Classical Biological Control of the Papaya Mealybug, Paracoccus Marginatus (Hemiptera: Pseudococcidae) in the Republic of Palau
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Antagonistic Interactions Between the African Weaver Ant Oecophylla
Article Antagonistic Interactions between the African Weaver Ant Oecophylla longinoda and the Parasitoid Anagyrus pseudococci Potentially Limits Suppression of the Invasive Mealybug Rastrococcus iceryoides Chrysantus M. Tanga 1,2, Sunday Ekesi 1,*, Prem Govender 2,3, Peterson W. Nderitu 1 and Samira A. Mohamed 1 Received: 7 August 2015; Accepted: 7 December 2015; Published: 23 December 2015 Academic Editors: Michael J. Stout, Jeff Davis, Rodrigo Diaz and Julien M. Beuzelin 1 International Centre of Insect Physiology and Ecology (icipe), P.O. Box 30772, Nairobi 00100, Kenya; [email protected] (C.M.T.); [email protected] (P.W.N.); [email protected] (S.A.M.) 2 Department of Zoology and Entomology, University of Pretoria, Pretoria 0002, South Africa; [email protected] 3 Faculty of Health Sciences, Sefako Makgatho Health Sciences University (SMU), P.O. Box 163, Ga-Rankuwa 0221, South Africa * Correspondence: [email protected]; Tel.: +254-20-863-2150; Fax: +254-20-863-2001 or +254-20-863-2002 Abstract: The ant Oecophylla longinoda Latreille forms a trophobiotic relationship with the invasive mealybug Rastrococus iceryoides Green and promotes the latter’s infestations to unacceptable levels in the presence of their natural enemies. In this regard, the antagonistic interactions between the ant and the parasitoid Anagyrus pseudococci Girault were assessed under laboratory conditions. The percentage of parasitism of R. iceryoides by A. pseudococci was significantly higher on “ant-excluded” treatments (86.6% ˘ 1.27%) compared to “ant-tended” treatments (51.4% ˘ 4.13%). The low female-biased sex-ratio observed in the “ant-tended” treatment can be attributed to ants’ interference during the oviposition phase, which disrupted parasitoids’ ability to fertilize eggs. -
Natural Colonization of Australian Ladybird Beetle, Cryptolaemus Montrouzieri Mulsant in Papaya Plantation Infested with Paracoc
Journal of Biological Control, 26 (4): 389–390, 2012 Research Note Natural colonization of Australian ladybird beetle, Cryptolaemus montrouzieri Mulsant in papaya plantation infested with Paracoccus marginatus Williams and Granara de Willink in Tamil Nadu M. KALAYANASUNDARAM, M. MANI* and C. SHIVARAJU* Department of Agricultural Entomology, Tamil Nadu Agricultural University, Coimbatore 641 003 Division of Entomology and Nematology, Indian Institute of Horticultural Research, Bangalore 560 089 Corresponding author E-mail: [email protected] ABSTRACT: The role of Cryptolaemus montrouzieri as an effective predator of Paracoccus marginatus Williams and Granara de Willink was often doubtful. Natural colonisation of C. montrouzieri was observed on papaya at Sathyamangalam (Tamil Nadu). The number of larvae were 18 to 30 per leaf. The massive colonisation of C. montrouzieri, will help in its effective utilisation against P. marginatus. KEY WORDS: Paracoccus marginatus, Cryptlolaemus montrouzieri (Article chronicle: Received: 16-08-2012; Revised: 24-11-2012; Accepted: 06-12-2012) The papaya mealybug, Paracoccus marginatus field visits in Coimbatore district. During the visit in Williams and Granara de Willink (Hemiptera: Pseudo- July 2012, large number of Cryptolaemus montrouzieri coccidae), native of Mexico, was reported in Coimbatore Mulsant were found feeding on P. marginatus on papaya (Tamil Nadu) in July 2008. P. marginatus sucks the plantation located at Sathyamangalam. All stages of sap from the leaf resulting in leaf distortion. Fruits C. montrouzieri were found amongst the mealybug covered with mealybugs and sooty mould lose market colonies indicating colonization on papaya mealybug. value (Suresh et al., 2010; Tanwar et al., 2010). Chemicals Number of larvae ranged from 18 to 30 per papaya were used desperately when there was outbreak of leaf. -
Biology of Papaya Mealybug, Paracoccus Marginatus on Laboratory Hosts, Sprouted Potato and Long Bottle Gourd
International Journal of Entomology Research International Journal of Entomology Research ISSN: 2455-4758; Impact Factor: RJIF 5.24 Received: 11-11-2019; Accepted: 12-12-2019 www.entomologyjournals.com Volume 5; Issue 1; January 2020; Page No. 52-56 Biology of papaya mealybug, Paracoccus marginatus on laboratory hosts, sprouted potato and long bottle gourd Iqra1*, Seema Tahir2, Muhammad Samiullah Channa3, Tahir Anwar4 1, 2 Department of Zoology, University of Karachi, Karachi, Sindh, Pakistan 3, 4 Pest Management Research Institute (PMRI), PARC-SARC, Pakistan Agricultural Research Council (PARC), Karachi, Sindh, Pakistan Abstract In this study, biological parameters of the papaya mealybug (PMB), Paracoccus marginatus Williams and Granara de Willink, on two hosts, sprouted potato (Solanum tuberosum) and long bottle gourd (Lagenaria siceraria) vegetables, were investigated under semi-controlled laboratory conditions; to determine the host suitability for rearing of this insect that to be used for augmentation of its natural enemies and for experimental animal in scientific research. Papaya mealybugs have established and completed their lifecycle on both of the hosts; however, there were differences in the biological parameters. The total lifespan of Paracoccus marginatus on sprouted potato was 38.8±4.4 days for female and 25±2.3 days for male while on long bottle gourd, it was 30.8±5.8 days for female and 22.4±2.6 days for male, respectively. The observed nymphal period of the PMB female varies from 15 to 20 (17.8±2.28) days on sprouted potato and 13 to 17 days (15.0±2.0) on long bottle gourd. The nymphal period exhibited by the PMB male on sprouted potato and long bottle gourd was 22.2±2.0 and 20.8±2.3 days, correspondingly. -
First Report of the Papaya Mealybug, Paracoccus Marginatus (Hemiptera
First report of the papaya mealybug, Paracoccus marginatus (Hemiptera: Pseudococcidae), in China and genetic record for its recent invasion in Asia and Africa Muhammad Z. Ahmed1,5, Ri-Rong He2, Mu-Tao Wu2, Yu-Juan Gu2, Jing-Mei Ren3, Fan Liang2, Hai-Lin Li4, Xue-Nan Hu2, Bao-Li Qiu3, Catharine M. Mannion1, and Jun Ma2,5,* Abstract The papaya mealybug, Paracoccus marginatus Williams and Granara de Willink (Hemiptera: Pseudococcidae), is a polyphagous pest that damages many tropical crops. It is a native of Central America and spread to the Caribbean region and South America in the 1990s; since then it has accidentally been introduced to some islands in the Pacific region and some countries in Africa and Asia. We recorded its presence in China for the first time in 2013 from Guangdong Province and Yunnan Province in southern and southwestern China, respectively. Our genetic analysis revealed that only 1 haplotype of P. marginatus has been recorded in all of Asia, including China, reflecting the very recent invasion of P. marginatus in Asia. This study also includes a summary of the global geographical distribution of P. marginatus. Key Words: genetic identity; haplotype; global distribution; insect pest Resumen La cochinilla de la papaya, Paracoccus marginatus Williams y Granara de Willink (Hemiptera: Pseudococcidae), es una plaga polífaga que daña muchos cultivos tropicales. Es originario de América Central y se extendió a la región del Caribe y América del Sur en la década de 1990; desde entonces ha sido introducida accidentalmente en algunas islas de la región del Pacífico y algunos países de África y Asia. -
Management Options for Mealybug in Persimmon
Scoping study: management options for mealybug in persimmon Dr Lara Senior The Department of Agriculture, Fisheries and Forestry, QLD Project Number: PR11000 PR11000 This report is published by Horticulture Australia Ltd to pass on information concerning horticultural research and development undertaken for the persimmon industry. The research contained in this report was funded by Horticulture Australia Ltd with the financial support of the persimmon industry. All expressions of opinion are not to be regarded as expressing the opinion of Horticulture Australia Ltd or any authority of the Australian Government. The Company and the Australian Government accept no responsibility for any of the opinions or the accuracy of the information contained in this report and readers should rely upon their own enquiries in making decisions concerning their own interests. ISBN 0 7341 3021 X Published and distributed by: Horticulture Australia Ltd Level 7 179 Elizabeth Street Sydney NSW 2000 Telephone: (02) 8295 2300 Fax: (02) 8295 2399 © Copyright 2012 Scoping study: management options for mealybug in persimmon (FINAL REPORT) Project Number: PR11000 (1st December 2012) Dr Lara Senior Queensland Department of Agriculture, Fisheries and Forestry Scoping study: management options for mealybug in persimmon HAL Project Number: PR11000 1st December 2012 Project leader: Dr Lara Senior Entomologist Agri-Science Queensland Department of Agriculture, Fisheries and Forestry Gatton Research Station Locked Bag 7, Mail Service 437 Gatton, QLD 4343 Tel: 07 5466 2222 Fax: 07 5462 3223 Email: [email protected] Key personnel: Grant Bignell1, Bob Nissen2, Greg Baker3 1. 1 Department of Agriculture, Fisheries and Forestry, Nambour Qld 2. -
Integrated Pest Management of Mango Mealybug (Drosicha Mangiferae) in Mango Orchards
INTERNATIONAL JOURNAL OF AGRICULTURE & BIOLOGY ISSN Print: 1560–8530; ISSN Online: 1814–9596 08–167/VBQ/2009/11–1–81–84 http://www.fspublishers.org Full Length Article Integrated Pest Management of Mango Mealybug (Drosicha mangiferae) in Mango Orchards HAIDER KARAR, M. JALAL ARIF1†, HUSSNAIN ALI SAYYED‡, SHAFQAT SAEED¶, GHULAM ABBAS¶¶ AND M. ARSHAD† Entomological Research Sub-station, Multan, Pakistan †Department of Agri. Entomology, University of Agriculture, Faisalabad, Pakistan ‡Department of Biochemistry, University of Sussex, UK ¶Department of Agri. Entomology, University College of Agriculture, B. Z. University, Multan, Pakistan ¶¶Pest warning and Quality Control of Pesticides, Punjab, Lahore-Pakistan 1Corresponding author’s e-mail: [email protected] ABSTRACT An experiment was conducted to destroy the eggs and management of nymphs through different IPM components. The mango orchards were visited and it was found that maximum number of females were exposed from the roots of host plants in the field (1.9 m2) and minimum numbers of females were recorded from the cracks of trees, sides of kacha roads, soil under tree canopy (0.16 m-2). The data revealed that the treatment with three measures (cultural, mechanical & chemical) were combined had maximum effect in reducing the population i.e., 98.46%. It was also concluded from the results that the measures in integrated form gave better results than the single treatment. Key Words: Mango; Drosicha mangiferae; Hibernation places; IPM INTRODUCTION solution. In general, the insecticides are considered to be the quick method for the control of insect pests but dependence Mango (Mangifera indica L.) a member of family on the pesticides has its own complications as WTO pointed Anacardiaceae is known as king of fruits for its sweetness, out, Phytosanitory standards, admissible limits of residues excellent flavor, delicious taste and high nutritive value by World Health Organization and many management (Singh, 1968; Litz, 1997). -
Papaya Mealybug (328)
Pacific Pests, Pathogens and Weeds - Online edition Papaya mealybug (328) Summary Worldwide distribution. On fruit trees, vegetables, root crops, ornamentals, weeds. An important papaya mealybug. Damage: (i) thick layers of mealybugs and white wax on fruit and leaves causing yellowing, stunting, fruit drop; (ii) sooty moulds grow on honeydew, covering leaves, and staining fruit. Eggs laid into egg sac underneath female; produce 'crawlers' (nymphs); these moult developing into females, up to 2.2 mm long, with yellow bodies, covered in white wax, fringed with waxy threads. Males, short-lived, fly-like insects with wings. Photo 1. Colonies of papaya mealybug, Paracoccus marginatus, along veins of papaya Spread by crawlers walking, or carried by wind, vehicles, animals, birds, on clothes, and the leaf. trade in plants. Natural enemies: ladybird beetles, wasp parasitoids (e.g., Acerophagus papayae). Cultural control: for ants: boiling water; prune low branches and remove weeds (to stop ants). Chemical control: use soap, horticultural or white oils (see Fact Sheet no. 56); avoid malathion and synthetic pyrethroids - they will kill natural enemies. Only use pyrethroids to kill ants. Common Name Photo 2. Crust of mealybugs and wax, papaya Papaya mealybug mealybug, Paracoccus marginatus, on papaya fruit. Scientific Name Paracoccus marginatus Photo 3. Masses of cotton wool-like wax over colony of papaya mealybug, Paracoccus marginatus. Photo 4. Adults and crawlers, papaya mealybug, Paracoccus marginatus. Photo 5. Slide-mounted adult female, papaya mealybug, Paracoccus marginatus. AUTHO R Grahame Jackson Information from W alker A et al. (2018) Papaya mealybug, Paracoccus marginatus W illiams and Granara de W illink (Insecta: Hemiptera: Pseudococcidae). -
Bionomics of the African Apefly (Spalgis Lemolea)
sustainability Article Bionomics of the African Apefly (Spalgis lemolea) as A Potential Natural Enemy of the Papaya Mealybug (Paracoccus marginatus) in Tanzania Sayuni P. Nasari 1,*, Anna C. Treydte 1, Patrick A. Ndakidemi 1 and Ernest R. Mbega 1 Department of Sustainable Agriculture, Biodiversity and Ecosystems Management, Nelson Mandela African Institution of Science and Technology, Arusha P. O. Box 447, Tanzania * Correspondence: [email protected] Received: 20 February 2020; Accepted: 2 April 2020; Published: 14 April 2020 Abstract: The African apefly (Spalgis lemolea Druce) is a potential natural enemy of the papaya mealybug (Paracoccus marginatus Williams and Granara de Willink). We studied the life history of apeflies in the laboratory at a temperature of 25–27 ◦C and a relative humidity of 55%–65% under a 12 h photoperiod condition. The papaya mealybugs and apefly larvae were collected from papaya plants in Tengeru, Arusha, Tanzania. The papaya mealybugs were introduced and allowed to multiply on potted sprouting potato plants in screened cages. In order to study the life cycle and predation of apeflies, an apefly egg was placed on an open screen-covered petri dish containing a moist blotter paper and observed for larva emergence. After the apefly larva emergence, a mixture of mealybug eggs (up to 1500), nymphs (200–250) and adults (100–150) was introduced in the petri dish each day and the consumption rate by the apefly larvae was quantified until the larvae reached pupal stage. Then, the apefly adults were collected and put into cages 30 cm 30 cm 30 cm containing × × cotton wool soaked in water, for observation of pre-mating, mating, egg-laying and life span. -
D:\JHPT Tropika\BC.JURNAL.DES08
52J. HPT J.Tropika. HPT Tropika Vol. 19, No. 1, 2019:ISSN: 521411-7525–63 Vol. 19, No. 1, March 2019 E-ISSN: 2461-0399 Pages: 52–63 DOI : 10.23960/j.hptt.11952-63 ASPECTS OF BIOLOGY OF Acerophagus papayae Noyes & Schauff (HYMENOPTERA: ENCYRTIDAE), PARASITOID OF THE PAPAYA MEALYBUG Megawati1, Aunu Rauf2, & Pudjianto2 1 Entomology Study Program, Graduate School, Bogor Agricultural University, Indonesia 2 Department of Plant Protection, Faculty of Agriculture, Bogor Agricultural University, Indonesia Jln. Kamper Kampus IPB Darmaga, Bogor 16680 E-mail: [email protected] ABSTRACT Aspects of biology of Acerophagus papayae Noyes & Schauff (Hymenoptera: Encyrtidae), parasitoid of papaya mealybug. Acerophagus papayae Noyes & Schauff (Hymenoptera: Encyrtidae) is an important parasitoid of the papaya mealybug, Paracoccus marginatus Williams & Granara de Willink (Hemiptera: Pseudococcidae). The study was conducted with the objective to determine various aspects of the biology of A. papayae which include the effect of diet on adult longevity, fecundity and progeny, host stage susceptibility and preference, the effect of host stages on immature development, body size, and sex ratio of progenies. Effects of diet on adult longevity was done in the absence of hosts. Fecundity was measured by the number of mealybugs parasitized. Host stage susceptibility and preference were carried out by exposing 2nd and 3rd nymphal instars and pre-reproductive adults of mealybugs to parasitoids. Results showed adult parasitoids fed with 10% honey solution lived almost fourfold longer than those provided only water. A. papayae parasitized 30.1±4.92 mealybugs, with a range of 13–60 mealybugs, during 5.8 days of adult life. -
Efficacy of Different Insecticides Under Laboratory Conditions Against
Journal of Entomology and Zoology Studies 2018; 6(2): 2855-2858 E-ISSN: 2320-7078 P-ISSN: 2349-6800 Efficacy of different insecticides under laboratory JEZS 2018; 6(2): 2855-2858 © 2018 JEZS conditions against Drosicha mangiferae Green Received: 12-01-2018 Accepted: 13-02-2018 (Homoptera: Margarodidae) collected from citrus Dr. Muhammad Babar Shahzad orchards of Sargodha, Pakistan Afzal Citrus Research Institute, Sargodha, Pakistan Dr. Muhammad Babar Shahzad Afzal, Zaheer Sikandar, Ansa Banazeer, Zaheer Sikandar Muhammad Nawaz Khan, Abdul Aziz, Muhammad Raza Salik and Citrus Research Institute, Sargodha, Pakistan Shaukat Nawaz Ansa Banazeer Abstract Department of Entomology, We tested the efficacy of eight different insecticides viz., acetamiprid, imidacloprid, profenofos, Faculty of Agricultural Sciences methidathion, bifenthrin, carbosulfan, buprofezin and spirotetramat against the adult female mango and Technology, Bahauddin mealybug Drosicha mangiferae in the laboratory using leaf-dip bioassay method. The insects were Zakariya University, Multan collected from citrus orchard of Citrus Research Institute, Sargodha and were tested on different Muhammad Nawaz Khan insecticide doses in the Entomology laboratory of Citrus Research Institute, Sargodha, Punjab, Pakistan, Citrus Research Institute, during the year 2017 in the month of April. The mortality data was analyzed by split plot design under Sargodha, Pakistan CRD using statistix 8.1 version software. Results indicated that methidathion (T4) produced significantly higher mortality of 73.57% seven days after treatment while mortality due to bifenthrin (T5) was Abdul Aziz 59.996% four days after treatment but it decreased to 20% seven days after treatment. Profenofos (T3) Citrus Research Institute, produced higher mortality (58.07%) seven days after treatment but it was significantly less as compared Sargodha, Pakistan to methidathion (T4). -
Paracoccus Marginatus, an Invasive Mealybug of Papaya and Its Biological Control – an Overview M
Journal of Biological Control, 26 (3): 201–216, 2012 Review Article Paracoccus marginatus, an invasive mealybug of papaya and its biological control – An overview M. MANI, C. SHIVARAJU and A. N. SHYLESHA* Division of Entomology & Nematology Indian Institute of Horticultural Research, Hessaraghatta, Bangalore 560 089, Karnataka, India *National Bureau of Agriculturally Important Insects, Bangalore 560 024, Karnataka, India *Corresponding author: E-mail: [email protected] ABSTRACT: The papaya mealybug, Paracoccus marginatus Williams and Granara de Willink (Hemiptera: Pseudococcidae) is native of Mexico and /or Central and North America. Since its description in 1992, it has invaded several Carbbean Islands, Florida, Sri Lanka, Indonesia, Taiwan, India, Bangladesh, West Africa, and it is likely to spread many other countries. It is highly polyphagus attacking more than 70 plant species causing severe loss. Insecticides failed to give adequate control of P. marginatus. On the other hand, natural enemies particularly, Acerophagus papayae Noyes and Schauff were highly useful to suppress the papaya mealybug. Its origin, distribution, taxonomy, biology, ecology, host range, natural enemies and methods of control particularly classical biological control are reviewed here. KEY WORDS: Paracoccus marginatus, invasive mealybug, Acerophagus papayae, biology, distribution, host range, natural enemies, taxonomy, classical biological control. (Article chronicle: Received: 30-05-2012 Revised: 16-06-2012 Accepted: 18-06-2012) INTRODUCTION Dominican Republic (CABI/EPPO, 2000) and Grenada in 1994, Antigua and Barbuda (CABI/EPPO, 2000), Saint Mealybugs throughout the world cause various Martin (Pollard, 1999) and The British Virgin Islands in economic problems. Paracoccus marginatus Williams 1996 (CABI/EPPO, 2000); USA (Florida) (Pollard,1999; and Granara de Willink, popularly known as papaya Miller and Miller, 2002; Walker et al., 2006), Haiti, mealybug (PMB) has invaded several countries and St. -
Biological Control of Papaya Mealybug, Paracoccus Marginatus (Williams and Granara De Willink) (Pseudococcidae: Hemiptera) on Papaya
Available online at www.ijpab.com Rasheed et al Int. J. Pure App. Biosci. 5 (2): 249-252 (2017) ISSN: 2320 – 7051 DOI: http://dx.doi.org/10.18782/2320-7051.2570 ISSN: 2320 – 7051 Int. J. Pure App. Biosci. 5 (2): 249-252 (2017) Research Article Biological Control of Papaya Mealybug, Paracoccus marginatus (Williams and Granara De Willink) (Pseudococcidae: Hemiptera) on Papaya V. Abdul Rasheed1*, T. Murali Krishna2, B. Bhaskar1 and K. Devaki2 1Department of Entomology, S.V. Agricultural College, Institute of Frontier Technology, Regional Agricultural Research Station, Tirupati, ANGRAU 2Department of Plant Pathology, S.V. Agricultural College, Tirupati, ANGRAU *Corresponding Author E-mail: [email protected] Received: 8.02.2017 | Revised: 20.02.2017 | Accepted: 21.02.2017 ABSTRACT Biological control of papaya mealybug by releasing parasitoid A. papayae at 100 numbers per hectare proved superior to unreleased field in causing reduction in mealybug population besides recording higher level of parasitoid activity. The mean initial mealybug population was 48.4 in parasitoid released field and 46.65 in unreleased field. The population of mealybugs at 15 and 30 Days After Release (DAR) was found to be 28.95 and 16.45 in parasitoid released field respectively. The pre-release mean population of parasitoid was 1.69 in released and 1.45 in unreleased field. At 30 DAR the population of parasitoid count was found to be 5.10 in released and 2.25 in unreleased field. Key words: Papaya mealybug, Paracoccus marginatus, Acerophagus papayae INTRODUCTION USDA and ARS researchers and Mexican coo Papaya mealybug is a polyphagous pest which perators as potential biological control agents.