Chemistry Challenges and Solutions

Total Page:16

File Type:pdf, Size:1020Kb

Chemistry Challenges and Solutions COURSE GUIDE Chemistry Challenges and Solutions A 13-part multimedia course in introductory chemistry Produced by the Harvard-Smithsonian Center for Astrophysics 1 Chemistry: Challenges and Solutions is produced by the Harvard-Smithsonian Center for Astrophysics © 2013 Annenberg Foundation All rights reserved. ISBN: 1-57680-902-1 Funding for Chemistry: Challenges and Solutions is provided by Annenberg Learner (formerly Annenberg/CPB), a unit of the Annenberg Foundation, uses media and telecommunications to advance excellent teaching in American schools. Annenberg Learner funds educational series and teacher professional development courses and workshops that are distributed free to school and other educational and community organizations nationwide on the Web and are sold in hard copy. To purchase copies of our videos and guides, or to learn more about our other professional development materials and teaching resources, contact us by phone or email, or visit us on the Web. 1-800-LEARNER [email protected] www.learner.org 2 TABLE OF CONTENTS About the Course ............................................................................................................................. 5 Unit 1 Matter and the Rise of Atomic Theory: The Art of the Meticulous ..................... 9 Unit 2 The Behavior of Particles ............................................................................................21 Unit 3 Atoms and Light: Exploring Atomic and Electronic Structure ............................33 Unit 4 Organizing Atoms and Electrons: The Periodic Table and the Formulation of Compounds ........................................................................47 Unit 5 Making Molecules: Lewis Structures and Molecular Geometries .......................63 Unit 6 Quantifying Chemical Reactions ................................................................................75 Unit 7 The Energy in Chemical Reactions: Thermochemistry and Reaction Energies ..................................................................................................89 Unit 8 When Chemicals Meet Water ..................................................................................103 Unit 9 Equilibrium and Advanced Thermodynamics: The Delicate Balance of Chemical Reactions ...............................................................................................117 Unit 10 Acids and Bases: The Voyage of the Proton ...........................................................133 Unit 11 The Metallic World .....................................................................................................149 Unit 12 Kinetics and Nuclear Chemistry: Rates of Reaction ...........................................165 Unit 13 Modern Materials and the Solid State ....................................................................177 3 4 Chemistry Challenges and Solutions ABOUT THE COURSE Course Overview Matter makes up the world around us, and by studying the properties, composition, and behavior of matter, chemists can manipulate it to help improve daily life. From developing drugs to fight cancer to designing systems to help reduce carbon dioxide emissions, chemistry is at the fore- front of solving everyday problems. By covering the content of a general introductory chemistry course, this course is designed to reveal how chemistry is a discipline that is integral to our understanding of how the world oper- ates. The course itself consists of 13 units, which include text, interactives, and 13 half hour vid- eos. The written text provides the backbone to understanding fundamental chemical principles, while the videos put a human face to chemistry by providing a bird’s eye view of the chemistry content discussed in the text and exploring real world applications. The interactives reinforce content discussed in both the text and videos. Course Guide Components This guide is designed to help teachers use the course material to teach an introductory level chemistry course. Below is a description of each component of the course guide. Unit Overview The unit overview provides a brief look at what the whole unit covers. The goals of the unit are stated here. Learning Objectives and Applicable Standards This is a list that explains what the participants of this course should be able to do and under- stand as a result of completing the unit. Key Concepts and People This section provides a list of the major concepts and people discussed in the unit. Video Overview The video overview summarizes the key concepts discussed in the video. Generally, we recom- mend that students watch the video before reading the text. 5 About the Course Video Segments Descriptions The videos are split into segments, which include real world applications, history of chemistry, laboratory demonstrations, chemistry concepts explained by the host, and current chemistry research. The video segment descriptions explain what is covered in each segment of the half hour show. Some teachers may wish to watch certain segments of the videos that relate specifi- cally to sections of the text or other activities or demonstrations described in the guide. Text Content Overview This provides an overview of the concepts covered in the written text and shows how the text is organized. Interactives There are three interactives for this course: Historical Timeline of Chemistry, Control a Haber-Bosch Ammonia Plant, and Chemistry of Running. The interactives section of the course guide describes how each interactive relates to the content discussed in the specific unit. A separate lesson plan and worksheet are available online for the Control a Haber-Bosch Ammonia Plant Interactive. Tips and Suggestions for Teaching this Unit This section points out specific concepts from the unit that are typically difficult for students to understand and provides advice for addressing these difficulties. It also highlights common misconceptions students may have about the related materials and ways to address those misconceptions. Checking Prior Thinking The “checking prior thinking” section provides general questions to see what students think they know about the material. The goal is to elicit prior thinking, including misconceptions. Before Watching the Video This is a list of questions that should be given to students to answer while they watch the video. The questions are designed to help students think about chemistry concepts covered in the video. After Watching the Video This section provides a list of questions to ask students after they have watched the videos in order to help reinforce concepts covered in the video. It may also be helpful to revisit the pre-video questions or the “checking prior thinking” questions to see if students’ thinking has changed. Group Activities The course guide outlines some group activities that are designed to complement material presented in the unit. Each activity has an objective describing the learning goals of the activity, as well as sections that include: a list of materials for the activity, procedure, discussion questions, safety hazards, and disposal considerations. 6 About the Course Going Deeper This is a list of questions designed to help students think critically about the topics discussed in the unit. These are more open-ended questions that are good for both a group discussion and a journal reflection. Before the Next Unit This section describes how students can prepare for the next unit. For Professional Development This section is for teachers who are taking this course for professional development credit. It provides links to readings from educational research literature as well as questions to help teachers reflect on the readings. About the Contributors COURSE DEVELOPER Christopher Morse Dr. Christopher Morse is a Lecturer in Chemistry at Olin College. Dr. Morse studied at Dart- mouth College before earning his doctoral degree in inorganic chemistry at the Massachusetts Institute of Technology in the lab of Alan Davison where he was a National Science Foundation Predoctoral Fellow. Before coming to Olin College, Dr. Morse was a faculty member in the chemistry department at Tufts University, where his courses covered both graduate and under- graduate curricula. At Tufts, he successfully ran the Summer Institute on College Teaching for seven years and served as the Graduate Training Coordinator, with the responsibility for the pedagogical training of the graduate students, especially those interested in careers in academia. At Olin, Dr. Morse teaches courses in general and organic chemistry. He recently co-authored a textbook for a course about art, art history, and art preservation from a chemical perspective. Additionally, Dr. Morse is the science editor at Sporcle.com, a quiz site where he coordinates and creates study guides and chemistry quizzes for students. COURSE GUIDE WRITERS Karen Atkinson Dr. Karen Atkinson is an associate professor of chemistry at Bunker Hill Community College (BHCC). Dr. Atkinson earned her B.A. in chemistry and medieval/renaissance studies from Wellesley College and her doctoral degree in chemistry from Northeastern University. She has prior teaching experience at Northeastern’s University College (now the College of Professional Studies) and Boston College. Dr. Atkinson serves as the liaison for BHCC’s Science and 7 About the Course Engineering Department for various outside research opportunities for BHCC students, including Boston University, Massachusetts Institute of Technology, and Wellesley College. She also developed
Recommended publications
  • Chemistry Grade Level 10 Units 1-15
    COPPELL ISD SUBJECT YEAR AT A GLANCE ​ ​ ​ ​​ ​ ​​ ​ ​ ​ ​ ​ ​ GRADE HEMISTRY UNITS C LEVEL 1-15 10 Program Transfer Goals ​ ​ ​ ​ ● Ask questions, recognize and define problems, and propose solutions. ​ ​​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ● Safely and ethically collect, analyze, and evaluate appropriate data. ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ● Utilize, create, and analyze models to understand the world. ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ● Make valid claims and informed decisions based on scientific evidence. ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ● Effectively communicate scientific reasoning to a target audience. ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ PACING 1st 9 Weeks 2nd 9 Weeks 3rd 9 Weeks 4th 9 Weeks ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ Unit 1 Unit 2 Unit 3 Unit 4 Unit 5 Unit 6 Unit Unit Unit Unit Unit Unit Unit Unit Unit ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ 7 8 9 10 11 12 13 14 15 1.5 wks 2 wks 1.5 wks 2 wks 3 wks 5.5 wks ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ 1.5 2 2.5 2 wks 2 2 2 wks 1.5 1.5 ​ ​ ​ ​ wks wks wks wks wks wks wks Assurances for a Guaranteed and Viable Curriculum ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ Adherence to this scope and sequence affords every member of the learning community clarity on the knowledge and skills ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ on which each learner should demonstrate proficiency. In order to deliver a guaranteed and viable curriculum, our team ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ commits to and ensures the following understandings: ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ Shared Accountability: Responding
    [Show full text]
  • Calorimetry the Science of Measuring Heat Generated Or Consumed During a Chemical Reaction Or Phase Change
    February 05, 2014 Calorimetry the science of measuring heat generated or consumed during a chemical reaction or phase change What is going to happen when the burner is lit? February 05, 2014 Experimental Design Chemical changes involve potential energy, which cannot be measured directly Chemical reactions absorb or release energy with the surroundings, which cause a change in temperature of the surroundings (and this can be measured) In a calorimetry experiment, we set up the experiment so all of the energy from the reaction (the system) is exchanged with the surroundings ∆Esystem = ∆Esurroundings Chemical System Surroundings (water) Endothermic Change February 05, 2014 Chemical System Surroundings (water) Exothermic Change ∆Esystem = ∆Esurroundings February 05, 2014 There are three main calorimeter designs: 1) Flame calorimeter -a fuel is burned below a metal container filled with water 2) Bomb Calorimeter -a reaction takes place inside an enclosed vessel with a surrounding sleeve filled with water 3) Simple Calorimeter -a reaction takes place in a polystyrene cup filled with water Example #1 A student assembles a flame calorimeter by putting 350 grams of water into a 15.0 g aluminum can. A burner containing ethanol is lit, and as the ethanol is burning the temperature of the water increases by 6.30 ˚C and the mass of the ethanol burner decreases by 0.35 grams. Use this information to calculate the molar enthalpy of combustion of ethanol. February 05, 2014 The following apparatus can be used to determine the molar enthalpy of combustion of butan-2-ol. Initial mass of the burner: 223.50 g Final mass of the burner : 221.25 g water Mass of copper can + water: 230.45 g Mass of copper can : 45.60 g Final temperature of water: 67.0˚C Intial temperature of water : 41.3˚C Determine the molar enthalpy of combustion of butan-2-ol.
    [Show full text]
  • Stainless Steels in Ammonia Production
    Stainless Steels in Ammonia Production Committee of Stainless Steel Producers American Iron and Steel Institute Washington, D.C. CONTENTS INTRODUCTION ...................... 4 PROCESS DESCRIPTION ....... 5 CORROSIVES IN AMMONIA PROCESSES .......... 5 CONSIDERATIONS FOR SELECTING STAINLESS STEELS .................................... 6 Desulfurization of Natural Gas ................. 6 Catalytic Steam Reforming of Natural Gas ................. 6 Carbon Monoxide Shift ......... 8 Removal of Carbon Dioxide . 10 Methanation .......................... 11 Synthesis of Ammonia ......... 11 Turbine-Driven Centrifugal Compression Trains ........ 14 STAINLESS STEELS ................ 15 Metallurgical Structure ......... 16 High-Temperature Mechanical Properties ..... 16 Thermal Conductivity ........... 20 Oxidation Resistance ........... 21 Sulfidation Resistance .......... 22 REFERENCES .......................... 22 The material presented in this booklet has been prepared for the general information of the reader. It should not be used without first securing competent advice with respect to its suitability for any given application. While the material is believed to be technically correct, neither the Committee of Stainless Steel Pro- ducers nor the companies represented on the The Committee of Stainless Steel Producers acknowledges the help Committee warrant its suitability for any gen- by Gregory Kobrin, Senior Consultant, Materials Engineering, E.I. eral or particular use. DuPont de Nemours & Company in assembling data for this booklet. single-train plants came increasing demands on materials of construc- INTRODUCTION tion. The process for making am- monia is considered to be only Approximately 12 elements are es- moderately corrosive, so considera- sential to plant growth. Of these, nit- ble use is made of carbon and low- rogen is the main nutrient and is re- alloy steels for vessels and piping. quired in much larger amounts than However, numerous applications any other element.
    [Show full text]
  • 2020 Stainless Steels in Ammonia Production
    STAINLESS STEELS IN AMMONIA PRODUCTION A DESIGNERS’ HANDBOOK SERIES NO 9013 Produced by Distributed by AMERICAN IRON NICKEL AND STEEL INSTITUTE INSTITUTE STAINLESS STEELS IN AMMONIA PRODUCTION A DESIGNERS’ HANDBOOK SERIES NO 9013 Originally, this handbook was published in 1978 by the Committee of Stainless Steel Producers, American Iron and Steel Institute. The Nickel Institute republished the handbook in 2020. Despite the age of this publication the information herein is considered to be generally valid. Material presented in the handbook has been prepared for the general information of the reader and should not be used or relied on for specific applications without first securing competent advice. The Nickel Institute, the American Iron and Steel Institute, their members, staff and consultants do not represent or warrant its suitability for any general or specific use and assume no liability or responsibility of any kind in connection with the information herein. Nickel Institute [email protected] www.nickelinstitute.org CONTENTS INTRODUCTION ............................ 4 PROCESS DESCRIPTION ............ 5 CORROSIVES IN AMMONIA PROCESSES ............... 5 CONSIDERATIONS FOR SELECTING STAINLESS STEELS .......................................... 6 Desulfurization of Natural Gas ....................... 6 Catalytic Steam Reforming of Natural Gas ....................... 6 Carbon Monoxide Shift .............. 8 Removal of Carbon Dioxide . 10 Methanation ............................. 11 Synthesis of Ammonia ............. 11
    [Show full text]
  • "Thermal Analysis and Calorimetry," In
    Article No : b06_001 Thermal Analysis and Calorimetry STEPHEN B. WARRINGTON, Formerly Anasys, IPTME, Loughborough University, Loughborough, United Kingdom Gu€NTHER W. H. Ho€HNE, Formerly Polymer Technology (SKT), Eindhoven University of Technology, Eindhoven, The Netherlands 1. Thermal Analysis.................. 415 2.2. Methods of Calorimetry............. 424 1.1. General Introduction ............... 415 2.2.1. Compensation of the Thermal Effects.... 425 1.1.1. Definitions . ...................... 415 2.2.2. Measurement of a Temperature Difference 425 1.1.2. Sources of Information . ............. 416 2.2.3. Temperature Modulation ............. 426 1.2. Thermogravimetry................. 416 2.3. Calorimeters ..................... 427 1.2.1. Introduction ...................... 416 2.3.1. Static Calorimeters ................. 427 1.2.2. Instrumentation . .................. 416 2.3.1.1. Isothermal Calorimeters . ............. 427 1.2.3. Factors Affecting a TG Curve ......... 417 2.3.1.2. Isoperibolic Calorimeters ............. 428 1.2.4. Applications ...................... 417 2.3.1.3. Adiabatic Calorimeters . ............. 430 1.3. Differential Thermal Analysis and 2.3.2. Scanning Calorimeters . ............. 430 Differential Scanning Calorimetry..... 418 2.3.2.1. Differential-Temperature Scanning 1.3.1. Introduction ...................... 418 Calorimeters ...................... 431 2.3.2.2. Power-Compensated Scanning Calorimeters 432 1.3.2. Instrumentation . .................. 419 2.3.2.3. Temperature-Modulated 1.3.3. Applications ...................... 419 Scanning Calorimeters . ............. 432 1.3.4. Modulated-Temperature DSC (MT-DSC) . 421 2.3.3. Chip-Calorimeters .................. 433 1.4. Simultaneous Techniques............ 421 2.4. Applications of Calorimetry.......... 433 1.4.1. Introduction ...................... 421 2.4.1. Determination of Thermodynamic Functions 433 1.4.2. Applications ...................... 421 2.4.2. Determination of Heats of Mixing . .... 434 1.5. Evolved Gas Analysis..............
    [Show full text]
  • The Haber Process
    Making ammonia - the Haber process Background During the last century, the populations of Europe and America rose very rapidly. More food and more crops were needed to feed more and more people. So farmers began to use nitrogen compounds as fertilisers. The main source of nitrogen compounds for fertilisers was sodium nitrate from Chile. By 1900 supplies of this were running out. Another supply of nitrogen had to be found or many people would starve. The obvious source of nitrogen was the air (about 78% of the air is nitrogen). Unfortunately, nitrogen is not very reactive. This made it difficult to convert it into ammonium salts and nitrates for use as fertilisers. A German chemist called Fritz Haber solved the problem. In 1904, Haber began studying the reaction between nitrogen and hydrogen. By 1908 he had found the conditions needed to make ammonia (NH3). Eventually, the Haber process became the most important method of manufacturing ammonia. 1. Why did farmers start to use nitrogen compounds as fertilisers? 2. What problem did farmers face in 1900? 3. How long did it take Fritz Haber to work out the conditions needed to make nitrogen and hydrogen react together? 4. What does the Haber process make? 5. Haber was an apprentice plumber before studying to become a chemist. How was Haber’s background useful to him as a chemist? The Haber process The raw materials for the Haber process are Natural gas, air and water. In the first stage, Natural gas (which is mostly methane) is reacted with steam to produce carbon dioxide and hydrogen.
    [Show full text]
  • THERMOCHEMISTRY – 2 CALORIMETRY and HEATS of REACTION Dr
    THERMOCHEMISTRY – 2 CALORIMETRY AND HEATS OF REACTION Dr. Sapna Gupta HEAT CAPACITY • Heat capacity is the amount of heat needed to raise the temperature of the sample of substance by one degree Celsius or Kelvin. q = CDt • Molar heat capacity: heat capacity of one mole of substance. • Specific Heat Capacity: Quantity of heat needed to raise the temperature of one gram of substance by one degree Celsius (or one Kelvin) at constant pressure. q = m s Dt (final-initial) • Measured using a calorimeter – it absorbed heat evolved or absorbed. Dr. Sapna Gupta/Thermochemistry-2-Calorimetry 2 EXAMPLES OF SP. HEAT CAPACITY The higher the number the higher the energy required to raise the temp. Dr. Sapna Gupta/Thermochemistry-2-Calorimetry 3 CALORIMETRY: EXAMPLE - 1 Example: A piece of zinc weighing 35.8 g was heated from 20.00°C to 28.00°C. How much heat was required? The specific heat of zinc is 0.388 J/(g°C). Solution m = 35.8 g s = 0.388 J/(g°C) Dt = 28.00°C – 20.00°C = 8.00°C q = m s Dt 0.388 J q 35.8 g 8.00C = 111J gC Dr. Sapna Gupta/Thermochemistry-2-Calorimetry 4 CALORIMETRY: EXAMPLE - 2 Example: Nitromethane, CH3NO2, an organic solvent burns in oxygen according to the following reaction: 3 3 1 CH3NO2(g) + /4O2(g) CO2(g) + /2H2O(l) + /2N2(g) You place 1.724 g of nitromethane in a calorimeter with oxygen and ignite it. The temperature of the calorimeter increases from 22.23°C to 28.81°C.
    [Show full text]
  • Isothermal Titration Calorimetry and Differential Scanning Calorimetry As Complementary Tools to Investigate the Energetics of Biomolecular Recognition
    JOURNAL OF MOLECULAR RECOGNITION J. Mol. Recognit. 1999;12:3–18 Review Isothermal titration calorimetry and differential scanning calorimetry as complementary tools to investigate the energetics of biomolecular recognition Ilian Jelesarov* and Hans Rudolf Bosshard Department of Biochemistry, University of Zurich, CH-8057 Zurich, Switzerland The principles of isothermal titration calorimetry (ITC) and differential scanning calorimetry (DSC) are reviewed together with the basic thermodynamic formalism on which the two techniques are based. Although ITC is particularly suitable to follow the energetics of an association reaction between biomolecules, the combination of ITC and DSC provides a more comprehensive description of the thermodynamics of an associating system. The reason is that the parameters DG, DH, DS, and DCp obtained from ITC are global properties of the system under study. They may be composed to varying degrees of contributions from the binding reaction proper, from conformational changes of the component molecules during association, and from changes in molecule/solvent interactions and in the state of protonation. Copyright # 1999 John Wiley & Sons, Ltd. Keywords: isothermal titration calorimetry; differential scanning calorimetry Received 1 June 1998; accepted 15 June 1998 Introduction ways to rationalize structure in terms of energetics, a task that still is enormously difficult inspite of some very Specific binding is fundamental to the molecular organiza- promising theoretical developments and of the steady tion of living matter. Virtually all biological phenomena accumulation of experimental results. Theoretical concepts depend in one way or another on molecular recognition, have developed in the tradition of physical-organic which either is intermolecular as in ligand binding to a chemistry.
    [Show full text]
  • Nitrogenase; Nitrogen Fixation Vs Haber-Bosch Process
    Nitrogenase; Nitrogen Fixation vs Haber-Bosch Process Anna Balinski, Jacob Watson Texas A&M University, College Station, TX 77843 Abstract Comparison of Processes Haber-Bosch Process Overview:The Nitrogen Cycle is a chemical cycle which recycles nitrogen into usable forms, such as ammonium, nitrates, and nitrites. Nitrogen and nitrogen compounds are important Haber-Bosch Reaction because they make up our atmosphere as well as our earthly environments. Nitrogen can be recycled into ammonium naturally via nitrogen fixing bacteria, or synthetically using the + - Discovered by Fritz Haber, process scaled up by Haber-Bosch process. Nitrogen fixation in bacteria follows the reaction N2 + 8 H + 8 e 2 • Carl Bosch NH3 + H2 and is powered by the hydrolysis of 16 ATP equivalents. The Haber-Bosch process Response to Germany’s need for ammonia for follows the reaction scheme of N2 + 3 H2 2 NH3 and is powered by using high pressures, • temperatures, and catalysts. Using the Haber-Bosch process an optimum yield of 97% explosive during WWI ammonium can be obtained. These reactions both use diatomic nitrogen as well as Nitrogen Fixation Reaction • Prolonged WWI when Germany was able to hydrogen, but differ in their final products as bacterial nitrogen fixation releases hydrogen produce fertilizer and explosives gas as a byproduct. Bacteria in the soil use nitrogen to create energy to grow and reproduce Fritz Haber Carl Bosch as well as to introduce nitrogen for use by other species. The Haber-Bosch process produces ammonium which can be used for a range of activities such as the production of fertilizers, or even explosives.
    [Show full text]
  • Calorimetry Has Been Routinely Used at US and European Facilities For
    10. PRINCIPLES AND APPLICATIONS OF CALORIMETRIC ASSAY D. S. Bracken, and C. R. Rudy I. Introduction Calorimetry is the quantitative measurement of heat. Applications of calorimetry include measurements of the specific heats of elements and compounds, phase-change enthalpies, and the rate of heat generation from radionuclides. The most successful radiometric calorimeter designs fit the general category of heat-flow calorimeters. Calorimetry is used as a nondestructive assay (NDA) technique for determining the power output of heat-producing nuclear materials. The heat is generated by the decay of radioactive isotopes within the item. Because the heat-measurement result is completely independent of material and matrix type, it can be used on any material form or item matrix. Heat-flow calorimeters have been used to measure thermal powers from 0.5 mW (0.2 g low-burnup plutonium equivalent) to 1,000 W for items ranging in size from less than 2.54 cm to 60 cm in diameter and up to 100 cm in length. Calorimetric assay is the determination of the mass of radioactive material through the combined measurement of its thermal power by calorimetry and its isotopic composition by gamma-ray spectroscopy or mass spectroscopy. Calorimetric assay has been routinely used at U.S. and European facilities for plutonium process measurements and nuclear material accountability for the last 40 years [EI54, GU64, GU70, ANN15.22, AS1458, MA82, IAEA87]. Calorimetric assay is routinely used as a reliable NDA technique for the quantification of plutonium and tritium content. Calorimetric assay of tritium and plutonium-bearing items routinely obtains the highest precision and accuracy of all NDA techniques.
    [Show full text]
  • Sam Kean. the Disappearing Spoon, and Other True Tales of Madness, Love, and the History of the World from the Periodic Table of the Elements
    REVIEW: Sam Kean. The Disappearing Spoon, And Other True Tales of Madness, Love, and the History of the World from the Periodic Table of the Elements. Author(s): Julia R. Bursten Source: Spontaneous Generations: A Journal for the History and Philosophy of Science, Vol. 5, No. 1 (2011) 100-102. Published by: The University of Toronto DOI: 10.4245/sponge.v5i1.14955 EDITORIALOFFICES Institute for the History and Philosophy of Science and Technology Room 316 Victoria College, 91 Charles Street West Toronto, Ontario, Canada M5S 1K7 [email protected] Published online at jps.library.utoronto.ca/index.php/SpontaneousGenerations ISSN 1913 0465 Founded in 2006, Spontaneous Generations is an online academic journal published by graduate students at the Institute for the History and Philosophy of Science and Technology, University of Toronto. There is no subscription or membership fee. Spontaneous Generations provides immediate open access to its content on the principle that making research freely available to the public supports a greater global exchange of knowledge. R A Spoonful of Stories from Chemistry’s Past and Present∗ Sam Kean. The Disappearing Spoon, And Other True Tales of Madness, Love, and the History of the World from the Periodic Table of the Elements. 400 pp. New York, NY: Lile, Brown and Company, 2010. Julia R. Bursten† Sometimes the right book finds you at the right time, and it shis your perception of a familiar subject just a lile, just enough to make a difference. It reminds you of something important you haven’t thought of in a while, or it shows you a new way of looking at and interacting with the world.
    [Show full text]
  • Haber Process - Wikipedia 7/17/20, 920 AM
    Haber process - Wikipedia 7/17/20, 9)20 AM Haber process The Haber process,[1] also called the Haber–Bosch process, is an artificial nitrogen fixation process and is the main industrial procedure for the production of ammonia today.[2][3] It is named after its inventors, the German chemists Fritz Haber and Carl Bosch, who developed it in the first decade of the 20th century. The process converts atmospheric nitrogen (N2) to ammonia (NH3) by a reaction with hydrogen (H2) using a metal catalyst under high temperatures and pressures: Before the development of the Haber process, ammonia had been difficult to produce on an industrial scale,[4][5][6] with early methods such as the Birkeland–Eyde process and Frank– Caro process all being highly inefficient. Although the Haber process is mainly used to produce fertilizer today, during World War I it provided Germany with a source of ammonia for the production of explosives, compensating for the Allied Powers' trade blockade on Chilean saltpeter. Fritz Haber, 1918 Contents History Process Sources of hydrogen Reaction rate and equilibrium Catalysts Production of iron-based catalysts Catalysts other than iron Second generation catalysts Catalyst poisons Industrial production Synthesis parameters Large-scale technical implementation Mechanism Elementary steps Energy diagram Economic and environmental aspects See also References External links History Throughout the 19th century the demand for nitrates and ammonia for use as fertilizers and industrial feedstocks had been steadily increasing. The main source was mining niter deposits. At the beginning of the 20th century it was being predicted that these reserves could not satisfy future demands,[7] and research into new potential sources of ammonia became more important.
    [Show full text]