A Two-Layer Biophysical Model of Cholinergic Neuromodulation in Olfactory Bulb

Total Page:16

File Type:pdf, Size:1020Kb

A Two-Layer Biophysical Model of Cholinergic Neuromodulation in Olfactory Bulb The Journal of Neuroscience, February 13, 2013 • 33(7):3037–3058 • 3037 Systems/Circuits A Two-Layer Biophysical Model of Cholinergic Neuromodulation in Olfactory Bulb Guoshi Li and Thomas A. Cleland Computational Physiology Laboratory, Department of Psychology, Cornell University, Ithaca, New York 14853 Cholinergic inputs from the basal forebrain regulate multiple olfactory bulb (OB) functions, including odor discrimination, perceptual learning,andshort-termmemory.Previousstudieshaveshownthatnicotiniccholinergicreceptoractivationsharpensmitralcellchemo- receptive fields, likely via intraglomerular circuitry. Muscarinic cholinergic activation is less well understood, though muscarinic recep- tors are implicated in olfactory learning and in the regulation of synchronized oscillatory dynamics in hippocampus and cortex. To understand the mechanisms underlying cholinergic neuromodulation in OB, we developed a biophysical model of the OB neuronal network including both glomerular layer and external plexiform layer (EPL) computations and incorporating both nicotinic and mus- carinic neuromodulatory effects. Our simulations show how nicotinic activation within glomerular circuits sharpens mitral cell chemo- receptive fields, even in the absence of EPL circuitry, but does not facilitate intrinsic oscillations or spike synchronization. In contrast, muscarinic receptor activation increases mitral cell spike synchronization and field oscillatory power by potentiating granule cell excit- ability and lateral inhibitory interactions within the EPL, but it has little effect on mitral cell firing rates and hence does not sharpen olfactory representations under a rate metric. These results are consistent with the theory that EPL interactions regulate the timing, ratherthantheexistence,ofmitralcellactionpotentialsandperformtheircomputationswithrespecttoaspiketiming-basedmetric.This general model suggests that the roles of nicotinic and muscarinic receptors in olfactory bulb are both distinct and complementary to one another, together regulating the effects of ascending cholinergic inputs on olfactory bulb transformations. Introduction receptive fields of MCs, the principal output neurons of the OB, The olfactory bulb (OB) is innervated by cholinergic fibers aris- as well as animals’ behavioral discrimination of similar odors ing from the basal forebrain (Macrides et al., 1981; Za´borszky et (Chaudhury et al., 2009), likely via an intraglomerular circuit that al., 1986) that strongly regulate odor representations and olfac- is independent of OB topography (Mandairon et al., 2006). How- tory plasticity (Wilson et al., 2004). Disruption of cholinergic ever, the concerted effects of muscarinic neuromodulation have activity within the olfactory system reduces rodents’ discrimina- not yet been computationally elucidated in OB models. tion of perceptually similar odorants and impairs short-term In slice preparations from rodent OB and accessory olfactory odor memory (Roman et al., 1993; Linster et al., 2001; Mandai- bulb, muscarinic agonists potentiate excitatory synaptic inputs ron et al., 2006), whereas enhancing cholinergic function sharp- from MCs to granule cells (GCs) and also enhance GC inhibition ens mitral cell (MC) tuning curves (Ma and Luo, 2012) and of MCs by increasing GC intrinsic excitability (Pressler et al., improves discrimination among similar odorants (Doty et al., 2007; Ghatpande and Gelperin, 2009; Smith and Araneda, 2010; 1999; Mandairon et al., 2006; Chaudhury et al., 2009). Aging and Takahashi and Kaba, 2010). These dense reciprocal synaptic in- neurodegenerative disorders both have been associated with the teractions between the MC and GC populations comprise the degeneration of olfactory cholinergic regulation (Durand et al., external plexiform layer (EPL) of the OB (Fig. 1A) and are the 1998; Mandairon et al., 2011), suggesting that understanding the primary source of gamma-band local field potential (LFP) oscil- circuit mechanisms of cholinergic neuromodulation in the OB lations within the OB (Neville and Haberly, 2003; Lagier et al., could provide valuable insights into these processes. 2004). As gamma oscillations are indicative of the dynamical syn- The effects of acetylcholine (ACh) in the OB are mediated by chronization of neuronal populations (Kashiwadani et al., 1999; both nicotinic and muscarinic cholinergic receptor subtypes Rojas-Líbano and Kay, 2008), and the regulation of spike timing (Castillo et al., 1999). Nicotinic activation sharpens the chemo- is thought to be an important feature of OB output (Linster and Cleland, 2010; Gschwend et al., 2012), muscarinic effects on this circuit are likely to regulate afferent information exported from Received June 13, 2012; revised Nov. 21, 2012; accepted Dec. 14, 2012. Authorcontributions:T.A.C.designedresearch;G.L.performedresearch;G.L.analyzeddata;G.L.andT.A.C.wrote the OB even if mitral cell spike rates are not affected. Moreover, as the paper. muscarinic activation in vivo presumably coincides with nicotinic The authors declare no competing financial interests. activation, it is important to understand how these two mecha- This work was supported by NIDCD Grants DC009948 and DC012249. nisms interact. Correspondence should be addressed to Guoshi Li, Department of Psychology, Cornell University, Ithaca, NY 14853. E-mail: [email protected]. We developed a biophysically constrained network model of DOI:10.1523/JNEUROSCI.2831-12.2013 the OB including both glomerular-layer and EPL computations Copyright © 2013 the authors 0270-6474/13/333037-22$15.00/0 and incorporating both nicotinic and muscarinic neuromodula- 3038 • J. Neurosci., February 13, 2013 • 33(7):3037–3058 Li and Cleland • Cholinergic Model of Olfactory Bulb GCs, for a total of 150 model cells. Each glomerulus in the model con- tained one MC and one PGC that were coactivated by afferent (odor) input[i.e., the PGC was modeled as a PGo cell (Shao et al., 2009)]. Each MC was reciprocally synaptically connected to its coglomerular PGC; specifically, the MC excited the PGC dendritic spine, whereas the latter inhibited the MC tuft compartment via graded inhibition (Fig. 1A; Cle- land and Sethupathy, 2006). In the EPL, deep to the glomerular layer, the lateral dendrites of mitral cells also make a large number of reciprocal synaptic contacts with granule cell spines (Isaacson and Strowbridge, 1998). As these lateral dendrites of mitral cells extend broadly across the olfactory bulb, and support action potential propagation, the MC–GC connectivity matrix is not likely to depend strongly on distance [see Cleland (2010) for discussion of this point]. In the model, each MC connected to GCs with a uniform probability (p ϭ 0.3). Hence, for a network with 25 MCs and 100 GCs, one MC received an average of 30 GC inputs and one GC received an average of 7.5 MC inputs. The location of each dendrodendritic contact along the MC lateral dendrite was deter- mined by drawing randomly from a uniform distribution. Because of the explicit modeling of synaptic locations along the length of the dendritic cable, the network dynamics of the model thereby incorporated a realistic distribution of lateral propagation delays. Mitral cell model. All model neurons in the network were conductance- based compartmental models. The MC model consisted of a soma (single compartment; diameter, 20 ␮m; length, 25 ␮m), a primary (apical) den- drite (five compartments; diameter, 3.5 ␮m; length, 370 ␮m), a second- ary (lateral) dendrite (seven compartments; diameter, 3.4 ␮m; length, 500 ␮m), and a glomerular tuft at the distal end of the primary dendrite (one compartment; diameter, 0.5 ␮m; length, 20 ␮m). The values for the specific membrane resistance, membrane capacitance, and cytoplasmic ϭ ⍀ 2 ϭ ␮ (axial) resistivity were, respectively, Rm 30 K -cm , Cm 1.2 F/ 2 ϭ ⍀ cm , and Ra 70 -cm. Cellular dimensions and passive electrotonic parameters were based on experimental measurements (Shen et al., Ϫ 1999). The leak current reversal potential (EL) was set to 60 mV, and the resulting resting potential was Ϫ68.8 mV. The MC model cell contained the following active ionic currents, con- sistent with previous modeling studies (Bhalla and Bower, 1993; Davison et al., 2000; Bathellier et al., 2006; Rubin and Cleland, 2006): fast, spike- generating (I ) and persistent (I ) sodium currents; a potassium de- Figure1. A,SchematicrepresentationofdendrodendriticsynapticconnectivityamongMCs, Na NaP layed rectifier (I ); two transient potassium currents (fast-inactivating PGCs,andGCs.Thefirstcomputationallayeroftheolfactorybulbistheglomerularlayer(GL),in DR IA and slow-inactivating IKS); an L-type calcium current (ICaL); and a which each glomerulus comprises a single input from a convergent olfactory sensory neuron ϩ Ca 2 -dependent potassium current (I ). The kinetics of I , I , I , population(OSNinput)alongwithdendrodendriticinteractionsbetweenanMCandaPGC.Two KCa Na DR CaL and I were based on those of a previous MC model by Bhalla and glomeruli are depicted. Mitral cells innervating different glomeruli interact with one another KCa Bower (1993), whereas the kinetics of I and I were derived from (indirectly) in the second computational layer, the EPL. Here, MC lateral dendrites excite GC NaP KS Wang (1993), who modeled layer V cortical pyramidal neurons. The dendrites and GCs inhibit MCs, producing a functionally lateral inhibitory network among MCs. mathematical description of I was taken from a previous model by See Materials and Methods for details. B, Example
Recommended publications
  • Biophysical Network Modelling of the Dlgn Circuit: Different Effects of Triadic and Axonal Inhibition on Visual Responses of Relay Cells
    RESEARCH ARTICLE Biophysical Network Modelling of the dLGN Circuit: Different Effects of Triadic and Axonal Inhibition on Visual Responses of Relay Cells Thomas Heiberg1, Espen Hagen1,2, Geir Halnes1, Gaute T. Einevoll1,3* 1 Department of Mathematical Sciences and Technology, Norwegian University of Life Sciences, Ås, Norway, 2 Institute of Neuroscience and Medicine (INM-6) and Institute for Advanced Simulation (IAS-6) and a11111 JARA BRAIN Institute I, Jülich Research Centre, Jülich, Germany, 3 Department of Physics, University of Oslo, Oslo, Norway * [email protected] Abstract OPEN ACCESS Despite its prominent placement between the retina and primary visual cortex in the early Citation: Heiberg T, Hagen E, Halnes G, Einevoll GT visual pathway, the role of the dorsal lateral geniculate nucleus (dLGN) in molding and regu- (2016) Biophysical Network Modelling of the dLGN lating the visual signals entering the brain is still poorly understood. A striking feature of the Circuit: Different Effects of Triadic and Axonal Inhibition on Visual Responses of Relay Cells. PLoS dLGN circuit is that relay cells (RCs) and interneurons (INs) form so-called triadic synapses, Comput Biol 12(5): e1004929. doi:10.1371/journal. where an IN dendritic terminal can be simultaneously postsynaptic to a retinal ganglion cell pcbi.1004929 (GC) input and presynaptic to an RC dendrite, allowing for so-called triadic inhibition. Taking Editor: Arnd Roth, University College London, advantage of a recently developed biophysically detailed multicompartmental model for an UNITED KINGDOM IN, we here investigate putative effects of these different inhibitory actions of INs, i.e., triadic Received: August 29, 2015 inhibition and standard axonal inhibition, on the response properties of RCs.
    [Show full text]
  • Synaptic Ultrastructure of Functionally and Morphologically Characterized Neurons of the Superficial Spinal Dorsal Horn Cat
    The Journal of Neuroscience, June 1989, g(8): 1848-l 883 Synaptic Ultrastructure of Functionally and Morphologically Characterized Neurons of the Superficial Spinal Dorsal Horn Cat M. Wthelyi, A. R. Light, and E. Ft. Per1 Department of Physiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, and Second Department of Anatomy, Semmelweis University, Budapest, Hungary Recordings of neuronal unitary discharges evoked by pri- neurons, regardless of gross configuration, were found to mary afferent input were made in the superficial part of the have vesicles in their dendrites, but 3 nocireceptiveneurons spinal cord’s dorsal horn, the marginal zone and substantia received synapses from presynaptic dendritic profiles. gelatinosa (also known as laminae I and II) , using fine mi- cropipette electrodes filled with HRP. After physiological The superficial dorsal horn, laminae I and II, of the spinal cord characterization with respect to primary afferent input, HRP (Brown and Rethelyi, 1981) receivesprimary afferent input prin- was injected intracellularly iontophoretically into the record- cipally or exclusively from fine fibers, myelinated and unmy- ed neuron. Following histochemical processing, the neurons elinated, that pass through the lateral division of the dorsal so delineated were studied at the light and electron micro- rootlets (Sindou et al., 1974; Snyder, 1977; Light and Perl, 1979a, scopic levels. No clear relationship between function and b). However, from the functional standpoint, the input to the either general cellular configuration or synaptic ultrastruc- region from the periphery is diverse (Kumazawa and Perl, 1978; ture appeared in these analyses, although the concentration Rethelyi et al., 1979; Perl, 1984). There have been numerous of dendritic distribution could be related to the nature of descriptions of the structure of neurons and terminal axon sys- primary afferent excitation.
    [Show full text]
  • Spatiotemporal Adaptation in the Corticogeniculate Loop
    Physik-Department Technische UniversitÄat MuncÄ hen Theoretische Physik Spatiotemporal Adaptation in the Corticogeniculate Loop Ulrich Hillenbrand VollstÄandiger Abdruck der von der FakultÄat furÄ Physik der Technischen UniversitÄat MuncÄ hen zur Erlangung des akademischen Grades eines Doktors der Naturwissenschaften genehmigten Dissertation. Vorsitzender: Univ.-Prof. Dr. M. Kleber PruferÄ der Dissertation: 1. Univ.-Prof. Dr. J. L. van Hemmen 2. Univ.-Prof. Dr. E. Sackmann Die Dissertation wurde am 29.02.2000 bei der Technischen UniversitÄat MuncÄ hen eingereicht und durch die FakultÄat furÄ Physik am 16.01.2001 angenommen. Acknowledgments It is my pleasure to thank Professor Dr. J. Leo van Hemmen for cultivating an environment at his institute for creative exploration and growth of new ideas. Open-mindedness and, at the same time, a strong sense for scien- ti¯c value are of particular importance and delicacy in a ¯eld at the interface between empirical biological diversity and mathematical rigor. Leo van Hem- men combines both in his attitude and has always promoted the according style of work. Moreover, I like to thank the individuals who populated this environment. They always were supportive in that each one of them showed sincere interest in the other's scienti¯c concerns. More subtilely, the distinguished sense of humor that we shared helped to overcome one or the other tense period. I am especially indebted to those of my colleagues who spent a signi¯cant amount of their time on maintaining our local computer network, most no- tably Armin Bartsch, Moritz Franosch, and Oliver Wenisch. Without their kind support, things would have got stuck in computer trouble more than once.
    [Show full text]
  • Mitral Cell Spike Synchrony Modulated by Dendrodendritic Synapse Location
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by PubMed Central ORIGINAL RESEARCH ARTICLE published: 30 January 2012 COMPUTATIONAL NEUROSCIENCE doi: 10.3389/fncom.2012.00003 Mitral cell spike synchrony modulated by dendrodendritic synapse location Thomas S. McTavish 1*, Michele Migliore 2, Gordon M. Shepherd 1 and Michael L. Hines 3 1 Department of Neurobiology, School of Medicine, Yale University, New Haven, CT, USA 2 Institute of Biophysics, National Research Council, Palermo, Italy 3 Department of Computer Science, Yale University, New Haven, CT, USA Edited by: On their long lateral dendrites, mitral cells of the olfactory bulb form dendrodendritic Ken Miller, Columbia University, synapses with large populations of granule cell interneurons. The mitral-granule cell USA microcircuit operating through these reciprocal synapses has been implicated in inducing Reviewed by: synchrony between mitral cells. However, the specific mechanisms of mitral cell Brent Doiron, University of Pittsburgh, USA synchrony operating through this microcircuit are largely unknown and are complicated Carmen Canavier, LSU Health by the finding that distal inhibition on the lateral dendrites does not modulate mitral Sciences Center, USA cell spikes. In order to gain insight into how this circuit synchronizes mitral cells *Correspondence: within its spatial constraints, we built on a reduced circuit model of biophysically Thomas S. McTavish, Department of realistic multi-compartment mitral and granule cells to explore systematically the roles of Neurobiology, Yale School of Medicine, 333 Cedar Street, dendrodendritic synapse location and mitral cell separation on synchrony. The simulations New Haven, CT, 06510-3206, USA. showed that mitral cells can synchronize when separated at arbitrary distances through e-mail: [email protected] a shared set of granule cells, but synchrony is optimally attained when shared granule cells form two balanced subsets, each subset clustered near to a soma of the mitral cell pairs.
    [Show full text]
  • Kalziumdynamik in Körnerzellen Des Bulbus Olfactorius Der Maus
    Aus dem Physiologischen Institut der Ludwig-Maximilians-Universität München Vorstand Prof. Dr. M.Götz Lehrstruhl für Physiologische Genomik Kalziumdynamik in Körnerzellen des Bulbus olfactorius der Maus Dissertation zum Erwerb des Doktorgrades der Humanbiologie an der Medizinischen Fakultät der Ludwig-Maximilians-Universität zu München vorgelegt von Olga Stroh-Vasenev aus Tomsk 2012 Mit Genehmigung der Medizinischen Fakultät der Universität München 1. Berichterstatter: Prof. Dr. Bernd Sutor Mitberichterstatter: Prof. Dr. Thomas Witt Priv.Doz. Dr. Eike Krause Mitbetreuung durch den promovierten Mitarbeiter: Dr. Veronica Egger Dekan: Prof. Dr. Dr.h.c. Maximilian Reiser, FACR, FRCR Tag der mündlichen Prüfung: 18.09.2012 „Wäre das menschliche Gehirn so simpel, dass wir es erfassen könnten, wären wir so simpel, dass wir es nicht könnten.“ Immanuel Kant Inhaltsverzeichnis 0 Zusammenfassung 1 0.1 Summary 1 1 Einleitung 3 1.1 Synaptische Verschaltung im Bulbus olfactorius 3 1.2 Dendritische synaptische Kalziumsignale in Körnerzellen 4 1.3 Langsamer Zeitverlauf der Körnerzell-vermittelten Inhibition 5 1.4 Synaptische Körnerzell-Aktionspotenziale 6 1.5 Rolle der TRP-Kanäle beim neuronalen Kalziumeintritt 7 1.6 Ziele der vorliegenden Arbeit 9 1.6.1 Aufklärung der molekularen Identität von ICAN (Stroh et al. 2012) 9 1.6.2 Endogene Pufferung von Körnerzell-Ca2+-Signalen (Egger und Stroh, 9 2009) 1.7 Eigener Beitrag 9 1.8 Referenzen 10 2 Ergebnisse 13 2.1 Publikation Stroh O. et al., Journal of Neuroscience 2012 13 2.2 Publikation Egger V. & Stroh O., Journal of Physiology 2009 56 3 Veröffentlichungen 93 4 Danksagung 94 0 Zusammenfassung Der häufigste neuronale Verbindungstyp im Riechkolben (Bulbus olfactorius) der Säuger ist die reziproke dendrodendritische Synapse zwischen den glutamatergen Mitralzellen (den Prin- zipalneuronen des Bulbus) und den GABAergen Körnerzellen.
    [Show full text]
  • Synaptic Integration of Adult-Generated Olfactory Bulb Granule Cells: Basal Axodendritic Centrifugal Input Precedes Apical Dendrodendritic Local Circuits
    Synaptic Integration of Adult-Generated Olfactory Bulb Granule Cells: Basal Axodendritic Centrifugal Input Precedes Apical Dendrodendritic Local Circuits The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters Citation Whitman, M. C., and C. A. Greer. 2007. “Synaptic Integration of Adult-Generated Olfactory Bulb Granule Cells: Basal Axodendritic Centrifugal Input Precedes Apical Dendrodendritic Local Circuits.” Journal of Neuroscience 27 (37) (September 12): 9951–9961. doi:10.1523/jneurosci.1633-07.2007. Published Version 10.1523/JNEUROSCI.1633-07.2007 Citable link http://nrs.harvard.edu/urn-3:HUL.InstRepos:37156019 Terms of Use This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http:// nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of- use#LAA The Journal of Neuroscience, September 12, 2007 • 27(37):9951–9961 • 9951 Development/Plasticity/Repair Synaptic Integration of Adult-Generated Olfactory Bulb Granule Cells: Basal Axodendritic Centrifugal Input Precedes Apical Dendrodendritic Local Circuits Mary C. Whitman1 and Charles A. Greer1,2 Departments of 1Neurobiology and 1Neurosurgery, Yale University School of Medicine, New Haven, Connecticut 06520-8082 The adult mammalian olfactory bulb (OB) receives a continuing influx of new interneurons. Neuroblasts from the subventricular zone (SVZ) migrate into the OB and differentiate into granule cells and periglomerular cells that are presumed to integrate into the synaptic circuits of the OB. We have used retroviral infection into the SVZ of mice to label adult-generated granule cells and follow their differen- tiation and integration into OB circuitry.
    [Show full text]
  • Gap Junctions Linking the Dendritic Network of Gabaergic Interneurons in the Hippocampus
    The Journal of Neuroscience, February 15, 2000, 20(4):1519–1528 Gap Junctions Linking the Dendritic Network of GABAergic Interneurons in the Hippocampus Takaichi Fukuda and Toshio Kosaka Department of Anatomy and Neurobiology, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan The network of GABAergic interneurons connected by chemical of the well known vertical type (presumptive basket cells and synapses is a candidate for the generator of synchronized axoaxonic cells) and those of another horizontal type constitute oscillations in the hippocampus. We present evidence that the dendritic network at the light microscopic level. The extent parvalbumin (PV)-containing GABAergic neurons in the rat hip- of dendritic fields of single PV neurons in the lateral direction pocampal CA1 region, known to form a network by mutual was 538 Ϯ 201 ␮m(n ϭ 5) in the vertical type and 838 Ϯ 159 synaptic contacts, also form another network connected by ␮m(n ϭ 6) in the horizontal type. Our previous and present dendrodendritic gap junctions. Distal dendrites of PV neurons observations indicate that PV-containing GABAergic neurons in run parallel to the alveus (hippocampal white matter) and es- the hippocampus form the dual networks connected by chem- tablish multiple contacts with one another at the border be- ical and electrical synapses located at axosomatic and dendro- tween the stratum oriens and the alveus. In electron micro- dendritic contact sites, respectively. Gap junctions linking the scopic serial section analysis, gap junctions could be identified dendritic network may mediate coherent synaptic inputs to clearly at 24% of these contact sites.
    [Show full text]
  • Olfactory Behavior and Physiology Are Disrupted in Prion Protein Knockout Mice
    ARTICLES Olfactory behavior and physiology are disrupted in prion protein knockout mice Claire E Le Pichon1, Matthew T Valley1, Magdalini Polymenidou2,3, Alexander T Chesler1, Botir T Sagdullaev1,3, Adriano Aguzzi2 & Stuart Firestein1 The prion protein PrPC is infamous for its role in disease, but its normal physiological function remains unknown. Here we found a previously unknown behavioral phenotype of Prnp–/– mice in an odor-guided task. This phenotype was manifest in three Prnp knockout lines on different genetic backgrounds, which provides strong evidence that the phenotype is caused by a lack of PrPC rather than by other genetic factors. Prnp–/– mice also showed altered behavior in a second olfactory task, suggesting that the phenotype is olfactory specific. Furthermore, PrPC deficiency affected oscillatory activity in the deep layers of the main olfactory bulb, as well as dendrodendritic synaptic transmission between olfactory bulb granule and mitral cells. Notably, both the behavioral and electrophysiological alterations found in Prnp–/– mice were rescued by transgenic neuronal-specific expression of PrPC. These data suggest that PrPC is important in the normal processing of sensory information by the olfactory system. Despite two decades of research, the function of the cellular prion sensory epithelium to cortex, consists of only two projection synapses protein PrPC is still unknown. It had been hoped the Prnp–/– mouse (peripheral sensory neuron to mitral cell in the olfactory bulb would provide evidence for the function of this protein that is so widely and mitral cell to pyramidal cell in the cortex) and two layers of expressed in all vertebrates, at all stages and in almost all tissues, inhibitory lateral processing (periglomerular and granule cells) in the especially in the brain.
    [Show full text]
  • View Full Page
    The Journal of Neuroscience, February 7, 2018 • 38(6):1443–1461 • 1443 Development/Plasticity/Repair POU6f1 Mediates Neuropeptide-Dependent Plasticity in the Adult Brain Cynthia K. McClard,1,2 XMikhail Y. Kochukov,1 Isabella Herman,2,3 Zhandong Liu,4,5 XAiden Eblimit,6 X Yalda Moayedi,7 Joshua Ortiz-Guzman,3 XDaniel Colchado,8 Brandon Pekarek,1 Sugi Panneerselvam,8 X Graeme Mardon,1 and XBenjamin R. Arenkiel1,3,5,7 1Department of Molecular and Human Genetics, 2Medical Scientist Training Program, 3Program in Developmental Biology, 4Department of Pediatrics at Texas Children’s Hospital, 5Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, 6Human Genome Sequencing Center, Department of Molecular and Human Genetics, 7Department of Neuroscience, Baylor College of Medicine, Houston, Texas 77030, and 8Rice University, Houston, Texas 77005 The mouse olfactory bulb (OB) features continued, activity-dependent integration of adult-born neurons, providing a robust model with whichtoexaminemechanismsofplasticityintheadultbrain.WepreviouslyreportedthatlocalOBinterneuronssecretetheneuropeptide corticotropin-releasing hormone (CRH) in an activity-dependent manner onto adult-born granule neurons and that local CRH signaling promotes expression of synaptic machinery in the bulb. This effect is mediated via activation of the CRH receptor 1 (CRHR1), which is developmentally regulated during adult-born neuron maturation. CRHR1 is a GS-protein-coupled receptor that activates CREB- dependent transcription in the presence of CRH. Therefore, we hypothesized that locally secreted CRH activates CRHR1 to initiate circuit plasticity programs. To identify such programs, we profiled gene expression changes associated with CRHR1 activity in adult-born neurons of the OB. Here, we show that CRHR1 activity influences expression of the brain-specific Homeobox-containing transcription factor POU Class 6 Homeobox 1 (POU6f1).
    [Show full text]
  • Synaptic Processes
    Biological Signal Processing Richard B. Wells Chapter 5 Synaptic Processes § 1. The Signaling Process in the Chemical Synapse As the principal signaling junction in neural networks, the chemical synapse always involves two neuron cells. The presynaptic neuron is the cell regarded as the signal source. The post- synaptic neuron is regarded as the signal destination or "sink." A synapse may not properly be said to "belong" to either neuron by itself. Rather, it is a biological structure one must view as belonging either to both or to neither. Most neuroscientists prefer the former to the latter in thinking about the synapse, and this is the convention used in this textbook. The structure of the chemical synapse can be regarded as consisting of three distinct parts: (1) the presynaptic terminal, which is regarded as part of the presynaptic neuron; (2) the post- synaptic compartment, which is regarded as part of the postsynaptic neuron: and (3) the synaptic cleft, which is a small extracellular region, typically on the order of 20 to 30 nm in width. Under electron microscope viewing, the cleft is seen to contain filaments of material joining the pre- and post-synaptic cells. These filaments are thought to provide a firm attachment keeping the pre- and post-synaptic regions of the synapse carefully aligned with each other. However, these filaments are absent or largely absent during early synapse formation, during which time a nascent synapse might or might not become established. The formation of a filament "scaffolding" is usually regarded as the sign that a synapse has become firmly established.
    [Show full text]
  • The Nervous System 9/24/2009
    COGS17 ‐ 01‐The Nervous System 9/24/2009 The Nervous System Mary ET Boyle, Ph.D. Department of Cognitive Science UCSD What’s the big deal? 1 COGS17 ‐ 01‐The Nervous System 9/24/2009 Detect Evaluate Decide Respond Analysis of the nervous system to understand the biological basis for behavior. Modern studies ◦ Neuroanatomists ◦ Neurochemists ◦ Neurophysiologists ◦ Neuropsychologists Neuroscience – term introduced in mid-1960s 2 COGS17 ‐ 01‐The Nervous System 9/24/2009 The brain must know what is happening outside in the environment. •perceive •remember •decide •act sensory neurons motor neurons interneurons Peripheral Nervous System (PNS) Central Nervous System ( CNS) Organization 3 COGS17 ‐ 01‐The Nervous System 9/24/2009 Detects/processes environmental stimuli: Somatic Nervous System Regulates internal organs: Autonomic Nervous System Organization of PNS Detects environmental stimuli: Somatic Nervous System Regulates internal organs: Autonomic Nervous System Decision! Central nervous system 4 COGS17 ‐ 01‐The Nervous System 9/24/2009 Brain Spinal Cord Components of the CNS 5 COGS17 ‐ 01‐The Nervous System 9/24/2009 Anterior Posterior Dl Left Dorsal Right Ventral Anatomical directions 6 COGS17 ‐ 01‐The Nervous System 9/24/2009 Horizontal section— Shows structures viewed from above/below 7 COGS17 ‐ 01‐The Nervous System 9/24/2009 Sagittal section— Divides structures into right and left parts Coronal section (frontal section)— Shows views from the front/back 8 COGS17 ‐ 01‐The Nervous System 9/24/2009 Review of Anatomical Directions Anterior—toward
    [Show full text]
  • Identification of the SNARE Proteins Involved in the Postsynaptic Membrane Trafficking
    Identification of the SNARE proteins involved inthe postsynaptic membrane trafficking Julia Krapivkina To cite this version: Julia Krapivkina. Identification of the SNARE proteins involved in the postsynaptic membrane trafficking. Neurons and Cognition [q-bio.NC]. Université de Bordeaux, 2016. English. NNT: 2016BORD0343. tel-01910805 HAL Id: tel-01910805 https://tel.archives-ouvertes.fr/tel-01910805 Submitted on 2 Nov 2018 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. THÈSE Pour le DOCTORAT DE L’UNIVERSITE DE BORDEAUX Ecole doctorale Sciences de la Vie et de la Santé Mention : Sciences, Technologie, Santé Option : Neurosciences Présentée et soutenue publiquement Le 29 novembre 2016 Par Julia Krapivkina Né le 20 juillet 1988 à Essentouki Identification of the SNARE proteins involved in the postsynaptic membrane trafficking Sous la direction de : David PERRAIS Co-directeur : Camin DEAN Membres du jury M GARRET Maurice, Université de Bordeaux Président du Jury Mme DESNOS Claire, Université Paris Descartes Rapporteur M El Far Oussama, Université Aix Marseille Rapporteur Mme DANGLOT Lydia, Université Paris Diderot Examinateur M LANG Jochen, Université de Bordeaux Examinateur M PERRAIS David, Université é de Bordeaux Directeur de thèse Acknowledgements 1 Acknowledgements To my husband and my little Sunrise 2 Acknowledgements 3 Acknowledgements Acknowledgements I want to thank Claire Desnos (Université Paris Descartes) and Oussama El Far (Université Aix Marseille) for kindly accepting to read and evaluate the manuscript.
    [Show full text]