Autumn Constellations Pegasus and Andromeda Pegasus, Also Known As “The Great Square,” Is Visible at the Night Sky’S Zenith During the Fall

Total Page:16

File Type:pdf, Size:1020Kb

Autumn Constellations Pegasus and Andromeda Pegasus, Also Known As “The Great Square,” Is Visible at the Night Sky’S Zenith During the Fall Night Sky 101: Autumn Constellations Pegasus and Andromeda Pegasus, also known as “The Great Square,” is visible at the night sky’s zenith during the fall. The Andromeda constellation is directly attached to one of the points of Pegasus’s square. Andromeda is famous for M31, known commonly as The Andromeda Galaxy, which is the closest spiral galaxy to the Milky Way. It is also the brightest galaxy in the sky, and can be seen with the naked eye. The Andromeda Galaxy is positioned between the star Schedar, in Cassiopeia, and the star Mu Andromedae, in Andromeda. According to legend, the hero, Perseus, rescued Princess Andromeda from the monster Cetus on his flying horse, Pegasus. This is why Andromeda is depicted on Pegasus in the night sky – to immortal- ize her heroic rescue. Perseus Perseus follows the constellation Cassiopeia across the sky, and is best seen in the northeastern autumn skies. Although it has been nicknamed “The Demon Star,” there is nothing sinister about Perseus’s star Algol. However, Al- gol is a variable binary star, meaning that it is actually two stars rotating around each other. A full rotation takes the two stars every 2 days and 20 hours. Algol’s brightness changes, depending on which star orbits in front. Before Perseus rescued Andromeda, he was a great hero. As the son of Zeus and the mortal Danae, Perseus was born with many gifts. He is best known for his killing of the hideous Gorgon, Medusa, who turned people to stone, simply by looking at them. He also used Medusa’s head to turn the Titan, Atlas, into a large mountain. In the constellation, the star Algol represents the Gorgon’s head. Auriga (Pronounced or-EYE-gah) Auriga is located near Perseus in the night sky. It is easy to pick out Capella, the sixth brightest star in the autumn night sky, one of the points of a pentagon-like shape, which is the constellation Auriga. Ca- pella is a star that is very similar to our sun and is sometimes referred to as“ The Goat Star.” The stars next to it are called “The Kids.” Within Auriga, there are several star clusters, identified as M36, M37 and M38. These can be seen with binoculars. According to Greek Mythology, Auriga was the lame son of Hephaestus, god of the forge and craftsmen. Because Auriga couldn’t walk, he tamed four horses and built a chariot to carry himself around on. To reward his cleverness, Auriga was placed in the stars, on his chariot, by the gods. For more information, visit our website, Information and photos credited to cpdarkskies.org earthsky.org .
Recommended publications
  • The Dunhuang Chinese Sky: a Comprehensive Study of the Oldest Known Star Atlas
    25/02/09JAHH/v4 1 THE DUNHUANG CHINESE SKY: A COMPREHENSIVE STUDY OF THE OLDEST KNOWN STAR ATLAS JEAN-MARC BONNET-BIDAUD Commissariat à l’Energie Atomique ,Centre de Saclay, F-91191 Gif-sur-Yvette, France E-mail: [email protected] FRANÇOISE PRADERIE Observatoire de Paris, 61 Avenue de l’Observatoire, F- 75014 Paris, France E-mail: [email protected] and SUSAN WHITFIELD The British Library, 96 Euston Road, London NW1 2DB, UK E-mail: [email protected] Abstract: This paper presents an analysis of the star atlas included in the medieval Chinese manuscript (Or.8210/S.3326), discovered in 1907 by the archaeologist Aurel Stein at the Silk Road town of Dunhuang and now held in the British Library. Although partially studied by a few Chinese scholars, it has never been fully displayed and discussed in the Western world. This set of sky maps (12 hour angle maps in quasi-cylindrical projection and a circumpolar map in azimuthal projection), displaying the full sky visible from the Northern hemisphere, is up to now the oldest complete preserved star atlas from any civilisation. It is also the first known pictorial representation of the quasi-totality of the Chinese constellations. This paper describes the history of the physical object – a roll of thin paper drawn with ink. We analyse the stellar content of each map (1339 stars, 257 asterisms) and the texts associated with the maps. We establish the precision with which the maps are drawn (1.5 to 4° for the brightest stars) and examine the type of projections used.
    [Show full text]
  • The Very Long Mystery of Epsilon Aurigae
    A Unique Eclipsing Variable TheThe VeryVery LongLong MMysteryystery ofof EpsilonEpsilon AAurigaeurigae robertrobert e. sstenceltencel one of the great scientifi c advances of the 20th A remarkable naked-eye star century was the theory of stellar evolution, as physicists worked out not just how stars shine, but how they origi- will soon start dimming for nate, live, change, and die. To test theory against reality, however, astronomers had to determine accurate masses the eighth time since 1821. for many diff erent kinds of stars — and this meant analyz- What’s going on is still ing the motions of binary pairs. Theorists also needed the stars’ exact diameters, and this meant analyzing the light not exactly clear. curves of eclipsing binaries in particular. A century ago, S&T ILLUSTRATION BY CASEY REED giants of early astrophysics worked intensely on the prob- lem of eclipsing-binary analysis. Henry Norris Russell’s paper “On the Determination of the Orbital Elements of Eclipsing Variable Stars,” published in 1912, set the stage for what followed. BIG WHITE STAR, BIGGER BLACK PARTNER Epsilon Aurigae, hotter than the Sun and larger than Earth’s entire orbit, pours forth some 130,000 times the Sun’s light — which is why it shines as brightly as 3rd magnitude even from 2,000 light-years away. According to the currently favored model, a long, dark object will start sliding across its middle this summer. The object seems to be an opaque warped disk 10 a.u. wide and appearing roughly 1 a.u. tall. Whatever lies at its center seems to be hidden — though there’s also evidence that we see right through the center.
    [Show full text]
  • 1. What Are the RA and DEC of Perseus Constellation? at What Time
    1. What are the RA and DEC of Perseus constellation? At what time do you expect it to transit at Kharagpur on 23 January? Does the Sun ever visit this constellation? How high in the sky from the horizon, will this constellation appear? 2. Sketch the Orion constellation, and indicate the location of the Orion nebua. What is the Orion nebula? 3. Explain briefly why Earth’s rotation axis precesses. What is the rate of precession? 4. Verify that a(1 − e2) u−1 = r = 1+ e cos φ with a = −2GM/E and e = [1+2J 2E2/G2M 2]1/2 is acually a solution to the equation 2 1 du E = J 2 + J 2u2 − GMu 2 dφ! which governs the trajectory under the gravitational attraction of a massive object. 5. Show that 4π2 P 2 = a3 GM for a general elliptic orbit. 6. Assuming that the Earth has a rotational period of 24 hrs around its own axis and revolution period of 365.25 days around the Sun, what is the length of a Solar day? After what period do distant stars come back to the same position on the sky? 7. Given Comet Halley has period 75 yrs, determine the semimajor axis of its orbit? 8. Consider an orbit around the Sun with e = 0.3. What is the ratio of the speeds at apogee and perigee? 9. At what height from center of Earth do we have geostationary satellite orbits? 10. For a central force motion in a gravitational potential α/r, show that A~ = ~v × L~ + α~r/r is conserved.
    [Show full text]
  • Naming the Extrasolar Planets
    Naming the extrasolar planets W. Lyra Max Planck Institute for Astronomy, K¨onigstuhl 17, 69177, Heidelberg, Germany [email protected] Abstract and OGLE-TR-182 b, which does not help educators convey the message that these planets are quite similar to Jupiter. Extrasolar planets are not named and are referred to only In stark contrast, the sentence“planet Apollo is a gas giant by their assigned scientific designation. The reason given like Jupiter” is heavily - yet invisibly - coated with Coper- by the IAU to not name the planets is that it is consid- nicanism. ered impractical as planets are expected to be common. I One reason given by the IAU for not considering naming advance some reasons as to why this logic is flawed, and sug- the extrasolar planets is that it is a task deemed impractical. gest names for the 403 extrasolar planet candidates known One source is quoted as having said “if planets are found to as of Oct 2009. The names follow a scheme of association occur very frequently in the Universe, a system of individual with the constellation that the host star pertains to, and names for planets might well rapidly be found equally im- therefore are mostly drawn from Roman-Greek mythology. practicable as it is for stars, as planet discoveries progress.” Other mythologies may also be used given that a suitable 1. This leads to a second argument. It is indeed impractical association is established. to name all stars. But some stars are named nonetheless. In fact, all other classes of astronomical bodies are named.
    [Show full text]
  • Wynyard Planetarium & Observatory a Autumn Observing Notes
    Wynyard Planetarium & Observatory A Autumn Observing Notes Wynyard Planetarium & Observatory PUBLIC OBSERVING – Autumn Tour of the Sky with the Naked Eye CASSIOPEIA Look for the ‘W’ 4 shape 3 Polaris URSA MINOR Notice how the constellations swing around Polaris during the night Pherkad Kochab Is Kochab orange compared 2 to Polaris? Pointers Is Dubhe Dubhe yellowish compared to Merak? 1 Merak THE PLOUGH Figure 1: Sketch of the northern sky in autumn. © Rob Peeling, CaDAS, 2007 version 1.2 Wynyard Planetarium & Observatory PUBLIC OBSERVING – Autumn North 1. On leaving the planetarium, turn around and look northwards over the roof of the building. Close to the horizon is a group of stars like the outline of a saucepan with the handle stretching to your left. This is the Plough (also called the Big Dipper) and is part of the constellation Ursa Major, the Great Bear. The two right-hand stars are called the Pointers. Can you tell that the higher of the two, Dubhe is slightly yellowish compared to the lower, Merak? Check with binoculars. Not all stars are white. The colour shows that Dubhe is cooler than Merak in the same way that red-hot is cooler than white- hot. 2. Use the Pointers to guide you upwards to the next bright star. This is Polaris, the Pole (or North) Star. Note that it is not the brightest star in the sky, a common misconception. Below and to the left are two prominent but fainter stars. These are Kochab and Pherkad, the Guardians of the Pole. Look carefully and you will notice that Kochab is slightly orange when compared to Polaris.
    [Show full text]
  • The Mid-Infrared Extinction Law in the Ophiuchus, Perseus, and Serpens
    The Mid-Infrared Extinction Law in the Ophiuchus, Perseus, and Serpens Molecular Clouds Nicholas L. Chapman1,2, Lee G. Mundy1, Shih-Ping Lai3, Neal J. Evans II4 ABSTRACT We compute the mid-infrared extinction law from 3.6−24µm in three molecu- lar clouds: Ophiuchus, Perseus, and Serpens, by combining data from the “Cores to Disks” Spitzer Legacy Science program with deep JHKs imaging. Using a new technique, we are able to calculate the line-of-sight extinction law towards each background star in our fields. With these line-of-sight measurements, we create, for the first time, maps of the χ2 deviation of the data from two extinc- tion law models. Because our χ2 maps have the same spatial resolution as our extinction maps, we can directly observe the changing extinction law as a func- tion of the total column density. In the Spitzer IRAC bands, 3.6 − 8 µm, we see evidence for grain growth. Below AKs =0.5, our extinction law is well-fit by the Weingartner & Draine (2001) RV = 3.1 diffuse interstellar medium dust model. As the extinction increases, our law gradually flattens, and for AKs ≥ 1, the data are more consistent with the Weingartner & Draine RV = 5.5 model that uses larger maximum dust grain sizes. At 24 µm, our extinction law is 2 − 4× higher than the values predicted by theoretical dust models, but is more consistent with the observational results of Flaherty et al. (2007). Lastly, from our χ2 maps we identify a region in Perseus where the IRAC extinction law is anomalously high considering its column density.
    [Show full text]
  • Asset Detail Acct Base Currency Code : USD ALL KR2 and KR3 - KR2GALLKRS00 As of Date : 12/31/2013 Accounting Status : REVISED
    Asset Detail Acct Base Currency Code : USD ALL KR2 AND KR3 - KR2GALLKRS00 As Of Date : 12/31/2013 Accounting Status : REVISED . Mellon Security ID Security Description Shares/Par Base Market Value Grand Total 36,179,254,463.894 15,610,214,163.19 ALTERNATIVE INVESTMENTS 15,450,499.520 15,450,499.52 MKP OPPORTUNITY OFFSHORE LTD 15,450,499.520 15,450,499.52 CASH & CASH EQUIVALENTS 877,174,023.720 877,959,915.42 BANC OF AM CORP REPO 0.010% 01/02/2014 DD 12/31/13 20,000,000.000 20,000,000.00 BANK OF AMERICA (BOA) 01/01/2049 DD 07/01/08 52,000.000 52,000.00 BARC CCP COLLATERAL VAR RT 01/01/2049 DD 07/01/08 28,000.000 28,000.00 BARCLAYS CASH COLLATERAL VAR RT 01/01/2049 DD 07/01/08 543,000.000 543,000.00 BARCLAYS CP REPO REPO 0.010% 01/02/2014 DD 12/31/13 12,000,000.000 12,000,000.00 BARCLAYS CP REPO REPO 0.040% 01/17/2014 DD 12/18/13 9,200,000.000 9,200,000.00 BNY MELLON CASH RESERVE 0.010% 12/31/2049 DD 06/26/97 1,184,749.080 1,184,749.08 CANTOR REPO A REPO 0.170% 01/02/2014 DD 12/19/13 67,000,000.000 67,000,000.00 CASH COLLATERAL HELD AT CITIGROUP 387,000.000 387,000.00 CASH HELD AS COLLATERAL AT DEUTSCHE 169,000.000 169,000.00 CITIGROUP CAT 2MM REPO 0.010% 01/02/2014 DD 12/31/13 8,300,000.000 8,300,000.00 CME CCP COLL HELD AT GSC 100,000.000 100,000.00 CREDIT SUISSE REPO 0.010% 01/02/2014 DD 12/31/13 16,300,000.000 16,300,000.00 CSFB CCP COLLATERAL 0.010% 01/01/2049 DD 07/01/08 1,553,000.000 1,553,000.00 DEUTSCHE BANK VAR RT 01/01/2049 DD 07/01/08 668,000.000 668,000.00 DEUTSCHE BK TD 0.180% 01/02/2014 DD 12/18/13 270,000,000.000 270,000,000.00
    [Show full text]
  • Classical Images – Greek Pegasus
    Classical images – Greek Pegasus Red-figure kylix crater Attic Red-figure kylix Triptolemus Painter, c. 460 BC attr Skythes, c. 510 BC Edinburgh, National Museums of Scotland Boston, MFA (source: theoi.com) Faliscan black pottery kylix Athena with Pegasus on shield Black-figure water jar (Perseus on neck, Pegasus with Etrurian, attr. the Sokran Group, c. 350 BC Athenian black-figure amphora necklace of bullae (studs) and wings on feet, Centaur) London, The British Museum (1842.0407) attr. Kleophrades pntr., 5th C BC From Vulci, attr. Micali painter, c. 510-500 BC 1 New York, Metropolitan Museum of ART (07.286.79) London, The British Museum (1836.0224.159) Classical images – Greek Pegasus Pegasus Pegasus Attic, red-figure plate, c. 420 BC Source: Wikimedia (Rome, Palazzo Massimo exh) 2 Classical images – Greek Pegasus Pegasus London, The British Museum Virginia, Museum of Fine Arts exh (The Horse in Art) Pegasus Red-figure oinochoe Apulian, c. 320-10 BC 3 Boston, MFA Classical images – Greek Pegasus Silver coin (Pegasus and Athena) Silver coin (Pegasus and Lion/Bull combat) Corinth, c. 415-387 BC Lycia, c. 500-460 BC London, The British Museum (Ac RPK.p6B.30 Cor) London, The British Museum (Ac 1979.0101.697) Silver coin (Pegasus protome and Warrior (Nergal?)) Silver coin (Arethusa and Pegasus Levantine, 5th-4th C BC Graeco-Iberian, after 241 BC London, The British Museum (Ac 1983, 0533.1) London, The British Museum (Ac. 1987.0649.434) 4 Classical images – Greek (winged horses) Pegasus Helios (Sol-Apollo) in his chariot Eos in her chariot Attic kalyx-krater, c.
    [Show full text]
  • El Remate Enero 2018:Maquetaciûn 1
    Cubiertas Enero 2018 (178):Maquetación 1 18/12/17 9:45 Página www.elremate.es • e­mail: [email protected] www.elremate.es (34) 91 447 14 04 • Fax: 59 41 Tel.: Exposición y Subasta: Modesto Lafuente, 12 • Madrid Subasta Jueves 18 de Enero 2018 Subastas El Remate • Libros y Manuscritos • Enero 2018 • Subasta 178 Subasta Jueves 18 Enero 2018 Cubiertas Enero 2018 (178):Maquetación 1 18/12/17 9:46 Página 2 194 126 222 156 268 96 361 458 El Remate Enero 2018:Maquetación 1 18/12/17 13:02 Página 1 LIBROS Y MANUSCRITOS SUBASTA JUEVES, 18 de Enero a las 18,00 horas en Modesto Lafuente, 12 EXPOSICIÓN Desde el 8 de Enero en Modesto Lafuente, 12 De 9,00 a 18,00 horas ininterrumpidamente Los días 13 y 18 de Enero sólo de 10 a 14 horas. (Día 13 de Enero sólo exposición) Admisión de ofertas por escrito, teléfono y correo electrónico hasta las 17,00 horas del día de la subasta PORTADA: LOTE 166 CONTRAPORTADA: LOTE 309 SUBASTAS EL REMATE MADRID, S.L. Modesto Lafuente, 12 • 28010 MADRID Tel.: (34) 91 447 14 04 • Fax: (34) 91 447 59 41 www.elremate.es • e-mail: [email protected] Transferencias a Banco Santander: IBAN-BIC: ES47 0049 4664 17 2316714774 El comprador deberá pagar y retirar los lotes en un plazo máximo de 15 días hábiles, pasados los cuales se devengarán gastos de almacenamiento de 6 € diarios EL PRECIO DEL REMATE SE INCREMENTARÁ EN UN 17,24% (MÁS I.V.A. VIGENTE) El Remate Enero 2018:Maquetación 1 18/12/17 13:02 Página 2 El Remate Enero 2018:Maquetación 1 18/12/17 13:02 Página 3 El Remate · Enero 2018 · Subasta 178 LIBROS Y MANUSCRITOS.
    [Show full text]
  • Observing the Night Sky I
    29:50 Astronomy Lab – Evening Sections Stars, Galaxies, and the Universe Fall 2010 Name Date /10 Grade OBSERVING THE NIGHT SKY I INTRODUCTION In this session we will observe the night sky. The idea is to fix some of the concepts discussed in class, such as the celestial coordinate system. However, the main point is to see the night sky and notice some of the properties of stars and some other astronomical objects such as star clusters and galaxies. This will make them seem more real as we discuss them throughout the semester. Part of the activity will consist of finding stars, constellations, or other astronomical objects. To show that you have found an object, you point it out to a teaching assistant or other observer, who will then “sign‐off” on it for you. In going through these exercises, you will have a chance to use the Sky and Telescope star wheel, the SC1 constellation chart, and the Sky and Telescope Pocket Star Atlas. You may also want to use the interactive sky chart on the Sky and Telescope website: www.skyandtelescope.com. In using the pocket star atlas, you will need a pair of binoculars to see objects fainter than the naked eye limit. Also, be sure and notice where the various constellations are in the sky (i.e. constellation X is low in the northwest, constellation Y is about halfway up the eastern sky). 1 OBSERVING EXERCISES 1. Get yourself oriented so you know where N, S, E and W are. Find the Q1 bright star Arcturus, in the constellation of Bootes, and point it out to your TA.
    [Show full text]
  • Early China DID BABYLONIAN ASTROLOGY
    Early China http://journals.cambridge.org/EAC Additional services for Early China: Email alerts: Click here Subscriptions: Click here Commercial reprints: Click here Terms of use : Click here DID BABYLONIAN ASTROLOGY INFLUENCE EARLY CHINESE ASTRAL PROGNOSTICATION XING ZHAN SHU ? David W. Pankenier Early China / Volume 37 / Issue 01 / December 2014, pp 1 - 13 DOI: 10.1017/eac.2014.4, Published online: 03 July 2014 Link to this article: http://journals.cambridge.org/abstract_S0362502814000042 How to cite this article: David W. Pankenier (2014). DID BABYLONIAN ASTROLOGY INFLUENCE EARLY CHINESE ASTRAL PROGNOSTICATION XING ZHAN SHU ?. Early China, 37, pp 1-13 doi:10.1017/eac.2014.4 Request Permissions : Click here Downloaded from http://journals.cambridge.org/EAC, by Username: dpankenier28537, IP address: 71.225.172.57 on 06 Jan 2015 Early China (2014) vol 37 pp 1–13 doi:10.1017/eac.2014.4 First published online 3 July 2014 DID BABYLONIAN ASTROLOGY INFLUENCE EARLY CHINESE ASTRAL PROGNOSTICATION XING ZHAN SHU 星占術? David W. Pankenier* Abstract This article examines the question whether aspects of Babylonian astral divination were transmitted to East Asia in the ancient period. An often-cited study by the Assyriologist Carl Bezold claimed to discern significant Mesopotamian influence on early Chinese astronomy and astrology. This study has been cited as authoritative ever since, includ- ing by Joseph Needham, although it has never been subjected to careful scrutiny. The present article examines the evidence cited in support of the claim of transmission. Traces of Babylonian Astrology in the “Treatise on the Celestial Offices”? In , the Assyriologist Carl Bezold published an article concerning the Babylonian influence he claimed to discern in Sima Qian’s 司馬遷 and Sima Tan’s 司馬談 “Treatise on the Celestial Offices” 天官書 (c.
    [Show full text]
  • Chasing Constellations
    MITCHELL, GRACE LYN Gracelyn Mitchell Age: 17, Grade: 12 Home School, Wetumpka, AL Educator: Shunta McCants Category: Personal Essay & Memoir Chasing Constellations I stood in the wet grass, scrunching my toes in and out, letting the cool dew drops fall on my bare feet. My thin, white sundress and my thin, almost-white hair fluttering around me in the wind. I stood firmly, watching the glow of what felt like trillions of fireflies fade in and out. Each time the one I had my gaze set on flickered out, I would close my eyes and inhale deeply, breathing in the scent of summer air and what I can still only describe as “magic”. The cool air on my sticky, sweaty skin felt good. My stomach still churned with nausea from seconds ago when my cousin and her best friend twirled me around on the “swing” made from a single branch and piece of rope tied to a tree in their backyard...over, and over, and over. But I still giggled past the dizziness every time. I smiled and laughed to myself. My heart fluttered and my veins surged with what I look back on as “child euphoria”. My cousin, with long, steaming brown hair, ran up beside me followed by her friend. Still giggling, she grasped my shoulders and pointed to the sky. “You see that, Grace? That’s the pegasus constellation.” She pointed to an outline of stars that unmistakably made up the image of a chubby pegasus with a bridle and saddle and very two-dimensional wings. It wasn’t one of those constellations that you had to squint at, or one that you had to imagine most of the image yourself for.
    [Show full text]