Potential Energy an Object Can Store Energy As the Result of Its Position
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
THE EARTH's GRAVITY OUTLINE the Earth's Gravitational Field
GEOPHYSICS (08/430/0012) THE EARTH'S GRAVITY OUTLINE The Earth's gravitational field 2 Newton's law of gravitation: Fgrav = GMm=r ; Gravitational field = gravitational acceleration g; gravitational potential, equipotential surfaces. g for a non–rotating spherically symmetric Earth; Effects of rotation and ellipticity – variation with latitude, the reference ellipsoid and International Gravity Formula; Effects of elevation and topography, intervening rock, density inhomogeneities, tides. The geoid: equipotential mean–sea–level surface on which g = IGF value. Gravity surveys Measurement: gravity units, gravimeters, survey procedures; the geoid; satellite altimetry. Gravity corrections – latitude, elevation, Bouguer, terrain, drift; Interpretation of gravity anomalies: regional–residual separation; regional variations and deep (crust, mantle) structure; local variations and shallow density anomalies; Examples of Bouguer gravity anomalies. Isostasy Mechanism: level of compensation; Pratt and Airy models; mountain roots; Isostasy and free–air gravity, examples of isostatic balance and isostatic anomalies. Background reading: Fowler §5.1–5.6; Lowrie §2.2–2.6; Kearey & Vine §2.11. GEOPHYSICS (08/430/0012) THE EARTH'S GRAVITY FIELD Newton's law of gravitation is: ¯ GMm F = r2 11 2 2 1 3 2 where the Gravitational Constant G = 6:673 10− Nm kg− (kg− m s− ). ¢ The field strength of the Earth's gravitational field is defined as the gravitational force acting on unit mass. From Newton's third¯ law of mechanics, F = ma, it follows that gravitational force per unit mass = gravitational acceleration g. g is approximately 9:8m/s2 at the surface of the Earth. A related concept is gravitational potential: the gravitational potential V at a point P is the work done against gravity in ¯ P bringing unit mass from infinity to P. -
Energetics of a Turbulent Ocean
Energetics of a Turbulent Ocean Raffaele Ferrari January 12, 2009 1 Energetics of a Turbulent Ocean One of the earliest theoretical investigations of ocean circulation was by Count Rumford. He proposed that the meridional overturning circulation was driven by temperature gradients. The ocean cools at the poles and is heated in the tropics, so Rumford speculated that large scale convection was responsible for the ocean currents. This idea was the precursor of the thermohaline circulation, which postulates that the evaporation of water and the subsequent increase in salinity also helps drive the circulation. These theories compare the oceans to a heat engine whose energy is derived from solar radiation through some convective process. In the 1800s James Croll noted that the currents in the Atlantic ocean had a tendency to be in the same direction as the prevailing winds. For example the trade winds blow westward across the mid-Atlantic and drive the Gulf Stream. Croll believed that the surface winds were responsible for mechanically driving the ocean currents, in contrast to convection. Although both Croll and Rumford used simple theories of fluid dynamics to develop their ideas, important qualitative features of their work are present in modern theories of ocean circulation. Modern physical oceanography has developed a far more sophisticated picture of the physics of ocean circulation, and modern theories include the effects of phenomena on a wide range of length scales. Scientists are interested in understanding the forces governing the ocean circulation, and one way to do this is to derive energy constraints on the differ- ent processes in the ocean. -
Work and Energy Summary Sheet Chapter 6
Work and Energy Summary Sheet Chapter 6 Work: work is done when a force is applied to a mass through a displacement or W=Fd. The force and the displacement must be parallel to one another in order for work to be done. F (N) W =(Fcosθ)d F If the force is not parallel to The area of a force vs. the displacement, then the displacement graph + W component of the force that represents the work θ d (m) is parallel must be found. done by the varying - W d force. Signs and Units for Work Work is a scalar but it can be positive or negative. Units of Work F d W = + (Ex: pitcher throwing ball) 1 N•m = 1 J (Joule) F d W = - (Ex. catcher catching ball) Note: N = kg m/s2 • Work – Energy Principle Hooke’s Law x The work done on an object is equal to its change F = kx in kinetic energy. F F is the applied force. 2 2 x W = ΔEk = ½ mvf – ½ mvi x is the change in length. k is the spring constant. F Energy Defined Units Energy is the ability to do work. Same as work: 1 N•m = 1 J (Joule) Kinetic Energy Potential Energy Potential energy is stored energy due to a system’s shape, position, or Kinetic energy is the energy of state. motion. If a mass has velocity, Gravitational PE Elastic (Spring) PE then it has KE 2 Mass with height Stretch/compress elastic material Ek = ½ mv 2 EG = mgh EE = ½ kx To measure the change in KE Change in E use: G Change in ES 2 2 2 2 ΔEk = ½ mvf – ½ mvi ΔEG = mghf – mghi ΔEE = ½ kxf – ½ kxi Conservation of Energy “The total energy is neither increased nor decreased in any process. -
Innovation Insights Brief | 2020
FIVE STEPS TO ENERGY STORAGE Innovation Insights Brief | 2020 In collaboration with the California Independent System Operator (CAISO) ABOUT THE WORLD ENERGY COUNCIL ABOUT THIS INSIGHTS BRIEF The World Energy Council is the principal impartial This Innovation Insights brief on energy storage is part network of energy leaders and practitioners promoting of a series of publications by the World Energy Council an affordable, stable and environmentally sensitive focused on Innovation. In a fast-paced era of disruptive energy system for the greatest benefit of all. changes, this brief aims at facilitating strategic sharing of knowledge between the Council’s members and the Formed in 1923, the Council is the premiere global other energy stakeholders and policy shapers. energy body, representing the entire energy spectrum, with over 3,000 member organisations in over 90 countries, drawn from governments, private and state corporations, academia, NGOs and energy stakeholders. We inform global, regional and national energy strategies by hosting high-level events including the World Energy Congress and publishing authoritative studies, and work through our extensive member network to facilitate the world’s energy policy dialogue. Further details at www.worldenergy.org and @WECouncil Published by the World Energy Council 2020 Copyright © 2020 World Energy Council. All rights reserved. All or part of this publication may be used or reproduced as long as the following citation is included on each copy or transmission: ‘Used by permission of the World -
Gravitational Potential Energy
An easy way for numerical calculations • How long does it take for the Sun to go around the galaxy? • The Sun is travelling at v=220 km/s in a mostly circular orbit, of radius r=8 kpc REVISION Use another system of Units: u Assume G=1 Somak Raychaudhury u Unit of distance = 1kpc www.sr.bham.ac.uk/~somak/Y3FEG/ u Unit of velocity= 1 km/s u Then Unit of time becomes 109 yr •Course resources 5 • Website u And Unit of Mass becomes 2.3 × 10 M¤ • Books: nd • Sparke and Gallagher, 2 Edition So the time taken is 2πr/v = 2π × 8 /220 time units • Carroll and Ostlie, 2nd Edition Gravitational potential energy 1 Measuring the mass of a galaxy cluster The Virial theorem 2 T + V = 0 Virial theorem Newton’s shell theorems 2 Potential-density pairs Potential-density pairs Effective potential Bertrand’s theorem 3 Spiral arms To establish the existence of SMBHs are caused by density waves • Stellar kinematics in the core of the galaxy that sweep • Optical spectra: the width of the spectral line from around the broad emission lines Galaxy. • X-ray spectra: The iron Kα line is seen is clearly seen in some AGN spectra • The bolometric luminosities of the central regions of The Winding some galaxies is much larger than the Eddington Paradox (dilemma) luminosity is that if galaxies • Variability in X-rays: Causality demands that the rotated like this, the spiral structure scale of variability corresponds to an upper limit to would be quickly the light-travel time erased. -
JOHN EARMAN* and CLARK GL YMUURT the GRAVITATIONAL RED SHIFT AS a TEST of GENERAL RELATIVITY: HISTORY and ANALYSIS
JOHN EARMAN* and CLARK GL YMUURT THE GRAVITATIONAL RED SHIFT AS A TEST OF GENERAL RELATIVITY: HISTORY AND ANALYSIS CHARLES St. John, who was in 1921 the most widely respected student of the Fraunhofer lines in the solar spectra, began his contribution to a symposium in Nncure on Einstein’s theories of relativity with the following statement: The agreement of the observed advance of Mercury’s perihelion and of the eclipse results of the British expeditions of 1919 with the deductions from the Einstein law of gravitation gives an increased importance to the observations on the displacements of the absorption lines in the solar spectrum relative to terrestrial sources, as the evidence on this deduction from the Einstein theory is at present contradictory. Particular interest, moreover, attaches to such observations, inasmuch as the mathematical physicists are not in agreement as to the validity of this deduction, and solar observations must eventually furnish the criterion.’ St. John’s statement touches on some of the reasons why the history of the red shift provides such a fascinating case study for those interested in the scientific reception of Einstein’s general theory of relativity. In contrast to the other two ‘classical tests’, the weight of the early observations was not in favor of Einstein’s red shift formula, and the reaction of the scientific community to the threat of disconfirmation reveals much more about the contemporary scientific views of Einstein’s theory. The last sentence of St. John’s statement points to another factor that both complicates and heightens the interest of the situation: in contrast to Einstein’s deductions of the advance of Mercury’s perihelion and of the bending of light, considerable doubt existed as to whether or not the general theory did entail a red shift for the solar spectrum. -
Hydroelectric Power -- What Is It? It=S a Form of Energy … a Renewable Resource
INTRODUCTION Hydroelectric Power -- what is it? It=s a form of energy … a renewable resource. Hydropower provides about 96 percent of the renewable energy in the United States. Other renewable resources include geothermal, wave power, tidal power, wind power, and solar power. Hydroelectric powerplants do not use up resources to create electricity nor do they pollute the air, land, or water, as other powerplants may. Hydroelectric power has played an important part in the development of this Nation's electric power industry. Both small and large hydroelectric power developments were instrumental in the early expansion of the electric power industry. Hydroelectric power comes from flowing water … winter and spring runoff from mountain streams and clear lakes. Water, when it is falling by the force of gravity, can be used to turn turbines and generators that produce electricity. Hydroelectric power is important to our Nation. Growing populations and modern technologies require vast amounts of electricity for creating, building, and expanding. In the 1920's, hydroelectric plants supplied as much as 40 percent of the electric energy produced. Although the amount of energy produced by this means has steadily increased, the amount produced by other types of powerplants has increased at a faster rate and hydroelectric power presently supplies about 10 percent of the electrical generating capacity of the United States. Hydropower is an essential contributor in the national power grid because of its ability to respond quickly to rapidly varying loads or system disturbances, which base load plants with steam systems powered by combustion or nuclear processes cannot accommodate. Reclamation=s 58 powerplants throughout the Western United States produce an average of 42 billion kWh (kilowatt-hours) per year, enough to meet the residential needs of more than 14 million people. -
The Mechanical Equivalent of Heat
THE MECHANICAL EQUIVALENT OF HEAT INTRODUCTION This is the classic experiment, first performed in 1847 by James Joule, which led to our modern view that mechanical work and heat are but different aspects of the same quantity: energy. The classic experiment related the two concepts and provided a connection between the Joule, defined in terms of mechanical variables (work, kinetic energy, potential energy. etc.) and the calorie, defined as the amount of heat that raises the temperature of 1 gram of water by 1 degree Celsius. Contemporary SI units do not distinguish between heat energy and mechanical energy, so that heat is also measured in Joules. In this experiment, work is done by rubbing two metal cones, which raises the temperature of a known amount of water (along with the cones, stirrer, thermometer, etc,). The ratio of the mechanical work done (W) to the heat which has passed to the water plus parts (Q), determines the constant J (J = W/Q). THE EXPERIMENT CAUTION: The apparatus must not be operated without oil between the cones. The cones have to be cleaned and a tiny drop of oil put between the rubbing surfaces (caution! too much oil will reduce the friction excessively and make the experiment impossible). The apparatus is shown in Figure 1. The heat generated in the system is absorbed by different parts: the water, the inner and outer cones, the stirrer and the immersed part of the temperature probe. The total increase in heat, including all these contributions, is therefore: Q = (MCw + M′Cbr + v Cth) ∆T = constant1 × ∆T (1) -1 -1 Cw = specific heat of water = 1.00 cal g C (by definition of the calorie) -1 ° -1 Cbr = specific heat of brass (cones and stirrer) = 0.089 cal g C -3 ° -1 Cth = heat capacity per unit volume of temperature probe = 0.013 cal cm C M = mass of water (in g) M′ = mass of cones and stirrer (in g) v = volume of the immersed part of the temperature probe (in cm3). -
Chapter 7: Gravitational Field
H2 Physics (9749) A Level Updated: 03/07/17 Chapter 7: Gravitational Field I Gravitational Force Learning Objectives 퐺푚 푚 recall and use Newton’s law of gravitation in the form 퐹 = 1 2 푟2 1. Newton’s Law of Gravitation Newton’s law of gravitation states that two point masses attract each other with a force that is directly proportional to the product of their masses and inversely proportional to the square of the distance between them. The magnitude of the gravitational force 퐹 between two particles of masses 푀 and 푚 which are separated by a distance 푟 is given by: 푭 = 퐠퐫퐚퐯퐢퐭퐚퐭퐢퐨퐧퐚퐥 퐟퐨퐫퐜퐞 (퐍) 푮푴풎 푀, 푚 = mass (kg) 푭 = ퟐ 풓 퐺 = gravitational constant = 6.67 × 10−11 N m2 kg−2 (Given) 푀 퐹 −퐹 푚 푟 Vector quantity. Its direction towards each other. SI unit: newton (N) Note: ➢ Action and reaction pair of forces: The gravitational forces between two point masses are equal and opposite → they are attractive in nature and always act along the line joining the two point masses. ➢ Attractive force: Gravitational force is attractive in nature and sometimes indicate with a negative sign. ➢ Point masses: Gravitational law is applicable only between point masses (i.e. the dimensions of the objects are very small compared with other distances involved). However, the law could also be applied for the attraction exerted on an external object by a spherical object with radial symmetry: • spherical object with constant density; • spherical shell of uniform density; • sphere composed of uniform concentric shells. The object will behave as if its whole mass was concentrated at its centre, and 풓 would represent the distance between the centres of mass of the two bodies. -
Hydropower Technologies Program — Harnessing America’S Abundant Natural Resources for Clean Power Generation
U.S. Department of Energy — Energy Efficiency and Renewable Energy Wind & Hydropower Technologies Program — Harnessing America’s abundant natural resources for clean power generation. Contents Hydropower Today ......................................... 1 Enhancing Generation and Environmental Performance ......... 6 Large Turbine Field-Testing ............................... 9 Providing Safe Passage for Fish ........................... 9 Improving Mitigation Practices .......................... 11 From the Laboratories to the Hydropower Communities ..... 12 Hydropower Tomorrow .................................... 14 Developing the Next Generation of Hydropower ............ 15 Integrating Wind and Hydropower Technologies ............ 16 Optimizing Project Operations ........................... 17 The Federal Wind and Hydropower Technologies Program ..... 19 Mission and Goals ...................................... 20 2003 Hydropower Research Highlights Alden Research Center completes prototype turbine tests at their facility in Holden, MA . 9 Laboratories form partnerships to develop and test new sensor arrays and computer models . 10 DOE hosts Workshop on Turbulence at Hydroelectric Power Plants in Atlanta . 11 New retrofit aeration system designed to increase the dissolved oxygen content of water discharged from the turbines of the Osage Project in Missouri . 11 Low head/low power resource assessments completed for conventional turbines, unconventional systems, and micro hydropower . 15 Wind and hydropower integration activities in 2003 aim to identify potential sites and partners . 17 Cover photo: To harness undeveloped hydropower resources without using a dam as part of the system that produces electricity, researchers are developing technologies that extract energy from free flowing water sources like this stream in West Virginia. ii HYDROPOWER TODAY Water power — it can cut deep canyons, chisel majestic mountains, quench parched lands, and transport tons — and it can generate enough electricity to light up millions of homes and businesses around the world. -
Fuel Wise Or Fuelish? Grades 9 to 12
LESSON PLAN Fuel Wise or Fuelish? Grades 9 to 12 SUMMARY LESSON OBJECTIVES In this lesson, the students will explore the different impacts Upon completing this lesson the students will: using alternative fuels has on the economy. • Learn how world events affect supply and demand for The students will research and compare different cars. petroleum; They will determine the cost of operation for one year to • Explore why it is important for South Carolinians to use include price, fuel, insurance, property taxes, title, tag, and alternative fuels; and maintenance, as well as determine the most cost-effective choice of vehicle, based on their research. • Make decisions pertinent to choosing a fuel-efficient car. ESSENTIAL QUESTION How have alternative fuels impacted the economy? DURATION The activity requires about one to two weeks to complete. 2014 S.C. SCIENCE STANDARDS CORRELATIONS Standard H.P.3: The student will demonstrate an understanding of how the interactions among objects can be explained and predicted using the concept of the conservation of energy. CONCEPTUAL UNDERSTANDING H.P.3A.: Work and energy are equivalent to each other. Work is defined as the product of displacement and the force causing that displacement; this results in the transfer of mechanical energy. Therefore, in the case of mechanical energy, energy is seen as the ability to do work. This is called the work-energy principle. The rate at which work is done (or energy is transformed) is called power. For machines that do useful work for humans, the ratio of useful power output is the efficiency of the machine. -
Mechanical Energy
Chapter 2 Mechanical Energy Mechanics is the branch of physics that deals with the motion of objects and the forces that affect that motion. Mechanical energy is similarly any form of energy that’s directly associated with motion or with a force. Kinetic energy is one form of mechanical energy. In this course we’ll also deal with two other types of mechanical energy: gravitational energy,associated with the force of gravity,and elastic energy, associated with the force exerted by a spring or some other object that is stretched or compressed. In this chapter I’ll introduce the formulas for all three types of mechanical energy,starting with gravitational energy. Gravitational Energy An object’s gravitational energy depends on how high it is,and also on its weight. Specifically,the gravitational energy is the product of weight times height: Gravitational energy = (weight) × (height). (2.1) For example,if you lift a brick two feet off the ground,you’ve given it twice as much gravitational energy as if you lift it only one foot,because of the greater height. On the other hand,a brick has more gravitational energy than a marble lifted to the same height,because of the brick’s greater weight. Weight,in the scientific sense of the word,is a measure of the force that gravity exerts on an object,pulling it downward. Equivalently,the weight of an object is the amount of force that you must exert to hold the object up,balancing the downward force of gravity. Weight is not the same thing as mass,which is a measure of the amount of “stuff” in an object.