon’s experience and comfort level. With expe- laparoscopic removals of small atrophic kidneys are ideally rience, obese patients and patients with enlarged kidneys suited for the less experienced surgeon, simple nephrectomy such as autosomal dominant polycystic kidney disease remains as one of the great misnomers in urologic surgery. (ADPKD), which are more challenging to mobilize, may be Simple by no means equates to uncomplicated nephrectomy, attempted. In obese patients, initial access may be challeng- particularly in situations in which dense inflammation and ing due to the thickened abdominal wall. In experienced Laparoscopic Renal Surgery for Benign Disease Liao et al. 13 Table 1. Indications for laparoscopic with only one open conversion. Similar favorable results have simple nephrectomy also been observed by others [5•,27]. The authors argue that Renovascular disease laparoscopic nephrectomy should be the first-line treatment for renal TB. Ureteropelvic junction/ureteral obstruction As part of the preoperative work-up, all patients need Reflux nephropathy a complete history and physical examination. Standard Stone disease laboratory studies including complete blood count, serum Renal dysplasia chemistries, coagulation studies, and urine culture are obtained. Chest radiograph, electrocardiogram, and addi- Renal tuberculosis tional cardiac work-up (if warranted) are also obtained. Xanthogranulomatous pyelonephritis All patients are required to have an abdominal imaging Polycystic kidney disease study to visualize the renal pathology. Our imaging study Native nephrectomy before renal transplant of choice is CT of the abdomen with and without intrave- nous contrast with delay phase, which provides excellent visualization of the renovascular and collecting system hands, laparoscopic renal surgery in obese patients results anatomy. The CT scan is also helpful to delineate the in similar operative times and complication rates but is relationship among the kidney and the surrounding organs associated with less blood loss and faster recovery when and presence of perinephric stranding as a sign of inflam- compared with the open approach [18]. Others have found mation. If there are concerns regarding the residual renal longer operative times and increased estimated blood loss function, a MAG-3 nuclear scan with differential function but similar complication and conversion rates and recovery is useful. We generally place the patients on a clear liquid period compared with the nonobese cohort [19•,20]. diet 2 days before the surgery. The day before the surgery, The most difficult cases are related to the presence patients are instructed to take two bottles of magnesium of severe scarring and fibrosis, which may completely citrate and are placed on nothing by mouth after midnight. obliterate normal anatomic planes for capsular and hilar dissection. Examples include XGP, renal tuberculosis (TB), and prior open abdominal/renal surgeries. These Surgical Technique situations are typically associated with higher complica- Laparoscopic nephrectomy may be performed either by tion and conversion rates [21,22] and should be reserved transperitoneal (“pure” or hand-assisted) or retroperitoneal for the most experienced laparoscopic surgeons. XGP is approaches. The hand-assisted approach is useful to bridge a severe, chronic bacterial infection of the renal paren- the steep learning curve needed to transition from open to chyma that results in significant inflammatory changes pure laparoscopic surgery. Some have advocated its use if within the kidney and the surrounding tissues. XGP has severe fibrosis is anticipated [28]. The technical aspect of been called the “great imitator” because it may mimic the hand-assisted approach is well-described elsewhere [29] other inflammatory or neoplastic conditions of the kid- and is not further commented on here. The transperitoneal ney. Nephrectomy is the treatment of choice. Given its approach offers the advantage of more intuitive anatomic challenging nature, XGP has been considered as a rela- landmarks and greater working space. The retroperitoneal tive contraindication for laparoscopic removal. There approach offers faster access to the renal hilum without have been few laparoscopic case series in the literature the need to mobilize intra-abdominal structures and may [23,24]. Khaira et al. [24] compared a small series of be advantageous in patients with prior abdominal surgery. patients who underwent laparoscopic (n = 3) versus We describe the technical aspects of both approaches, with open (n = 8) nephrectomy for XGP. Major complications particular emphasis on the transperitoneal approach, our rates were 33% for the laparoscopic group (vascular preferred choice. injury requiring open conversion) and 25% for the open group (unrecognized bowel injury, pneumothorax). The Transperitoneal nephrectomy authors concluded that a laparoscopic approach, albeit We have developed a generalized transperitoneal approach challenging, does not necessarily pose a greater risk in for renal surgery in which near-identical trocar configura- selected XGP patients by an experienced surgeon. tions (Fig. 1) are used for both extirpative and reconstructive Similarly to XGP, renal TB results in dense perinephric procedures. Using this standard approach, we have success- fibrosis, which makes laparoscopic dissection very challeng- fully performed more than 600 laparoscopic renal surgery ing, with prolongation of the operative time and increased cases, including simple nephrectomy, donor nephrectomy, risks of open conversion. An early series reported up to an radical nephrectomy, partial nephrectomy, adrenalectomy,
Recommended publications
  • Guidelines on Paediatric Urology S
    Guidelines on Paediatric Urology S. Tekgül (Chair), H.S. Dogan, E. Erdem (Guidelines Associate), P. Hoebeke, R. Ko˘cvara, J.M. Nijman (Vice-chair), C. Radmayr, M.S. Silay (Guidelines Associate), R. Stein, S. Undre (Guidelines Associate) European Society for Paediatric Urology © European Association of Urology 2015 TABLE OF CONTENTS PAGE 1. INTRODUCTION 7 1.1 Aim 7 1.2 Publication history 7 2. METHODS 8 3. THE GUIDELINE 8 3A PHIMOSIS 8 3A.1 Epidemiology, aetiology and pathophysiology 8 3A.2 Classification systems 8 3A.3 Diagnostic evaluation 8 3A.4 Disease management 8 3A.5 Follow-up 9 3A.6 Conclusions and recommendations on phimosis 9 3B CRYPTORCHIDISM 9 3B.1 Epidemiology, aetiology and pathophysiology 9 3B.2 Classification systems 9 3B.3 Diagnostic evaluation 10 3B.4 Disease management 10 3B.4.1 Medical therapy 10 3B.4.2 Surgery 10 3B.5 Follow-up 11 3B.6 Recommendations for cryptorchidism 11 3C HYDROCELE 12 3C.1 Epidemiology, aetiology and pathophysiology 12 3C.2 Diagnostic evaluation 12 3C.3 Disease management 12 3C.4 Recommendations for the management of hydrocele 12 3D ACUTE SCROTUM IN CHILDREN 13 3D.1 Epidemiology, aetiology and pathophysiology 13 3D.2 Diagnostic evaluation 13 3D.3 Disease management 14 3D.3.1 Epididymitis 14 3D.3.2 Testicular torsion 14 3D.3.3 Surgical treatment 14 3D.4 Follow-up 14 3D.4.1 Fertility 14 3D.4.2 Subfertility 14 3D.4.3 Androgen levels 15 3D.4.4 Testicular cancer 15 3D.5 Recommendations for the treatment of acute scrotum in children 15 3E HYPOSPADIAS 15 3E.1 Epidemiology, aetiology and pathophysiology
    [Show full text]
  • Icd-9-Cm (2010)
    ICD-9-CM (2010) PROCEDURE CODE LONG DESCRIPTION SHORT DESCRIPTION 0001 Therapeutic ultrasound of vessels of head and neck Ther ult head & neck ves 0002 Therapeutic ultrasound of heart Ther ultrasound of heart 0003 Therapeutic ultrasound of peripheral vascular vessels Ther ult peripheral ves 0009 Other therapeutic ultrasound Other therapeutic ultsnd 0010 Implantation of chemotherapeutic agent Implant chemothera agent 0011 Infusion of drotrecogin alfa (activated) Infus drotrecogin alfa 0012 Administration of inhaled nitric oxide Adm inhal nitric oxide 0013 Injection or infusion of nesiritide Inject/infus nesiritide 0014 Injection or infusion of oxazolidinone class of antibiotics Injection oxazolidinone 0015 High-dose infusion interleukin-2 [IL-2] High-dose infusion IL-2 0016 Pressurized treatment of venous bypass graft [conduit] with pharmaceutical substance Pressurized treat graft 0017 Infusion of vasopressor agent Infusion of vasopressor 0018 Infusion of immunosuppressive antibody therapy Infus immunosup antibody 0019 Disruption of blood brain barrier via infusion [BBBD] BBBD via infusion 0021 Intravascular imaging of extracranial cerebral vessels IVUS extracran cereb ves 0022 Intravascular imaging of intrathoracic vessels IVUS intrathoracic ves 0023 Intravascular imaging of peripheral vessels IVUS peripheral vessels 0024 Intravascular imaging of coronary vessels IVUS coronary vessels 0025 Intravascular imaging of renal vessels IVUS renal vessels 0028 Intravascular imaging, other specified vessel(s) Intravascul imaging NEC 0029 Intravascular
    [Show full text]
  • 1 Annex 2. AHRQ ICD-9 Procedure Codes 0044 PROC-VESSEL
    Annex 2. AHRQ ICD-9 Procedure Codes 0044 PROC-VESSEL BIFURCATION OCT06- 0201 LINEAR CRANIECTOMY 0050 IMPL CRT PACEMAKER SYS 0202 ELEVATE SKULL FX FRAGMNT 0051 IMPL CRT DEFIBRILLAT SYS 0203 SKULL FLAP FORMATION 0052 IMP/REP LEAD LF VEN SYS 0204 BONE GRAFT TO SKULL 0053 IMP/REP CRT PACEMAKR GEN 0205 SKULL PLATE INSERTION 0054 IMP/REP CRT DEFIB GENAT 0206 CRANIAL OSTEOPLASTY NEC 0056 INS/REP IMPL SENSOR LEAD OCT06- 0207 SKULL PLATE REMOVAL 0057 IMP/REP SUBCUE CARD DEV OCT06- 0211 SIMPLE SUTURE OF DURA 0061 PERC ANGIO PRECEREB VES (OCT 04) 0212 BRAIN MENINGE REPAIR NEC 0062 PERC ANGIO INTRACRAN VES (OCT 04) 0213 MENINGE VESSEL LIGATION 0066 PTCA OR CORONARY ATHER OCT05- 0214 CHOROID PLEXECTOMY 0070 REV HIP REPL-ACETAB/FEM OCT05- 022 VENTRICULOSTOMY 0071 REV HIP REPL-ACETAB COMP OCT05- 0231 VENTRICL SHUNT-HEAD/NECK 0072 REV HIP REPL-FEM COMP OCT05- 0232 VENTRI SHUNT-CIRCULA SYS 0073 REV HIP REPL-LINER/HEAD OCT05- 0233 VENTRICL SHUNT-THORAX 0074 HIP REPL SURF-METAL/POLY OCT05- 0234 VENTRICL SHUNT-ABDOMEN 0075 HIP REP SURF-METAL/METAL OCT05- 0235 VENTRI SHUNT-UNINARY SYS 0076 HIP REP SURF-CERMC/CERMC OCT05- 0239 OTHER VENTRICULAR SHUNT 0077 HIP REPL SURF-CERMC/POLY OCT06- 0242 REPLACE VENTRICLE SHUNT 0080 REV KNEE REPLACEMT-TOTAL OCT05- 0243 REMOVE VENTRICLE SHUNT 0081 REV KNEE REPL-TIBIA COMP OCT05- 0291 LYSIS CORTICAL ADHESION 0082 REV KNEE REPL-FEMUR COMP OCT05- 0292 BRAIN REPAIR 0083 REV KNEE REPLACE-PATELLA OCT05- 0293 IMPLANT BRAIN STIMULATOR 0084 REV KNEE REPL-TIBIA LIN OCT05- 0294 INSERT/REPLAC SKULL TONG 0085 RESRF HIPTOTAL-ACET/FEM
    [Show full text]
  • 103 Laparoscopic Surgery of the Kidney
    103 LAPAROSCOPIC SURGERY OF THE KIDNEY Jay T. Bishoff, MD Louis R. Kavoussi, MD Historical Overview Procedure Autosomal Dominant Polycystic Kidney Disease Patient Evaluation and Preparation Postoperative Management Surgical Approaches Results Transperitoneal Nephropexy Retroperitoneal Indications Hand-Assisted Procedure Simple Nephrectomy Results Indications and Contraindications Pyelolithotomy Patient Positioning Insufflation and Trocar Placement Calyceal Diverticulectomy Procedure Indications Postoperative Management Procedure Results Results Laparoscopic Transperitoneal Donor Nephrectomy Laparoscopy for Renal Malignancy Patient Selection Operative Preparation Radical Nephrectomy Patient Positioning Indications and Contraindications Procedure Preoperative Evaluation Alternative Approaches Positioning and Trocar Placement Procedure Renal Biopsy Results Indications Conclusion Patient Positioning Procedure Partial Nephrectomy Postoperative Considerations Laparoscopic Ablative Techniques Results Cryosurgery Renal Cystic Disease Radiofrequency Interstitial Tissue Ablation Indications Complications of Laparoscopic Renal Surgery Patient Preparation Patient Positioning Conclusions HISTORICAL OVERVIEW though these changes have been made possible through advances in video technology and instrumentation design, Since the mid-1990s, there has been an evolution in the primary driver has been an increasingly educated pa- surgical practice from traditional open approaches toward tient population seeking less painful means of treatment. minimally invasive
    [Show full text]
  • Reconstruction of Full-Length Ureter Defects by Laparoscopic Bladder
    www.nature.com/scientificreports OPEN Reconstruction of full‑length ureter defects by laparoscopic bladder fap forming Yuchen Bai1,3, Haibin Wei1,3, Alin Ji1, Qi Zhang1, Shuai Wang1, Yonghan Peng2, Xiaofeng Gao2, Feng Liu1* & Dahong Zhang1* To evaluate the safety and efcacy of laparoscopic bladder muscle fap reconstruction in the treatment of extensive ureteral avulsion. Patients with full‑length (re length > 20 cm) and upper ureteral (avulsion length > 10 cm) defects were eligible. All patients were treated with laparoscopic bladder muscle fap reconstruction. Peri‑operative information and post‑operative complications were recorded. The kidney function, urinary ultrasound or computed tomography (CT), sun‑renal function tests emission computed tomography (ECT) and cystography after operation were recorded. Ten patients were included (7 with full‑length and 3 with upper ureteral defects). Median age was 56 years and 70% of them were female. The average operation time and blood loss was 124 min and 92.2 ml. There was no treatment‑related adverse efects including urinary leakage, renal colic, fever, etc. The median follow‑up was 18.5 months (3–39 months). The surgery did not signifcantly alter the renal function and separation degree of the renal pelvis during long‑term follow‑up. Double J stents were removed in nine patients (90%) within six months after operation. Only one case was diagnosed with post‑ operative anastomotic stricture, and subsequently received laparoscopic ipsilateral nephrectomy one year after the reconstruction operation. All cases had normal voiding and pear‑shaped cystography. Laparoscopic bladder fap repair is a safe and efective treatment approach together with several advantages for patients with full‑length or upper ureteral avulsion.
    [Show full text]
  • Application in Robotic Urologic Surgery
    Available online at www.sciencedirect.com ScienceDirect Journal of the Chinese Medical Association 77 (2014) 242e245 www.jcma-online.com Original Article Application in robotic urologic surgery Chia-Yen Lin, Chi-Rei Yang, Chen-Li Cheng, Hao-Chung Ho, Kun-Yuan Chiu, Chung-Kuang Su, Wen-Ming Chen, Shian-Shiang Wang, Chuan-Shu Chen, Jian-Ri Li, Cheng-Kuang Yang, Yen-Chuan Ou* Division of Urology, Department of Surgery, Taichung Veterans General Hospital, Taichung, Taiwan, ROC Received July 9, 2013; accepted December 17, 2013 Abstract Background: The da Vinci robot system has become the mainstay of minimally invasive surgery and has been used in numerous complex reconstructive procedures. Due to the success of this innovative technology, we attempted to expand our practical model and application of the da Vinci robot system into other urologic surgeries, beginning with robotic-assisted laparoscopic radical prostatectomy (RALRP). Methods: We retrospectively reviewed a total of 683 patients who underwent robotic-assisted urologic surgery between December 2005 and December 2012. We divided this 8-year course of device use into three periods, and analyzed the surgical capability of operations in 1 day over different periods through a retrospective analysis. Results: In the first period (2005e2008), 159 cases of robotic-assisted urologic surgeries were performed. A total of 195 cases were performed in the second group (2009e2010), and 329 cases in the third (2011e2012). Starting with radical prostatectomy in December 2005, we performed various types of procedures such as partial nephrectomy, pyeloplasty, nephroureterectomy with cystoprostatectomy, nephroureterectomy with bladder cuff, radical cystoprostatectomy/cystectomy with ileal conduit reconstruction, partial cystectomy, adrenalectomy, nephropexy, simple prostatectomy, ureteral reconstruction, and pyelolithotomy/ureterolithotomy.
    [Show full text]
  • Guidelines on Laparoscopy
    European Association of Urology GUIDELINES ON LAPAROSCOPY Dedicated to: MJ. Coptcoat. JD. Doublet, G. Janetschek, A. Joyce, A. Mandressi, J. Rassweiller, D. Tolley. TABLE OF CONTENTS PAGE 1. Introduction 3 1.1 Methods of guideline development 3 1.2 Levels of evidence and grade of guideline recommendations 3 1.3 References 4 2. Technical aspects 5 2.1 Introduction 5 2.2 Equipment 5 2.3 Instruments 5 2.3.1 Access to, and development of, working room 5 2.3.2 Dissection 5 2.3.3 Haemostasis 6 2.3.4 Suture technique 6 2.3.5 Retrieval of specimens 6 2.4 Access techniques 6 2.4.1 Retroperitoneoscopy 6 2.4.2 Transperitoneal laparoscopy of the upper tract 8 2.4.3 Transperitoneal access to the pelvis 8 2.4.4 Extraperitoneal access to the pelvis 9 Balloon dissection 9 Finger dissection 10 2.5 Management of complications 10 2.5.1 Introduction 10 2.5.2 Placement of the trocars 10 2.5.3 Insufflation of carbon dioxide 10 2.5.4 Vascular injuries 11 2.5.5 Injuries to organs 11 2.6 Specific training 13 2.7 The difficulty scoring system of laparoscopic procedures 14 2.7.1 Criteria 14 2.7.2 Scoring system 15 2.8 References 16 3 Laparoscopic procedures 18 3.1 Adrenalectomy 18 3.2 Colposuspension 18 3.3 Cryptorchidism treatment 19 3.4 Hernia repair 19 3.5 Nephrectomy 20 3.5.1 Simple nephrectomy (for benign disease) 20 3.5.2 Radical nephrectomy 20 3.5.3 Partial nephrectomy 20 3.5.4 Nephro-ureterectomy 21 3.5.5 Live-donor nephrectomy 21 3.6 Nephropexy 22 3.7 Pyeloplasty 22 3.8 Pelvic lymph node dissection 22 3.9 Radical prostatectomy 22 3.10 Retroperitoneal lymph node dissection (for testicular cancer) 23 3.11 Renal cyst treatment 23 3.12 Ureterolithotomy 23 3.13 Varicocelectomy 24 3.14 References 24 4 Recommendations 37 Abbreviations 38 2 1.
    [Show full text]
  • Guidelines on Paediatric Urology S
    Guidelines on Paediatric Urology S. Tekgül (chair), H.S. Dogan, P. Hoebeke, R. Kocvara, J.M. Nijman, Chr. Radmayr, R. Stein European Society for Paediatric Urology © European Association of Urology 2014 TABLE OF CONTENTS PAGE 1. METHODOLOGY 8 1.1 Introduction 8 1.2 Data ideication and evidence sources 8 1.3 Level of evidence and grade of recommendation 8 1.4 Publication history 9 1.4.1 Summary of updated and new information 9 1.5 Potential conflict of interest statement 9 1.6 References 9 2. PHIMOSIS 10 2.1 Background 10 2.2 Diagnosis 10 2.3 Treatment 10 2.4 Conclusions and recommendations on phimosis 11 2.5 References 11 3. CRYPTORCHIDISM 13 3.1 Background 13 3.2 Diagnosis 13 3.3 Treatment 13 3.3.1 Medical therapy 13 3.3.2 Surgery 13 3.4 Prognosis 14 3.5 Recommendations for cryptorchidism 14 3.6 References 14 4. HYDROCELE 16 4.1 Background 16 4.2 Diagnosis 16 4.3 Treatment 16 4.4 Recommendations for the management of hydrocele 17 4.5 References 17 5. ACUTE SCROTUM IN CHILDREN 17 5.1 Background 17 5.2 Diagnosis 18 5.3 Treatment 18 5.3.1 Epididymitis 18 5.3.2 Testicular torsion 18 5.3.3 Surgical treatment 19 5.4 Prognosis 19 5.4.1 Fertility 19 5.4.2 Subfertility 19 5.4.3 Androgen levels 19 5.4.4 Testicular cancer 19 5.4.5 Nitric oxide 19 5.5 Perinatal torsion 19 5.6 Recommendations for the treatment of acute scrotum in children 20 5.7 References 20 6.
    [Show full text]
  • Psi Technical Specs V30a.Pdf
    AHRQ Quality Indicators Patient Safety Indicators: Technical Specifications Department of Health and Human Services Agency for Healthcare Research and Quality http://www.qualityindicators.ahrq.gov March 2003 Version 3.0a (May 1, 2006) AHRQ Quality Indicators Web Site: http://www.qualityindicators.ahrq.gov Table of Contents Complications of Anesthesia (PSI 1) ............................................................................................................ 1 Death in Low-Mortality DRGs (PSI 2) ........................................................................................................... 3 Decubitus Ulcer (PSI 3) ................................................................................................................................. 5 Failure to Rescue (PSI 4) .............................................................................................................................. 7 Foreign Body Left during Procedure, Secondary Diagnosis Field (PSI 5 and 21)...................................... 14 Iatrogenic Pneumothorax, Secondary Diagnosis Field (PSI 6 and 22)....................................................... 15 Selected Infections Due to Medical Care, Secondary Diagnosis Field (PSI 7 and 23) .............................. 21 Postoperative Hip Fracture (PSI 8) ............................................................................................................. 21 Postoperative Hemorrhage or Hematoma (PSI 9 and 27) .........................................................................
    [Show full text]
  • Kaufman: Coding and Reimbursement 2018
    Coding and Reimbursement 2018 Ronald P. Kaufman, Jr. MD FACS Associate Professor of Urology Albany Medical College Albany, New York Objectives Understand how the AUA impacts on Public Policy and provides Practice support Understand CPT Code Development Understand Code Value Determination and the RUC Process Review modifiers in the Urology practice Review new and deleted CPT codes for 2018 Present coding challenges from the AUA Coding Hotline Public Policy & Practice Support Kathy Zwarick, PhD, CAE Executive Vice President Camille Chilcoat Executive Coordinator TO BE HIRED Joel Dunay, MS Brad Stine Government Stephanie Stinchcomb, Patient & Research Relations & Advocacy CPC, CCS-P Practice Management, Advocacy, Senior Director Reimbursement & Senior Manager Manager Regulation Director Quardricos Driskell, MPP Jess Bateman, MS Edna Maldonado Latarsha Fisher Government Relations & Susan Crews , CPC, ACS-UR Lisa Miller-Jones, MS Patient & Research Coding Coordinator Coding Coordinator Advocacy Manager Reimbursement Policy Regulatory Policy Advocacy Manager Manager Manager Josh Webster , MPA John Kristan Alicia Kemp Morgan Stevenson Government Relations & Sections & States Communications Practice Management Advocacy Coordinator Coordinator Specialist Specialist Corrine Jones Sharie Harris Natacha Graham, BBA, CPC Reimbursement & Coding Associate Reimbursement Policy Regulation Associate Analyst Public Policy Council Christopher Gonzalez, MD, MBA Legislative Affairs Committee Thomas Rechtschaffen, MD, FACS Coding and Reimbursement Practice Management
    [Show full text]
  • Reconstructive Urology Expanding Applications of Renal Mobilization and Downward Nephropexy in Ureteral Reconstruction Matthias D
    Reconstructive Urology Expanding Applications of Renal Mobilization and Downward Nephropexy in Ureteral Reconstruction Matthias D. Hofer,1 Hugo J. Aguilar-Cruz,1 Nirmish Singla, Billy H. Cordon, Jeremy M. Scott, and Allen F. Morey OBJECTIVE To evaluate renal mobilization with downward nephropexy as an adjunct maneuver to facilitate various methods of reconstruction of the upper urinary tract with limited ureteral length. MATERIALS AND We retrospectively reviewed all upper urinary tract reconstructive procedures performed from 2007 METHODS to 2015 to identify those requiring downward renal mobilization with nephropexy. Data includ- ing concomitant maneuvers, stricture location, prior surgeries, and intraoperative details were ana- lyzed. Success rates, defined by resolution of symptoms and avoidance of further intervention, and complications were evaluated. RESULTS Of 92 patients undergoing ureteral reconstruction during the study period, 18 (19.6%) involved renal mobilization with downward nephropexy to gain additional ureteral length (5/7 [71.4%] of ureterocalycostomies, 8/26 [30.1%] of Boari flap bladder reconfigurations, 4/12 [33.3%] of ureteroureterostomies, and 1/12 [8.3%] of ileal ureters). Two-thirds of patients (12/18, 66.7%) had undergone unsuccessful prior open, laparoscopic, or endoscopic reconstruction attempts. Renal mobilization was performed open in 15/18 (83.3%) cases and laparoscopically in 3/18 (16.7%). After renal mobilization, the average distance of downward movement achieved was 3.3 cm (range 3-5 cm). With a mean follow-up of 50.4 months (range 3-87 months), overall success rate defined as ureteral patency was 88.9%, with 2/18 patients (11.1%) requiring a subsequent nephrectomy for failed upper tract reconstruction and persistent symptomatic hydronephrosis.
    [Show full text]
  • Does an Extra Kidney-Ureter-Bladder Radiograph Taken in the Upright Position During Routine Intravenous Urography Provide Diagnostic Benefit?
    Diagn Interv Radiol 2008; 14:205–211 ABDOMINAL IMAGING © Turkish Society of Radiology 2008 ORIGINAL ARTICLE Does an extra kidney-ureter-bladder radiograph taken in the upright position during routine intravenous urography provide diagnostic benefit? Kamil Gürel, Safiye Gürel, Melike Kalfaoğlu, Özlem Yılmaz, Ahmet Metin PURPOSE ntravenous urography (IVU) has long been the main imaging method The aim of this prospective study was to assess the for evaluation of urinary tract disease. However, other imaging modali- diagnostic benefit of taking a kidney-ureter-bladder ties including ultrasonography, computed tomography (CT), and mag- (KUB) radiograph in an upright position during rou- I tine intravenous urography (IVU). netic resonance imaging (MRI) have been used with increasing frequency to compensate for the limitations of IVU in the evaluation of urinary tract MATERIALS AND METHODS Between February 2005 and September 2007, 170 disease; in the last two decades, use of these modalities has surpassed use consecutive patients were included in the study. A of the IVU (1). Recently the IVU has almost been regarded as outdated, basal IVU exam consisted of pre-contrast supine KUB, and an “epitaph for the urogram” has been prepared (2). Despite the in- post-contrast supine KUB at the 7th and 15th min- utes, and supine pelvic radiographs with full bladder creased use of alternative modalities, each has limitations. The ideal “glo- and post-voiding. When needed, additional compres- bal” urinary tract examination remains controversial (1, 3, 4). sion and/or oblique radiographs were taken. In this study, for all patients, a post-contrast 15th minute The IVU remains an appropriate examination for untangling compli- upright KUB radiograph was added to IVU.
    [Show full text]