Alcohol Fuels for Spark-Ignition Engines: Performance, Efficiency, and Emission Effects at Mid to High Blend Rates for Ternary Mixtures

Total Page:16

File Type:pdf, Size:1020Kb

Alcohol Fuels for Spark-Ignition Engines: Performance, Efficiency, and Emission Effects at Mid to High Blend Rates for Ternary Mixtures energies Article Alcohol Fuels for Spark-Ignition Engines: Performance, Efficiency, and Emission Effects at Mid to High Blend Rates for Ternary Mixtures James W. G. Turner 1,* , Andrew G. J. Lewis 1, Sam Akehurst 1 , Chris J. Brace 1, Sebastian Verhelst 2 , Jeroen Vancoillie 2, Louis Sileghem 2, Felix C. P. Leach 3 and Peter P. Edwards 3 1 Institute for Advanced Automotive Propulsion Systems, University of Bath, Bath, Somerset BA2 7AY, UK; [email protected] (A.G.J.L.); [email protected] (S.A.); [email protected] (C.J.B.) 2 Department of Electromechanical, Systems and Metal Engineering, Campus UFO, Ghent University, T4, Sint-Pietersnieuwstraat 41, B-9000 Gent, Belgium; [email protected] (S.V.); [email protected] (J.V.); [email protected] (L.S.) 3 Departments of Chemistry and Engineering Science, University of Oxford, Oxford OX1 3PJ, UK; [email protected] (F.C.P.L.); [email protected] (P.P.E.) * Correspondence: [email protected]; Tel.: +44-1225-383466 Received: 21 October 2020; Accepted: 25 November 2020; Published: 3 December 2020 Abstract: This paper follows on from an earlier publication on high-blend-rate binary gasoline-alcohol mixtures and reports results for some equivalent ternary fuels from several investigation streams. In the present work, new findings are presented for high-load operation in a dedicated boosted multi-cylinder engine test facility, for operation in modified production engines, for knock performance in a single-cylinder test engine, and for exhaust particulate emissions at part load using both the prototype multi-cylinder engine and a separate single-cylinder engine. The wide variety of test engines employed have several differences, including their fuel delivery strategies. This range of engine specifications is considered beneficial with regard to the “drop-in fuel” conjecture, since the results presented here bear out the contention, already established in the literature, that when specified according to the known ternary blending rules, such fuels fundamentally perform identically to their binary equivalents in terms of engine performance, and outperform standard gasolines in terms of efficiency. However, in the present work, some differences in particulate emissions performance in direct-injection engines have been found at light load for the tested fuels, with a slight increase in particulate number observed with higher methanol contents than lower. A hypothesis is developed to explain this result but in general it was found that these fuels do not significantly affect PN emissions from such engines. As a result, this investigation supplies further evidence that renewable fuels can be introduced simply into the existing vehicle fleet, with the inherent backwards compatibility that this brings too. Keywords: alcohols; gasoline-alcohol blends; ternary blends; renewable fuels; e-fuels 1. Introduction The affordability of transport for the end-user is the key factor in the success of the motor vehicle, which has accelerated mankind’s economic development since its inception; cheap transportation is a driver of economies worldwide and this was not possible before the internal combustion engine (ICE). This state of affairs has arisen solely because of its cost-effectiveness and the resulting affordability and utility of the vehicles it is fitted to, coupled to the fact that liquid fuels make the storage and distribution of the energy that they require similarly cost-effective. This overall transport system cost-to-utility Energies 2020, 13, 6390; doi:10.3390/en13236390 www.mdpi.com/journal/energies Energies 2020, 13, 6390 2 of 31 Energies 2020, 13, x FOR PEER REVIEW 2 of 32 millionratio has vehicles given risewere to manufactured, a situation where, representing for the firsta year-round time in 2016, rate of almost three 95vehicles million per vehicles second, were and onemanufactured, billion passenger representing and commercial a year-round vehicles rate of had three been vehicles built perby 2010 second, [1]. andFurthermore, one billion in passenger a recent study,and commercial Gutzmer of vehicles INA-Scha hadeffler been presented built by data 2010 showing [1]. Furthermore, that car production in a recent rates study, are accelerating Gutzmer of andINA-Schae analysisffler of presented his data data yields showing an estimate that car productionthat the second rates arebillion accelerating vehicles and will analysis have ofbeen his manufactureddata yields an estimatein the 2021–2022 that the second time frame billion [2]. vehicles He estimates will have the been ratio manufactured of ICE-only, in plug-in the 2021–2022 hybrid electrictime frame vehicles [2]. He (PHEVs) estimates and the battery ratio ofelectric ICE-only, vehicl plug-ines (BEVs), hybrid and electric analysis vehicles of his (PHEVs) figures andshows battery that ifelectric there vehiclesis no paradigm (BEVs), shift and analysisin customer of his behavior figures showsthen three that ifbillion there vehicles is no paradigm will have shift been in customer built by 2030behavior [2]. Figure then three 1 presents billion the vehicles data of willGutzmer have in been these built terms; by 2030 Figure [2]. 2 shows Figure 1that presents even with the datasuch ofan optimisticGutzmer in view these of terms;the take Figure up of2 showspure BEVs, that eventhe IC withE will such continue an optimistic to domina viewte oflight-duty the take propulsion up of pure forBEVs, years the to ICE come, will continueand that toeven dominate if whatlight-duty might be propulsiontermed “peak for engine” years to come,occurs and in 2020, that eventhen ifstill what in 2030might nearly be termed as many “peak combustion engine” occurs engines in 2020, will then be still made in 2030 as nearlywere in as 2014, many when combustion they engineswill be manufacturedwill be made as at were a rate in of 2014, 2.66 when per second. they will While be manufactured there are many at a estimates rate of 2.66 in perthe second.literature, While this theredata hasare manybeen chosen estimates because in the INA-Schaeffler literature, this datais one has of been the Tier-1 chosen suppliers because INA-Schaewith a greatffl erinterest is one in of the accelerationTier-1 suppliers of electromobility, with a great interest and inso thethey acceleration can be assumed of electromobility, to present aand scenario so they with can a be rapid assumed take upto presentof electric a scenario vehicles with and a rapidcorresponding take up of substitu electric vehiclestion of ICEs. and corresponding Plainly, despite substitution various political of ICEs. pronouncementsPlainly, despite various concerning political the demi pronouncementsse of the ICE, concerningthe automotive the demise industry of and the ICE,its observers the automotive believe thatindustry they andwill itscontinue observers the believe foreseeable that theyfuture; will ot continueher estimates the foreseeable by industry future; observers other put estimates a global by penetrationindustry observers of PHEVs put and a global BEVs penetration combined ofat PHEVsslightly andless BEVsthan 20% combined by 2030 at [3]. slightly One lessmight than therefore 20% by suggest2030 [3]. that One reports might of therefore the impending suggest death that reportsof the ICE of theappear impending to be greatly death exaggerated of the ICE appear [4]. to be greatlySynergistic exaggerated with [4 ].the vehicle manufacturing industry developing over time, the fuel supply industrySynergistic has kept with pace. the vehicleBecause manufacturing there was noindustry fossil hydrocarbon developing overfuel time,supply the industry fuel supply then, industry early engineshas kept used pace. bio-sourced Because there fuels was and no fossil the hydrocarbonswitch to fossil fuel fuels supply was industry made then,early earlyon, despite engines early used concernsbio-sourced that fuels demand and the would switch toou fossiltstrip fuelssupply was [5]. made Ch earlyeapness on, despiteof the earlyenergy concerns store thatboth demand in the infrastructurewould outstrip and supply aboard [5]. the Cheapness vehicle is ofone the factor energy in the store affordability both in the of infrastructure the system, and and the aboard favorable the economicsvehicle is one of liquid factor infuel the supply affordability has given of the rise system, to a situation and the where favorable the economicsauthors’ analysis of liquid of fuel the supplyglobal usehas givenof oil risesuggests to a situation that it is where used continuously the authors’ analysis at a volume of the flow global rate use equivalent of oil suggests to 7.4% that of it isthat used of Niagaracontinuously Falls. at a volume flow rate equivalent to 7.4% of that of Niagara Falls. 100 5000 80 4000 60 3000 40 2000 20 1000 Cars / [Millions] Manufactured Year per Cumulative Cumulative Cars Manufactured / [Millions] 0 0 2005 2010 2015 2020 2025 2030 2035 Year / [-] BEVs HEVs and PHEVs ICE-only Cumulative Cars Manufactured Figure 1. Projected productionproduction volumes volumes of of cars cars split split into in ditoff differenterent propulsion propulsion types types (data (data adapted adapted from fromthat giventhat given in [2]). in BEV: [2]). batteryBEV: battery electric electric vehicle; vehicle; HEV: hybridHEV: hybrid electric electric vehicle; vehicle; PHEV: PHEV: plug-in plug-in hybrid hybridelectric electric vehicle. vehicle. ICE: internal ICE: internal combustion combustion engine. engine. Energies 2020, 13, 6390 3 of 31 Energies 2020, 13, x FOR PEER REVIEW 3 of 32 100 5000 80 4000 60 3000 40 2000 20 1000 Cars / [Millions] Manufactured Year per Cumulative Cumulative Cars Manufactured / [Millions] 0 0 2005 2010 2015 2020 2025 2030 2035 Year / [-] ICE (all) Cumulative Cars Manufactured Figure 2. Data from Figure1 reworked to show vehicles with an internal combustion engine fitted Figure 2. Data from Figure 1 reworked to show vehicles with an internal combustion engine fitted (i.e., pure ICE and hybrid vehicles). The values for cumulative cars built is the same as on Figure1. (i.e., pure ICE and hybrid vehicles). The values for cumulative cars built is the same as on Figure 1.
Recommended publications
  • HYDROGEN ECONOMY VS. METHANOL ECONOMY SARTHAK TIBDEWAL, UTSAV SAXENA and ANAND V
    Int. J. Chem. Sci.: 12(4), 2014, 1478-1486 ISSN 0972-768X www.sadgurupublications.com HYDROGEN ECONOMY VS. METHANOL ECONOMY SARTHAK TIBDEWAL, UTSAV SAXENA and ANAND V. P. GURUMOORTHY* Chemical Engineering Division, School of Mechanical and Building Sciences, VIT University, VELLORE – 632014 (T.N.) INDIA ABSTRACT Today, the human civilization is very much dependent on fossil fuels, which make the blood and bone of this modern world. These precious natural resources, which form over the course of hundreds of years, are being consumed swiftly. In this alarming situation, it is very much necessary to think for a replacement, which fulfils the social needs without disturbing the environmental stability. One such approach discussed most over the years is ‘Hydrogen economy-Producing and using hydrogen as a clean fuel’, but there is no infrastructure for it. As it is a volatile gas, so it needs to be handled and stored at high a pressure. Moreover, it is an inflammable gas, which makes its usage as a transportation fuel difficult. A more potential and reasonable alternative, which is gaining importance is ‘Methanol Economy’ where methanol can be used as a source for transportation, energy storage and raw material for artificial hydrocarbons and their commodities. It is an excellent fuel. Methanol prices today are competitive with hydrocarbon fuels (on energy basis). Development is noted on the commercial conversion of biomass to methanol by means of thermochemical mechanism. Adequate feedstock of natural gas and coal lies to empower the handling of exhaustible methanol as transition fuel to renewable methanol from biomass. This paper discusses methanol’s potential as an alternate of the hydrogen economy.
    [Show full text]
  • Assessment of Bio- Ethanol and Biogas Initiatives for Transport in Sweden
    Assessment of bio- ethanol and biogas initiatives for transport in Sweden Background information for the EU-project PREMIA EU Contract N° TREN/04/FP6EN/S07.31083/503081 May 2005 2 Abstract This report is the result of an assignment on assessment of bio-ethanol and biogas initiatives for transport in Sweden, granted by VTT Processes, Energy and Environment, Engines and Vehicles, Finland to Atrax Energi AB, Sweden. The report of the assignment is intended to append the literature and other information used in the “PREMIA” project The work has been carried out by Björn Rehnlund, Atrax Energi AB, Sweden, with support from Martijn van Walwijk, France. The report describes the development of the production and use of biobio-ethanol and biogas (biomass based methane) as vehicle fuels in Sweden and gives an overview of today’s situation. Besides data and information about numbers of vehicles and filling stations, the report also gives an overview of: • Stakeholders • The legal framework, including standards, specifications, type approval, taxation etc. • Financial support programs. Public acceptance, side effects and the effect off the introduction of bio-ethanol and biogas as vehicle fuels on climate gases are to some extent also discussed in this report. It can be concluded that since the early 1990’s Sweden has had a perhaps slow but steadily increasing use of bio-ethanol and biogas. Today having the EC directive on promotion of bio bio-fuels and other renewable fuels in place the development and introduction of filling stations and vehicles has started to increase rapidly. From 1994 to 2004 the number of filling stations for bio-ethanol grew from 1 to 100 and during the year 2004 until today to 160 stations.
    [Show full text]
  • A Study on the Emissions of Butanol Using a Spark Ignition Engine and Their Reduction Using Electrostatically Assisted Injection
    A STUDY ON THE EMISSIONS OF BUTANOL USING A SPARK IGNITION ENGINE AND THEIR REDUCTION USING ELECTROSTATICALLY ASSISTED INJECTION BY BENJAMIN R. WIGG THESIS Submitted in partial fulfillment of the requirements for the degree of Master of Science in Mechanical Engineering in the Graduate College of the University of Illinois at Urbana-Champaign, 2011 Urbana, Illinois Adviser: Professor Dimitrios C. Kyritsis Abstract Butanol is a potential alternative to ethanol and offers many benefits including a much higher heating value and lower latent heat of vaporization. It also has a higher cetane number than ethanol and improved miscibility in diesel fuel. Additionally, butanol is less corrosive and less prone to water absorption than ethanol, which allows it to be transported using the existing fuel supply pipelines. However, while some previous research on the emissions of butanol-gasoline blends is available, little research exists on the emissions of neat butanol. This thesis focuses on two areas of study. The first area relates to on the comparison of UHC, NOx, and CO emissions of several butanol-gasoline and ethanol-gasoline blended fuels during combustion in an SI engine. The objective was to compare the emissions of butanol combustion to the ones of ethanol and gasoline. The second part of the study relates to the use of electrostatically assisted injection as a means of reducing the UHC emissions of butanol by decreasing the fuel droplet size using a charge electrode and extraction ring designed for a port fuel injector. Emissions measurements taken with and without a charge applied to the injector were used to determine the effect of applying a voltage to the fuel spray on engine emissions.
    [Show full text]
  • Renewable Methanol Report Renewable Methanol Report
    In association with: Renewable Methanol Report Renewable Methanol Report Renewable Methanol Report This report has been produced by ATA Markets Intelligence S.L. on behalf of the Methanol Institute. The information and opinions in this report were prepared by ATA Markets Intelligence and its partners. ATA Markets Intelligence has no obligation to tell you when opinions or information in this report change. Publication Date: December 2018 ATA Markets Intelligence makes every effort to use reliable, comprehensive information, but we make no representation that it is accurate or complete. In no event shall ATA Markets Intelligence and its partners be liable for any damages, Authors: losses, expenses, loss of data, loss of opportunity or profit caused by the use of the material or contents of this report. Charlie Hobson ATA Insights is a brand of ATA Markets Intelligence, whose registered office is located in Calle Serrano, 8, 3º izquierda, Carlos Márquez (editor) Post-code 28001, Madrid, Spain. Registered in the Mercantile Registry of Madrid, CIF number B87725198. Design: © Methanol Institute 2018 Henrik Williams www.methanol.org 2 Renewable Methanol Report CONTENTS Executive Summary................................................................................. 5 Why consider renewable methanol? .................................................7 Legislation drives change.....................................................................................7 Report structure ..................................................................................................8
    [Show full text]
  • Technoeconomics and Sustainability of Renewable Methanol and Ammonia Productions Using Wind Power-Based Hydrogen Michael J
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Chemical and Biomolecular Research Papers -- Yasar Demirel Publications Faculty Authors Series 2015 Technoeconomics and Sustainability of Renewable Methanol and Ammonia Productions Using Wind Power-based Hydrogen Michael J. Matzen University of Nebraska-Lincoln, [email protected] Mahdi H. Alhajji University of Nebraska-Lincoln, [email protected] Yasar Demirel University of Nebraska - Lincoln, [email protected] Follow this and additional works at: http://digitalcommons.unl.edu/cbmedemirel Part of the Biochemical and Biomolecular Engineering Commons, Biomedical Engineering and Bioengineering Commons, and the Thermodynamics Commons Matzen, Michael J.; Alhajji, Mahdi H.; and Demirel, Yasar, "Technoeconomics and Sustainability of Renewable Methanol and Ammonia Productions Using Wind Power-based Hydrogen" (2015). Yasar Demirel Publications. 9. http://digitalcommons.unl.edu/cbmedemirel/9 This Article is brought to you for free and open access by the Chemical and Biomolecular Research Papers -- Faculty Authors Series at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Yasar Demirel Publications by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. hemical E C n d g e in c e Matzen et al., J Adv Chem Eng 2015, 5:3 n e a r i v n d g A Advanced Chemical Engineering http://dx.doi.org/10.4172/2090-4568.1000128 ISSN: 2090-4568 Research Article Open Access Technoeconomics and Sustainability of Renewable Methanol and Ammonia Productions Using Wind Power-based Hydrogen Michael Matzen, Mahdi Alhajji and Yaşar Demirel* Department of Chemical and Biomolecular Engineering, University of Nebraska Lincoln, Lincoln NE 68588, USA Abstract This study analyzes and compares the economics and sustainability aspects of two hydrogenation processes for producing renewable methanol and ammonia by using wind-power based electrolytic hydrogen.
    [Show full text]
  • Light-Duty Alternative Fuel Vehicles: Federal Test Procedure Emissions Results
    September 1999 • NREL/TP-540-25818 Light-Duty Alternative Fuel Vehicles: Federal Test Procedure Emissions Results K. Kelly, L. Eudy, and T. Coburn National Renewable Energy Laboratory 1617 Cole Boulevard Golden, Colorado 80401-3393 NREL is a U.S. Department of Energy Laboratory Operated by Midwest Research Institute ••• Battelle ••• Bechtel Contract No. DE-AC36-98-GO10337 September 1999 • NREL/TP-540-25818 Light-Duty Alternative Fuel Vehicles: Federal Test Procedure Emissions Results K. Kelly, L. Eudy, and T. Coburn Prepared under Task No. FU905010 National Renewable Energy Laboratory 1617 Cole Boulevard Golden, Colorado 80401-3393 NREL is a U.S. Department of Energy Laboratory Operated by Midwest Research Institute ••• Battelle ••• Bechtel Contract No. DE-AC36-98-GO10337 TP-25818 ACKNOWLEDGMENTS This work was sponsored by the Office of Technology Utilization, which is part of the U.S. Department of Energy’s (DOE) Office of Transportation Technologies in Washington, D.C. Mr. Dana O’Hara is DOE’s program manager for the light-duty vehicle evaluation projects at the National Renewable Energy Laboratory. Appreciation is expressed to the three emissions laboratories that performed the testing: Environmental Research and Development, in Gaithersburg, Maryland; Automotive Testing Laboratory, in East Liberty, Ohio; and ManTech Environmental, in Denver, Colorado. We also thank Phillips Chemical Company and Compressed Gas Technologies for supplying the test fuels for this project. NOTICE This report was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, appara- tus, product, or process disclosed, or represents that its use would not infringe privately owned rights.
    [Show full text]
  • Alcohol and Cellulosic Biofuel Fuels Credit General Instructions
    Alcohol and Cellulosic Biofuel Fuels Credit OMB No. 1545-0231 Form 6478 2011 Department of the Treasury Attachment Internal Revenue Service ▶ Attach to your tax return. Sequence No. 83 Name(s) shown on return Identifying number Caution. You cannot claim any amounts on Form 6478 that you claimed (or will claim) on Form 720 (Schedule C), Form 8849, or Form 4136. (a) (b) (c) Type of Fuel Number of Gallons Rate Column (a) x Column (b) Sold or Used 1 Qualified ethanol fuel production for fuel sold or used before 2012 (see instructions for election) . 1 2 Alcohol 190 proof or greater and alcohol 190 proof or greater in fuel mixtures sold or used before 2012 . 2 3 Alcohol less than 190 proof but at least 150 proof and alcohol less than 190 proof but at least 150 proof in fuel mixtures sold or used before 2012 . 3 4 Qualified cellulosic biofuel production for fuel sold or used before 2012 that is alcohol (see instructions for election) . 4 5 Qualified cellulosic biofuel production for fuel sold or used before 2012 that is not alcohol (see instructions for election) . 5 6 Qualified cellulosic biofuel production for fuel sold or used after 2011 (see instructions for election) . 6 7 Add the amounts in column (c) on lines 1 through 6. Include this amount in your income for 2011 and, if you reported an amount on lines 4, 5, or 6 above, enter your IRS registration number (see instructions) . 7 8 Alcohol and cellulosic biofuel fuels credit from partnerships, S corporations, cooperatives, estates, and trusts (see instructions) .
    [Show full text]
  • FACT SHEET 7: Liquid Hydrogen As a Potential Low- Carbon Fuel for Aviation
    FACT SHEET 7: Liquid hydrogen as a potential low- carbon fuel for aviation This fact sheet aims to explain how current aviation fuels operate before providing descriptions of how alternative fuel options, like sustainable aviation fuels (SAF) and liquid hydrogen, could help meet the rigorous climate targets set by the aviation industry. Secondly, this document explores the limitations and opportunities of liquid hydrogen when it comes to the manufacturing, safety, current uses and outlooks. This document concludes with a discussion on policy, mandates and incentives on the topic of hydrogen as a potential fuel for aviation. Introduction – Why hydrogen? Aircraft fly thanks to a combination of air and a combustion process that occurs in the aircraft engines. The primary source of energy is the fuel. Each kilogram of fuel, which would occupy less than 1 litre of volume, contains a significant amount of energy, 42.8 MJ [1]. If we could convert the energy of a 1L bottle of fuel into electric energy to power a cell phone, the battery would last for over 2 months. This energy is extracted in the combustion chamber of the engine in the form of heat; Compressed air enters the combustion chamber and gets heated up to temperatures nearing 1,500°C. This hot high- pressure air is what ultimately moves the aircraft forward. Kerosene is composed of carbon and hydrogen (hence it’s a hydrocarbon fuel). When the fuel is completely burned, these carbon and hydrogen molecules recombine with oxygen to create water vapor (H2O) and carbon dioxide (CO2) (Fig.1). August 2019 Emissions: From Combustion: H2O + CO2 Other: NOx, nvPM SOx, soot Fuel in (C + H) Figure 1 Schematic of a turbofan engine adapted from: [2] Carbon dioxide will always be created as a by-product of burning a carbon-based fuel.
    [Show full text]
  • The Future of Liquid Biofuels for APEC Economies
    NREL/TP-6A2-43709. Posted with permission. The Future of Liquid Biofuels for APEC Economies Energy Working Group May 2008 Report prepared for the APEC Energy Working Group under EWG 01/2006A by: Anelia Milbrandt National Renewable Energy Laboratory (NREL) Golden, Colorado, USA Web site: www.nrel.gov Dr. Ralph P. Overend NREL Research Fellow (Retired) Ottawa, Ontario, Canada APEC#208-RE-01.8 Acknowledgments The authors would like to acknowledge and thank the project overseer Mr. Rangsan Sarochawikasit (Department of Alternative Energy Development and Efficiency, Thailand) for his leadership of this project. We also would like to thank Dr. Helena Chum (National Renewable Energy Laboratory, USA) for contributing materials, and providing review and feedback; and the chair of APEC Biofuels Task Force, Mr. Jeffrey Skeer, (Department of Energy, USA) for his support and guidance. The authors also greatly appreciate the time and valuable contributions of the following individuals: Ms. Naomi Ashurst and Ms. Marie Taylor, Department of Industry, Tourism and Resources, Australia Ms. Siti Hafsah, Office of the Minister of Energy, Brunei Darussalam Mr. Mark Stumborg, Agriculture and Agri-Food, Canada Ms. Corissa Petro, National Energy Commission, Chile Mr. Song Yanqin and Mr. Zhao Yongqiang, National Development and Reform Commission, China Mr. K.C. Lo, Electrical and Mechanical Service Department, Hong Kong, China Dr. Hom-Ti Lee, Industrial Technology Research Institute, Chinese Taipei Mr. Hendi Kariawan, Indonesia Biofuels Team, Indonesia Dr. Jeong-Hwan Bae, Korea Energy Economics Institute, Republic of Korea Mr. Diego Arjona-Arguelles, Secretariat for Energy (SENER), Mexico Mr. Angel Irazola and Mr. Diego de la Puente Consigliere, Agricola Del Chira S.A., Peru Mr.
    [Show full text]
  • Alcohol Fuel Manual
    The Manual for the Home and Farm Production of Alcohol Fuel by S.W. Mathewson Ten Speed Press J.A. Diaz Publications 1980 Table of Contents Chapter 1 AN OVERVIEW Alcohol Fuel Uses of Alcohol Fuel Other Alternative Fuels Chapter 2 BASIC FUEL THEORY Chemical Composition Combustion Properties Volatility Octane Ratings Water Injection Exhaust Composition Engine Performance – Straight Alcohol Engine Performance – Alcohol Blends Chapter 3 UTILIZATION OF ALCOHOL FUELS Methods of Utilization Alcohol Blends Pure Alcohol Diesel Engines Engine Modification Alcohol Injection Chapter 4 ETHANOL PRODUCTION – GENERAL DISCUSSION Raw Materials Manufacturing Steps Process Design Chapter 5 PROCESSING STEPS COMMON TO ALL MATERIALS Dilution Ph Control Backslopping Cleanliness Hydrometers 1 Chapter 6 PROCESSING STEPS SPECIFIC TO SACCHARINE MATERIALS General Description Extraction Chapter 7 PROCESSING STEPS SPECIFIC TO STARCHY MATERIALS Preparation of Starchy Materials Milling Cooking Conversion Malting Premalting Preparation of Malt Enzyme Conversion Acid Hydrolosis Mash Cooling Chapter 8 PROCESSING STEPS SPECIFIC TO CELLULOSE MATERIALS Cellulose Conversion Chapter 9 YEAST AND FERMENTATION Yeast Yeast Preparation Fermentation Fermentation By-products Note of Caution Chapter 10 INDIVIDUAL RAW MATERIALS Sugar/Starch Content vs Alcohol Saccharine Materials Fruits Molasses Cane Sorghum Sugar Beets Sugar Corn Wastes Starchy Materials Grains Jerusalem Artichokes Potatoes Sweet Potatoes Cellolose Materials Multiple Enzyme Treatment Chapter 11 DISTILLATION Distillation
    [Show full text]
  • Moving Ahead from Hydrogen to Methanol Economy: Scope and Challenges
    Moving ahead from Hydrogen to Methanol Economy: Scope and challenges Ankit Sonthalia SRMIST: SRM Institute of Science and Technology Naveen Kumar Delhi Technological University Mukul Tomar Delhi Technological University Edwin Geo V ( [email protected] ) SRM University https://orcid.org/0000-0002-7303-3984 Thiyagarajan S SRM Institute of Science and Technology Arivalagan Pugazhendhi Ton Duc Thang University Research Article Keywords: Hydrogen, methanol, biomass, carbon dioxide, syngas, gasication Posted Date: March 4th, 2021 DOI: https://doi.org/10.21203/rs.3.rs-280230/v1 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License Moving ahead from Hydrogen to Methanol Economy: Scope and challenges 1,2 2 2 3* Ankit Sonthalia , Naveen Kumar , Mukul Tomar , Varuvel Edwin Geo , Subramanian Thiyagarajan3 and Arivalagan Pugazhendhi4 1Department of Automobile Engineering, SRM Institute of Science and Technology, NCR Campus, Ghaziabad – 201204, India 2Center for Advanced Studies and Research in Automotive Engineering, Delhi Technological University, Bawana Road, Delhi – 110042, India 3Green Vehicle Technology Research Centre, Department of Automobile Engineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu – 603203, India 4Innovative Green Product Synthesis and Renewable Environment Development Research Group, Faculty of Environment and Labour Safety, Ton Duc Thang University, Ho Chi Minh City, Vietnam. *Corresponding Author: [email protected] Abstract Energy is the driver in the economic development of any country. It is expected that the developing countries like India will account for 25% hike in world-wide energy demand by 2040 due to the increase in the per capita income and rapid industrialization. Most of the developing countries do not have sufficient oil reserves and imports nearly all of their crude oil requirement.
    [Show full text]
  • Nebraska Liquid Fuel Carriers Information Guide
    Information Guide March 2021 Nebraska Liquid Fuel Carriers Overview Any person transporting motor fuels or aircraft fuels in a transport vehicle into, within, or out of Nebraska must obtain a liquid fuel carriers license. A copy of the license must be carried in the transport vehicle whenever motor fuels or aircraft fuels are carried in this state. In addition, a copy of the bill of lading, manifest, bill of sale, purchase order, sales invoice, delivery ticket, or similar documentation must be carried in the transport vehicle at all times when transporting motor fuels or aircraft fuels in Nebraska. This documentation must include the following information: v Date; v Type of fuel; v Amount of fuel; v Where and from whom the fuel was obtained; v Destination state or delivery location; v Name and address of the owner of the fuel; and v Name and address of the consignee or purchaser. A license is not required for persons transporting motor fuels or aircraft fuels within Nebraska for their own agricultural, quarrying, industrial, or other nonhighway use; nor is it required for the transportation of leaded racing fuels, propane, or compressed natural gas, regardless of its ownership or use. This guidance document is advisory in nature but is binding on the Nebraska Department of Revenue (DOR) until amended. A guidance document does not include internal procedural documents that only affect the internal operations of DOR and does not impose additional requirements or penalties on regulated parties or include confidential information or rules and regulations made in accordance with the Administrative Procedure Act.
    [Show full text]