Eemian Greenland SMB Strongly Sensitive to Model Choice

Total Page:16

File Type:pdf, Size:1020Kb

Eemian Greenland SMB Strongly Sensitive to Model Choice Eemian Greenland SMB strongly sensitive to model choice Andreas Plach, Kerim Nisancioglu, Sébastien Le Clec’H, Andreas Born, Petra Langebroek, Chuncheng Guo, Michael Imhof, Thomas Stocker To cite this version: Andreas Plach, Kerim Nisancioglu, Sébastien Le Clec’H, Andreas Born, Petra Langebroek, et al.. Eemian Greenland SMB strongly sensitive to model choice. Climate of the Past, European Geosciences Union (EGU), 2018, 14 (10), pp.1463-1485. 10.5194/cp-14-1463-2018. hal-02975965 HAL Id: hal-02975965 https://hal.archives-ouvertes.fr/hal-02975965 Submitted on 26 Oct 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Clim. Past, 14, 1463–1485, 2018 https://doi.org/10.5194/cp-14-1463-2018 © Author(s) 2018. This work is distributed under the Creative Commons Attribution 4.0 License. Eemian Greenland SMB strongly sensitive to model choice Andreas Plach1, Kerim H. Nisancioglu1,2, Sébastien Le clec’h3,4, Andreas Born1,5,6, Petra M. Langebroek7, Chuncheng Guo7, Michael Imhof8,5, and Thomas F. Stocker5,6 1Department of Earth Science, University of Bergen and Bjerknes Centre for Climate Research, Bergen, Norway 2Centre for Earth Evolution and Dynamics, University of Oslo, Oslo, Norway 3Laboratoire des Sciences du Climat et de l’Environnement, LSCE/IPSL, CEA-CNRS-UVSQ, Université Paris-Saclay, 91191 Gif-sur-Yvette, France 4Earth System Science and Department Geografie, Vrije Universiteit Brussel, Brussels, Belgium 5Climate and Environmental Physics, Physics Institute, University of Bern, Bern, Switzerland 6Oeschger Centre for Climate Change Research, University of Bern, Bern, Switzerland 7Uni Research Climate and Bjerknes Centre for Climate Research, Bergen, Norway 8Laboratory of Hydraulics, Hydrology and Glaciology, ETH Zürich, Zürich, Switzerland Correspondence: Andreas Plach ([email protected]) Received: 3 July 2018 – Discussion started: 9 July 2018 Revised: 20 September 2018 – Accepted: 5 October 2018 – Published: 19 October 2018 Abstract. Understanding the behavior of the Greenland ice SMB. Whether model resolution or the SMB method is most sheet in a warmer climate, and particularly its surface mass important depends on the climate state and in particular the balance (SMB), is important for assessing Greenland’s po- prevailing insolation pattern. We suggest that future Eemian tential contribution to future sea level rise. The Eemian in- climate model intercomparison studies should include SMB terglacial period, the most recent warmer-than-present pe- estimates and a scheme to capture SMB uncertainties. riod in Earth’s history approximately 125 000 years ago, pro- vides an analogue for a warm summer climate over Green- land. The Eemian is characterized by a positive Northern Hemisphere summer insolation anomaly, which complicates 1 Introduction Eemian SMB calculations based on positive degree day esti- mates. In this study, we use Eemian global and regional cli- The projections of future sea level rise remain uncertain, es- mate simulations in combination with three types of SMB pecially the magnitude and the rate of the contributions from models – a simple positive degree day, an intermediate com- the Greenland ice sheet (GrIS) and the Antarctic ice sheet plexity, and a full surface energy balance model – to evaluate (Church et al., 2013; Mengel et al., 2016). In addition to im- the importance of regional climate and model complexity for proving dynamical climate models, it is important to test their estimates of Greenland’s SMB. We find that all SMB mod- ability to simulate documented warm climates. Past inter- els perform well under the relatively cool pre-industrial and glacial periods are relevant examples as these were periods late Eemian. For the relatively warm early Eemian, the dif- of the recent past with relatively stable warm climates per- ferences between SMB models are large, which is associated sisting over several millennia. They provide benchmarks for with whether insolation is included in the respective mod- testing key dynamical processes and feedbacks under a dif- els. For all simulated time slices, there is a systematic dif- ferent background climate state. Quaternary interglacial pe- ference between globally and regionally forced SMB mod- riods exhibit a geological configuration similar to today (e.g., els, due to the different representation of the regional climate gateways and topography) and have been frequently used as over Greenland. We conclude that both the resolution of the analogues for future climates (e.g., Yin and Berger, 2015). simulated climate as well as the method used to estimate the In particular, the most recent interglacial period, the Eemian SMB are important for an accurate simulation of Greenland’s (approximately 130 to 116 ka) has been used to better under- stand ice sheet behavior during a warm climate. Published by Copernicus Publications on behalf of the European Geosciences Union. 1464 A. Plach et al.: Eemian Greenland SMB strongly sensitive to model choice Compared to the pre-industrial period, the Eemian is es- Ganopolski and Robinson, 2011; Lunt et al., 2013). However, timated to have had less Arctic summer sea ice, warmer the higher availability of proxy data compared to preced- Arctic summer temperatures, and up to 2 ◦C warmer annual ing interglacial periods makes the Eemian a better candidate global average temperatures (CAPE Last Interglacial Project to investigate warmer conditions over Greenland (Yin and Members, 2006; Otto-Bliesner et al., 2013; Capron et al., Berger, 2015). Furthermore, Masson-Delmotte et al.(2011) 2014). Ice core records from NEEM (the North Greenland found a similar Arctic summer warming over Greenland with Eemian Ice Drilling project in northwest Greenland) indi- the higher Eemian insolation as for a future doubling of at- ◦ cate a local warming of 8:5 ± 2:5 C(Landais et al., 2016) mospheric CO2 given fixed pre-industrial insolation. compared to pre-industrial levels. However, total gas con- In this study, we assess the importance of the represen- tent measurements from the deep Greenland ice cores GISP2, tation of small-scale climate features and the impact of the GRIP, NGRIP, and NEEM indicate that the Eemian surface SMB model complexity (i.e., using three SMB models) when elevation at these locations was no more than a few hun- calculating the SMB for warm climates such as the Eemian. dred meters lower than present (Raynaud et al., 1997; NEEM High-resolution pre-industrial and Eemian Greenland cli- community members, 2013). Proxy data derived from coral mate is provided by downscaling global time slice simula- reefs show a global mean sea level at least 4 m above the tions with the Norwegian Earth System Model (NorESM) present level (Overpeck et al., 2006; Kopp et al., 2013; Dut- using the regional climate model (RCM) MAR (Modèle At- ton et al., 2015). mosphérique Régional). Based on these global and regional Several studies have investigated the Eemian GrIS. Nev- climate simulations, three different SMB models are applied, ertheless, there is no consensus on the extent to which the including (1) a simple, empirical PDD model, (2) an interme- GrIS retreated during the Eemian. Scientists have applied diate complexity SMB model explicitly accounting for solar ice core reconstructions (e.g., Letréguilly et al., 1991; Greve, insolation, as well as (3) the full SEB model implemented in 2005) and global climate models (GCMs) of various com- MAR. plexities (e.g., Otto-Bliesner et al., 2006; Stone et al., 2013) A review of previous Eemian GrIS studies is given in combined with regional models (e.g., Robinson et al., 2011; Sect.2, followed by the models, data, and experiment de- Helsen et al., 2013) to create Eemian temperature and precip- sign in this study discussed in Sect.3. The results of the pre- itation forcing over Greenland. Based on these reconstructed industrial and Eemian simulations are presented in Sects.4 or simulated climates, different models have been used to cal- and5, respectively. The challenges and uncertainties are dis- culate the surface mass balance (SMB) in Greenland for the cussed in Sect.6. Finally, a summary of the study is given in Eemian. The vast majority of these studies use the positive Sect.7. degree day (PDD) method introduced by Reeh(1989), which is based on an empirical relation between melt and temper- ature. PDD has been shown to work well under present-day 2 Comparison of previous Eemian conditions (e.g., Braithwaite, 1995) and has been widely used Greenland studies by the community due to its simplicity and ease of integra- tion with climate and ice sheet models. More recent studies Scientists started modeling the Eemian GrIS more than employ physically based approaches to calculate the SMB, 25 years ago (Letréguilly et al., 1991). However, a clear pic- ranging from empirical models (e.g., Robinson et al., 2010) ture of the minimum extent and the shape of the Eemian to surface energy balance (SEB) models (e.g., Helsen et al., GrIS is still missing. The estimated contributions from the 2013). GrIS to the Eemian sea level rise differ largely and vary be- It is important to note that the relatively warm summer tween 0.4 and 5.6 m. An overview of previous studies and (and cold winter) in the Northern Hemisphere during the their estimated Eemian sea level rise from Greenland is given early Eemian (130–125 ka) was caused by a different insola- in Fig.1. tion regime compared to today, not increased concentrations Early studies used Eemian temperature anomalies derived of greenhouse gases (GHGs) which are primarily respon- from ice core records and perturbed a present-day temper- sible for the recent observed global warming (e.g., Lange- ature field in order to get estimated Eemian temperatures broek and Nisancioglu, 2014).
Recommended publications
  • Cryogenian Glaciation and the Onset of Carbon-Isotope Decoupling” by N
    CORRECTED 21 MAY 2010; SEE LAST PAGE REPORTS 13. J. Helbert, A. Maturilli, N. Mueller, in Venus Eds. (U.S. Geological Society Open-File Report 2005- M. F. Coffin, Eds. (Monograph 100, American Geophysical Geochemistry: Progress, Prospects, and New Missions 1271, Abstracts of the Annual Meeting of Planetary Union, Washington, DC, 1997), pp. 1–28. (Lunar and Planetary Institute, Houston, TX, 2009), abstr. Geologic Mappers, Washington, DC, 2005), pp. 20–21. 44. M. A. Bullock, D. H. Grinspoon, Icarus 150, 19 (2001). 2010. 25. E. R. Stofan, S. E. Smrekar, J. Helbert, P. Martin, 45. R. G. Strom, G. G. Schaber, D. D. Dawson, J. Geophys. 14. J. Helbert, A. Maturilli, Earth Planet. Sci. Lett. 285, 347 N. Mueller, Lunar Planet. Sci. XXXIX, abstr. 1033 Res. 99, 10,899 (1994). (2009). (2009). 46. K. M. Roberts, J. E. Guest, J. W. Head, M. G. Lancaster, 15. Coronae are circular volcano-tectonic features that are 26. B. D. Campbell et al., J. Geophys. Res. 97, 16,249 J. Geophys. Res. 97, 15,991 (1992). unique to Venus and have an average diameter of (1992). 47. C. R. K. Kilburn, in Encyclopedia of Volcanoes, ~250 km (5). They are defined by their circular and often 27. R. J. Phillips, N. R. Izenberg, Geophys. Res. Lett. 22, 1617 H. Sigurdsson, Ed. (Academic Press, San Diego, CA, radial fractures and always produce some form of volcanism. (1995). 2000), pp. 291–306. 16. G. E. McGill, S. J. Steenstrup, C. Barton, P. G. Ford, 28. C. M. Pieters et al., Science 234, 1379 (1986). 48.
    [Show full text]
  • The Eemian - Local Sequences, Global Perspectives: Introduction
    Geologie en Mijnbouw / Netherlands Journal of Geosciences 79 (2/3): 129-133 (2000) The Eemian - local sequences, global perspectives: introduction Thijs van Kolfschoten1 & Philip L. Gibbard2 1 Faculty of Archaeology, Leiden University, P.O. Box 9515, 2300 RA LEIDEN, the Netherlands; Corresponding author; e-mail: [email protected] 2 Godwin Institute of Quaternary Research, Department of Geography, University of Cambridge, Downing Street, CAMBRIDGE CB2 3EN, England; e-mail:[email protected] Received: May 2000; accepted in revised form: 20 June 2000 G The history of this special issue gation and discussion on the Middle/Late Pleistocene boundary on the original type area of the Eemian in The history of this volume goes back to a 1973 IN- the Netherlands. The Eemian sequence was often QUA congress in New Zealand, where an INQUA used as reference and furthermore the term 'Eemian' Commission of Stratigraphy working group on major was widely used to identify the last interglacial far be­ subdivisions of the Pleistocene was established. The yond western central Europe. Examination of the Pleistocene series/epoch was hitherto generally subdi­ available data from the Eemian type area showed that vided into the Lower/Early, Middle and Upper/Late a re-evaluation of existing data and collection of criti­ Pleistocene (see, among others, Zeuner, 1935, 1959) cal new data were needed to define an unambiguous but the boundaries between these subseries/sube- stratigraphical boundary. Although the identification pochs were not formally defined. The boundary be­ of boundaries is central to stratigraphical subdivision, tween the Early and Middle Pleistocene was, in the it is nevertheless the Eemian as an entity that is of European literature, put at the base of the Cromerian particular interest for understanding the development Complex (Zagwijn, 1963) or at the Brunhes/Matuya- of a complete interglacial cycle.
    [Show full text]
  • Sea Level and Global Ice Volumes from the Last Glacial Maximum to the Holocene
    Sea level and global ice volumes from the Last Glacial Maximum to the Holocene Kurt Lambecka,b,1, Hélène Roubya,b, Anthony Purcella, Yiying Sunc, and Malcolm Sambridgea aResearch School of Earth Sciences, The Australian National University, Canberra, ACT 0200, Australia; bLaboratoire de Géologie de l’École Normale Supérieure, UMR 8538 du CNRS, 75231 Paris, France; and cDepartment of Earth Sciences, University of Hong Kong, Hong Kong, China This contribution is part of the special series of Inaugural Articles by members of the National Academy of Sciences elected in 2009. Contributed by Kurt Lambeck, September 12, 2014 (sent for review July 1, 2014; reviewed by Edouard Bard, Jerry X. Mitrovica, and Peter U. Clark) The major cause of sea-level change during ice ages is the exchange for the Holocene for which the direct measures of past sea level are of water between ice and ocean and the planet’s dynamic response relatively abundant, for example, exhibit differences both in phase to the changing surface load. Inversion of ∼1,000 observations for and in noise characteristics between the two data [compare, for the past 35,000 y from localities far from former ice margins has example, the Holocene parts of oxygen isotope records from the provided new constraints on the fluctuation of ice volume in this Pacific (9) and from two Red Sea cores (10)]. interval. Key results are: (i) a rapid final fall in global sea level of Past sea level is measured with respect to its present position ∼40 m in <2,000 y at the onset of the glacial maximum ∼30,000 y and contains information on both land movement and changes in before present (30 ka BP); (ii) a slow fall to −134 m from 29 to 21 ka ocean volume.
    [Show full text]
  • The History of Ice on Earth by Michael Marshall
    The history of ice on Earth By Michael Marshall Primitive humans, clad in animal skins, trekking across vast expanses of ice in a desperate search to find food. That’s the image that comes to mind when most of us think about an ice age. But in fact there have been many ice ages, most of them long before humans made their first appearance. And the familiar picture of an ice age is of a comparatively mild one: others were so severe that the entire Earth froze over, for tens or even hundreds of millions of years. In fact, the planet seems to have three main settings: “greenhouse”, when tropical temperatures extend to the polesand there are no ice sheets at all; “icehouse”, when there is some permanent ice, although its extent varies greatly; and “snowball”, in which the planet’s entire surface is frozen over. Why the ice periodically advances – and why it retreats again – is a mystery that glaciologists have only just started to unravel. Here’s our recap of all the back and forth they’re trying to explain. Snowball Earth 2.4 to 2.1 billion years ago The Huronian glaciation is the oldest ice age we know about. The Earth was just over 2 billion years old, and home only to unicellular life-forms. The early stages of the Huronian, from 2.4 to 2.3 billion years ago, seem to have been particularly severe, with the entire planet frozen over in the first “snowball Earth”. This may have been triggered by a 250-million-year lull in volcanic activity, which would have meant less carbon dioxide being pumped into the atmosphere, and a reduced greenhouse effect.
    [Show full text]
  • Timing and Tempo of the Great Oxidation Event
    Timing and tempo of the Great Oxidation Event Ashley P. Gumsleya,1, Kevin R. Chamberlainb,c, Wouter Bleekerd, Ulf Söderlunda,e, Michiel O. de Kockf, Emilie R. Larssona, and Andrey Bekkerg,f aDepartment of Geology, Lund University, Lund 223 62, Sweden; bDepartment of Geology and Geophysics, University of Wyoming, Laramie, WY 82071; cFaculty of Geology and Geography, Tomsk State University, Tomsk 634050, Russia; dGeological Survey of Canada, Ottawa, ON K1A 0E8, Canada; eDepartment of Geosciences, Swedish Museum of Natural History, Stockholm 104 05, Sweden; fDepartment of Geology, University of Johannesburg, Auckland Park 2006, South Africa; and gDepartment of Earth Sciences, University of California, Riverside, CA 92521 Edited by Mark H. Thiemens, University of California, San Diego, La Jolla, CA, and approved December 27, 2016 (received for review June 11, 2016) The first significant buildup in atmospheric oxygen, the Great situ secondary ion mass spectrometry (SIMS) on microbaddeleyite Oxidation Event (GOE), began in the early Paleoproterozoic in grains coupled with precise isotope dilution thermal ionization association with global glaciations and continued until the end of mass spectrometry (ID-TIMS) and paleomagnetic studies, we re- the Lomagundi carbon isotope excursion ca. 2,060 Ma. The exact solve these uncertainties by obtaining accurate and precise ages timing of and relationships among these events are debated for the volcanic Ongeluk Formation and related intrusions in because of poor age constraints and contradictory stratigraphic South Africa. These ages lead to a more coherent global per- correlations. Here, we show that the first Paleoproterozoic global spective on the timing and tempo of the GOE and associated glaciation and the onset of the GOE occurred between ca.
    [Show full text]
  • Late Pleistocene Climate Change and Its Impact on Palaeogeography of the Southern Baltic Sea Region
    Late Pleistocene climate change and its impact on palaeogeography of the southern Baltic Sea region Leszek Marks Polish Geological Institute–National Research Institute, Warsaw, Poland Department of Climate Geology, University of Warsaw, Warsaw, Poland Main items • Regional bakground for climatic impact of the Eemian sea • Outline of Eemian climate changes in the adjoining terrestrial area • Principles of Central European climate during the last glacial stage • Climate change at the turn of Pleistocene and Holocene Surface hydrography of the Baltic Sea PRESENT EEMIAN SALINITY OF SURFACE WATER: dark blue – >30‰, light blue – 25-30‰, brown – 15-25‰, yellow – 5-15‰, red – <5‰ CURRENTS INDICATED BY ARROWS: red – warm surface current, blue – cold bottom current, green – brackish surface current (≈10‰), stripped red/yellow – coastal water surface current (>15‰), yellow – major source of river runoff Funder 2002) Eemian sea in the Lower Vistula Valley Region Cierpięta research borehole Cierpięta Makowska (1986), modified Chronology of Eemian based on pollen stratigraphy RPAZ after Mamakowa (1988, 1989) Head et al. (2005) Correlation of Eemian LPAZ with RPAZ in southern Baltic region Knudsen et al. (2012) Chronology of Eemian sea in southern Baltic region Top of Eemian deposits ca. 8500–11 000 yrs Boundary E5/E6 7000 lat Top of marine Eemian deposits Boundary E4/E5 3000 yrs Boundary E3/E4 750 yrs Boundary E2/E3 300 yrs E1 or E2 <300 yrs Bottom of marine Eemian deposits Boundary Saalian/Eemian 0 (126 ka BP) Based on correlation with regional pollen
    [Show full text]
  • Greenland Climate Simulations Show High Eemian Surface Melt Which Could Explain Reduced Total Air Content in Ice Cores
    Clim. Past, 17, 317–330, 2021 https://doi.org/10.5194/cp-17-317-2021 © Author(s) 2021. This work is distributed under the Creative Commons Attribution 4.0 License. Greenland climate simulations show high Eemian surface melt which could explain reduced total air content in ice cores Andreas Plach1,2,3, Bo M. Vinther4, Kerim H. Nisancioglu1,5, Sindhu Vudayagiri4, and Thomas Blunier4 1Department of Earth Science, University of Bergen and Bjerknes Centre for Climate Research, Bergen, Norway 2Department of Meteorology and Geophysics, University of Vienna, Vienna, Austria 3Climate and Environmental Physics, Physics Institute, University of Bern, Bern, Switzerland 4Centre for Ice and Climate, Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark 5Centre for Earth Evolution and Dynamics, University of Oslo, Oslo, Norway Correspondence: Andreas Plach ([email protected]) Received: 27 July 2020 – Discussion started: 18 August 2020 Revised: 27 November 2020 – Accepted: 1 December 2020 – Published: 29 January 2021 Abstract. This study presents simulations of Greenland sur- 1 Introduction face melt for the Eemian interglacial period (∼ 130000 to 115 000 years ago) derived from regional climate simula- tions with a coupled surface energy balance model. Surface The Eemian interglacial period (∼ 130000 to 115 000 years melt is of high relevance due to its potential effect on ice ago; hereafter ∼ 130 to 115 ka) was the last period with a core observations, e.g., lowering the preserved total air con- warmer-than-present summer climate on Greenland (CAPE tent (TAC) used to infer past surface elevation. An investi- Last Interglacial Project Members, 2006; Otto-Bliesner et al., gation of surface melt is particularly interesting for warm 2013; Capron et al., 2014).
    [Show full text]
  • Pleistocene - the Ice Ages
    Pleistocene - the Ice Ages Sleeping Bear Dunes National Lakeshore Pleistocene - the Ice Ages • Stage is now set to understand the nature of flora and vegetation of North America and Great Lakes • Pliocene (end of Tertiary) - most genera had already originated (in palynofloras) • Flora was in place • Vegetation units (biomes) already derived Pleistocene - the Ice Ages • In the Pleistocene, earth experienced intensification towards climatic cooling • Culminated with a series of glacial- interglacial cycles • North American flora and vegetation profoundly influenced by these “ice-age” events Pleistocene - the Ice Ages What happened in the Pleistocene? 18K ya • Holocene (Recent) - the present interglacial started ~10,000 ya • Wisconsin - the last glacial (Würm in Europe) occurred between 115,000 ya - 10,000 ya • Height of Wisconsin glacial activity (most intense) was 18,000 ya - most intense towards the end of the glacial period Pleistocene - the Ice Ages What happened in the Pleistocene? • up to 100 meter drop in sea level worldwide • coastal plains become extensive • continental islands disappeared and land bridges exposed 100 m line Beringia Pleistocene - the Ice Ages What happened in the Pleistocene? • up to 100 meter drop in sea level worldwide • coastal plains become extensive • continental islands disappeared and land bridges exposed Malaysia to Asia & New Guinea and New Caledonia to Australia Present Level 100 m Level Pleistocene - the Ice Ages What happened in the Pleistocene? • up to 100 meter drop in sea level worldwide • coastal
    [Show full text]
  • Timing, Duration, and Transitions of the Last Interglacial Asian Monsoon Daoxian Yuan Et Al
    R EPORTS 24. C. E. Forest, P. H. Stone, A. P. Sokolov, M. R. Allen, M. damage function indicated above that produces a ways for non-CO2 gases and for other anthropogenic D. Webster, Science 295, 113 (2001). ϳ45% reduction in the probability of DAI[50‰] with a radiative forcing agents such as aerosols would also 25. Transient temperature change in 2100 is not, in 0% PRTP produces a reduction of only ϳ10% and an affect the potential for DAI. general, equilibrium change. The inertia of the cli- order of magnitude lower “optimal” carbon tax when 29. R. J. Lempert, M. E. Schlesinger, Clim. Change 45, 387 mate system is such that climate change will contin- we used a 3% PRTP, the value employed by the original (2000). ue long after greenhouse gas concentrations are sta- DICE model. We chose to use a 0% PRTP for Fig. 3 30. T. Wigley, Clim. Change, in press. bilized or emissions eliminated. Some outcomes that exactly for this reason—that using a high discount rate 31. C. Azar, H. Rodhe, Science 276, 1818 (1997). avoid exceeding a DAI threshold until 2100 will ex- masks the variation in model results because of changes 32. B. C. O’Neill, M. Oppenheimer, Science 296, 1971 ceed that threshold in the next century. Therefore, in parameters other than the discount rate, and observ- (2002). the time horizon of analysis will affect the potential ing variation in model results due to other parameters is 33. We thank T. Wigley, K. Kuntz-Duriseti, J. Bushinsky, for DAI. However, what is “dangerous” is itself a central to our analysis.
    [Show full text]
  • Late Quaternary Changes in Climate
    SE9900016 Tecnmcai neport TR-98-13 Late Quaternary changes in climate Karin Holmgren and Wibjorn Karien Department of Physical Geography Stockholm University December 1998 Svensk Kambranslehantering AB Swedish Nuclear Fuel and Waste Management Co Box 5864 SE-102 40 Stockholm Sweden Tel 08-459 84 00 +46 8 459 84 00 Fax 08-661 57 19 +46 8 661 57 19 30- 07 Late Quaternary changes in climate Karin Holmgren and Wibjorn Karlen Department of Physical Geography, Stockholm University December 1998 Keywords: Pleistocene, Holocene, climate change, glaciation, inter-glacial, rapid fluctuations, synchrony, forcing factor, feed-back. This report concerns a study which was conducted for SKB. The conclusions and viewpoints presented in the report are those of the author(s) and do not necessarily coincide with those of the client. Information on SKB technical reports fromi 977-1978 {TR 121), 1979 (TR 79-28), 1980 (TR 80-26), 1981 (TR81-17), 1982 (TR 82-28), 1983 (TR 83-77), 1984 (TR 85-01), 1985 (TR 85-20), 1986 (TR 86-31), 1987 (TR 87-33), 1988 (TR 88-32), 1989 (TR 89-40), 1990 (TR 90-46), 1991 (TR 91-64), 1992 (TR 92-46), 1993 (TR 93-34), 1994 (TR 94-33), 1995 (TR 95-37) and 1996 (TR 96-25) is available through SKB. Abstract This review concerns the Quaternary climate (last two million years) with an emphasis on the last 200 000 years. The present state of art in this field is described and evaluated. The review builds on a thorough examination of classic and recent literature (up to October 1998) comprising more than 200 scientific papers.
    [Show full text]
  • The Ice Age in Pennsylvania 13
    Educational Series 6 PENNSYLVANIA AND THE ICE AGE An Equal Opportunity/ Affirmative Action Employer Recycled Paper 2200–BK–DCNR3061 COMMONWEALTH OF PENNSYLVANIA Tom Ridge, Governor DEPARTMENT OF CONSERVATION AND NATURAL RESOURCES John C. Oliver, Secretary OFFICE OF CONSERVATION AND ENGINEERING SERVICES Richard G. Sprenkle, Deputy Secretary BUREAU OF TOPOGRAPHIC AND GEOLOGIC SURVEY Donald M. Hoskins, Director FRONT COVER: The wooly mammoth—a Pennsylvania resident during the Ice Age (modified from Thomas, D. J., and others, 1987, Pleistocene and Holocene geology of a dynamic coast, Annual Field Conference of Pennsyl- vania Geologists, 52nd, Erie, Pa., Guidebook, front cover). Educational Series 6 Pennsylvania and the Ice Age by W. D. Sevon and Gary M. Fleeger PENNSYLVANIA GEOLOGICAL SURVEY FOURTH SERIES HARRISBURG 1999 When reproducing material from this book, please cite the source as follows: Sevon, W. D., and Fleeger, G. M., 1999, Pennsylvania and the Ice Age (2nd ed.): Pennsylvania Geological Survey, 4th ser., Educational Series 6, 30 p. Pennsylvania World Wide Web site: www.state.pa.us Department of Conservation and Natural Resources World Wide Web site: www.dcnr.state.pa.us Bureau of Topographic and Geologic Survey World Wide Web site: www.dcnr.state.pa.us/topogeo Illustrations drafted by John G. Kuchinski First Edition, 1962 Fifth Printing, May 1978 Second Edition, May 1999 PENNSYLVANIA AND THE ICE AGE by W. D. Sevon and Gary M. Fleeger Have you heard the story of the Ice Age, a time when large sheets of moving ice (glaciers) blanketed the northern half of North America? Unbelievable though it may seem, half of our continent was once buried beneath thousands of feet of ice.
    [Show full text]
  • The Sangamonian Stage and the Laurentide Ice Sheet Le Sangamonien Et La Calotte Glaciaire Laurentidienne Die Sangamonische Zeit Und Die Laurentische Eisdecke Denis A
    Document généré le 4 oct. 2021 02:19 Géographie physique et Quaternaire The Sangamonian Stage and the Laurentide Ice Sheet Le Sangamonien et la calotte glaciaire laurentidienne Die sangamonische Zeit und die laurentische Eisdecke Denis A. St-Onge La calotte glaciaire laurentidienne Résumé de l'article The Laurentide Ice Sheet La présente revue des travaux sur le Sangamonien (jusqu'à juin 1986) effectués Volume 41, numéro 2, 1987 dans des régions clés démontre qu'il n'y a pas encore de réponse satisfaisante à la question suivante: « À quel moment la glace, qui allait devenir la calotte URI : https://id.erudit.org/iderudit/032678ar glaciaire laurentidienne, a-t-elle commencer à s'accumuler? » Dans la plupart DOI : https://doi.org/10.7202/032678ar des régions, la séquence stratigraphique ne fait que signaler l'existence probable d'une période interglaciaire, sans toutefois permettre de déterminer le moment où la glace a commencé à s'accumuler après l'intervalle climatique Aller au sommaire du numéro chaud. Il existe toutefois quelques indices. Les sédiments d'un delta glaciolacustres de la Formation de Scarborough, dans la région de Toronto, et le Till de Bécancour, dans la région de Trois-Rivières, datent probablement du Éditeur(s) Sangamonien (sous-phases isotopiques marines 5d-b). Le Till d'Adam, dans les basses terres de la baie James, leur est probablement corrélatif. Dans les Les Presses de l'Université de Montréal régions atlantiques du Canada, en particulier à l'île du Cap-Breton, des restes de plantes indiquent que le climat au cours du Sangamonien moyen aurait été ISSN très semblable à celui de la période de 11 000 à 12 000 ans BP.
    [Show full text]