Nautical Information for Skippers and Crews
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Title 26 Department of the Environment, Subtitle 08 Water
Presented below are water quality standards that are in effect for Clean Water Act purposes. EPA is posting these standards as a convenience to users and has made a reasonable effort to assure their accuracy. Additionally, EPA has made a reasonable effort to identify parts of the standards that are not approved, disapproved, or are otherwise not in effect for Clean Water Act purposes. Title 26 DEPARTMENT OF THE ENVIRONMENT Subtitle 08 WATER POLLUTION Chapters 01-10 2 26.08.01.00 Title 26 DEPARTMENT OF THE ENVIRONMENT Subtitle 08 WATER POLLUTION Chapter 01 General Authority: Environment Article, §§9-313—9-316, 9-319, 9-320, 9-325, 9-327, and 9-328, Annotated Code of Maryland 3 26.08.01.01 .01 Definitions. A. General. (1) The following definitions describe the meaning of terms used in the water quality and water pollution control regulations of the Department of the Environment (COMAR 26.08.01—26.08.04). (2) The terms "discharge", "discharge permit", "disposal system", "effluent limitation", "industrial user", "national pollutant discharge elimination system", "person", "pollutant", "pollution", "publicly owned treatment works", and "waters of this State" are defined in the Environment Article, §§1-101, 9-101, and 9-301, Annotated Code of Maryland. The definitions for these terms are provided below as a convenience, but persons affected by the Department's water quality and water pollution control regulations should be aware that these definitions are subject to amendment by the General Assembly. B. Terms Defined. (1) "Acute toxicity" means the capacity or potential of a substance to cause the onset of deleterious effects in living organisms over a short-term exposure as determined by the Department. -
Ecological Condition of US Mid-Atlantic Estuaries, 1997–1998
Marine Pollution Bulletin 46 (2003) 1224–1244 www.elsevier.com/locate/marpolbul Review Ecological condition of US Mid-Atlantic estuaries, 1997–1998 John A.Kiddon a,*, John F.Paul b, Harry W.Buffum c, Charles S.Strobel a, Stephen S.Hale a, Donald Cobb a, Barbara S.Brown a a US Environmental Protection Agency, Office of Research and Development, National Health and Environmental Effects Research Laboratory, Atlantic Ecology Division, 27 Tarzwell Drive, Narragansett, RI 02882, USA b US Environmental Protection Agency, ORD, NHEERL, Research Triangle Park, NC 27709, USA c Computer Sciences Corporation, 27 Tarzwell Drive, Narragansett, RI 02882, USA Abstract The Mid-Atlantic Integrated Assessment (MAIA-Estuaries) evaluated ecological conditions in US Mid-Atlantic estuaries during the summers of 1997 and 1998.Over 800 probability-based stations were monitored in four main estuarine systems––Chesapeake Bay, the Delaware Estuary, Maryland and Virginian coastal bays, and the Albemarle–Pamlico Estuarine System.Twelve smaller estuaries within the four main systems were also assessed to establish variance at the local scale.A subset of the MAIA-Estuaries data is used here to estimate the extent of eutrophication, sediment contamination, and benthic degradation in mid-Atlantic estuaries.An Envi- ronmental Report Card and Index of Environmental Integrity summarize conditions in individual estuaries, the four estuarine systems, and the entire MAIA region.Roughly 20–50% of the region showed signs of eutrophication (high nutrients, excessive production of organic matter, poor water clarity, or depleted dissolved oxygen), 30% had contaminated sediments, and 37% had degraded benthic communities.Compared with the Environmental Monitoring and Assessment Program (EMAP)-Virginian Province study in 1990– 1993, larger fractions of Chesapeake Bay (17%) and Delaware River (32%) had increased metals or organics in sediments. -
2012-AG-Environmental-Audit.Pdf
TABLE OF CONTENTS INTRODUCTION .............................................................................................................. 1 CHAPTER ONE: YOUGHIOGHENY RIVER AND DEEP CREEK LAKE .................. 4 I. Background .......................................................................................................... 4 II. Active Enforcement and Pending Matters ........................................................... 9 III. The Youghiogheny River/Deep Creek Lake Audit, May 16, 2012: What the Attorney General Learned............................................................................................. 12 CHAPTER TWO: COASTAL BAYS ............................................................................. 15 I. Background ........................................................................................................ 15 II. Active Enforcement Efforts and Pending Matters ............................................. 17 III. The Coastal Bays Audit, July 12, 2012: What the Attorney General Learned .. 20 CHAPTER THREE: WYE RIVER ................................................................................. 24 I. Background ........................................................................................................ 24 II. Active Enforcement and Pending Matters ......................................................... 26 III. The Wye River Audit, October 10, 2012: What the Attorney General Learned 27 CHAPTER FOUR: POTOMAC RIVER NORTH BRANCH AND SAVAGE RIVER 31 I. Background ....................................................................................................... -
Shoreline Management in Chesapeake Bay C
Shoreline Management In Chesapeake Bay C. S. Hardaway, Jr. and R. J. Byrne Virginia Institute of Marine Science College of William and Mary 1 Cover Photo: Drummond Field, Installed 1985, James River, James City County, Virginia. This publication is available for $10.00 from: Sea Grant Communications Virginia Institute of Marine Science P. O. Box 1346 Gloucester Point, VA 23062 Special Report in Applied Marine Science and Ocean Engineering Number 356 Virginia Sea Grant Publication VSG-99-11 October 1999 Funding and support for this report were provided by... Virginia Institute of Marine Science Virginia Sea Grant College Program Sea Grant Contract # NA56RG0141 Virginia Coastal Resource Management Program NA470Z0287 WILLIAM& MARY Shoreline Management In Chesapeake Bay By C. Scott Hardaway, Jr. and Robert J. Byrne Virginia Institute of Marine Science College of William and Mary Gloucester Point, Virginia 23062 1999 4 Table of Contents Preface......................................................................................7 Shoreline Evolution ................................................................8 Shoreline Processes ..............................................................16 Wave Climate .......................................................................16 Shoreline Erosion .................................................................20 Reach Assessment ................................................................23 Shoreline Management Strategies ......................................24 Bulkheads and Seawalls -
Maryland Historical Magazine, 1946, Volume 41, Issue No. 4
MHRYMnD CWAQAZIU^j MARYLAND HISTORICAL SOCIETY BALTIMORE DECEMBER • 1946 t. IN 1900 Hutzler Brothers Co. annexed the building at 210 N. Howard Street. Most of the additional space was used for the expansion of existing de- partments, but a new shoe shop was installed on the third floor. It is interesting to note that the shoe department has now returned to its original location ... in a greatly expanded form. HUTZLER BPOTHERSe N\S/Vsc5S8M-lW MARYLAND HISTORICAL MAGAZINE A Quarterly Volume XLI DECEMBER, 1946 Number 4 BALTIMORE AND THE CRISIS OF 1861 Introduction by CHARLES MCHENRY HOWARD » HE following letters, copies of letters, and other documents are from the papers of General Isaac Ridgeway Trimble (b. 1805, d. 1888). They are confined to a brief period of great excitement in Baltimore, viz, after the riot of April 19, 1861, when Federal troops were attacked by the mob while being marched through the City streets, up to May 13th of that year, when General Butler, with a large body of troops occupied Federal Hill, after which Baltimore was substantially under control of the 1 Some months before his death in 1942 the late Charles McHenry Howard (a grandson of Charles Howard, president of the Board of Police in 1861) placed the papers here printed in the Editor's hands for examination, and offered to write an introduction if the Committee on Publications found them acceptable for the Magazine. Owing to the extraordinary events related and the revelation of an episode unknown in Baltimore history, Mr. Howard's proposal was promptly accepted. -
Maryland Stream Waders 10 Year Report
MARYLAND STREAM WADERS TEN YEAR (2000-2009) REPORT October 2012 Maryland Stream Waders Ten Year (2000-2009) Report Prepared for: Maryland Department of Natural Resources Monitoring and Non-tidal Assessment Division 580 Taylor Avenue; C-2 Annapolis, Maryland 21401 1-877-620-8DNR (x8623) [email protected] Prepared by: Daniel Boward1 Sara Weglein1 Erik W. Leppo2 1 Maryland Department of Natural Resources Monitoring and Non-tidal Assessment Division 580 Taylor Avenue; C-2 Annapolis, Maryland 21401 2 Tetra Tech, Inc. Center for Ecological Studies 400 Red Brook Boulevard, Suite 200 Owings Mills, Maryland 21117 October 2012 This page intentionally blank. Foreword This document reports on the firstt en years (2000-2009) of sampling and results for the Maryland Stream Waders (MSW) statewide volunteer stream monitoring program managed by the Maryland Department of Natural Resources’ (DNR) Monitoring and Non-tidal Assessment Division (MANTA). Stream Waders data are intended to supplementt hose collected for the Maryland Biological Stream Survey (MBSS) by DNR and University of Maryland biologists. This report provides an overview oft he Program and summarizes results from the firstt en years of sampling. Acknowledgments We wish to acknowledge, first and foremost, the dedicated volunteers who collected data for this report (Appendix A): Thanks also to the following individuals for helping to make the Program a success. • The DNR Benthic Macroinvertebrate Lab staffof Neal Dziepak, Ellen Friedman, and Kerry Tebbs, for their countless hours in -
Summary of Decisions Regarding Nutrient and Sediment Load Allocations and New Submerged Aquatic Vegetation (SAV) Restoration Goals
To: Principal Staff Committee Members and Representatives of Chesapeake Bay “Headwater” States From: W. Tayloe Murphy, Jr., Chair Chesapeake Bay Program Principals’ Staff Committee Subject: Summary of Decisions Regarding Nutrient and Sediment Load Allocations and New Submerged Aquatic Vegetation (SAV) Restoration Goals For the past twenty years, the Chesapeake Bay partners have been committed to achieving and maintaining water quality conditions necessary to support living resources throughout the Chesapeake Bay ecosystem. In the past month, Chesapeake Bay Program partners (Maryland, Virginia, Pennsylvania, the District of Columbia, the Environmental Protection Agency and the Chesapeake Bay Commission) have expanded our efforts by working with the headwater states of Delaware, West Virginia and New York to adopt new cap load allocations for nitrogen, phosphorus and sediment. Using the best scientific information available, Bay Program partners have agreed to allocations that are intended to meet the needs of the plants and animals that call the Chesapeake home. The allocations will serve as a basis for each state’s tributary strategies that, when completed by April 2004, will describe local implementation actions necessary to meet the Chesapeake 2000 nutrient and sediment loading goals by 2010. This memorandum summarizes the important, comprehensive agreements made by Bay watershed partners with regard to cap load allocations for nitrogen, phosphorus and sediments, as well as new baywide and local SAV restoration goals. Nutrient Allocations Excessive nutrients in the Chesapeake Bay and its tidal tributaries promote undesirable algal growth, and thereby, prohibit light from reaching underwater bay grasses (submerged aquatic vegetation or SAV) and depress the dissolved oxygen levels of the deeper waters of the Bay. -
War of 1812 Travel Map & Guide
S u sq u eh a n n a 1 Westminster R 40 r e iv v e i r 272 R 15 anal & Delaware C 70 ke Chesapea cy a Northeast River c o Elk River n 140 Havre de Chesapeake o 97 Grace City 49 M 26 40 Susquehanna 213 32 Flats 301 13 795 95 1 r e Liberty Reservoir v i R Frederick h 26 s 9 u B 695 Elk River G 70 u 340 n Sa p ssaf 695 rass 83 o Riv w er r e d 40 e v i r R R Baltimore i 13 95 v e r y M c i 213 a dd c le o B R n 70 ac iv o k e R r M 270 iv e 301 r P o to m ac 15 ster Che River 95 P 32 a R t i v a 9 e r p Chestertown 695 s 13 co R 20 1 i 213 300 1 ve r 100 97 Rock Hall 8 Leesburg 97 177 213 Dover 2 301 r ive r R e 32 iv M R 7 a r k got n hy te Ri s a v t 95 er e 295 h r p 189 S e o e C v 313 h ve i r C n R R e iv o er h 13 ka 267 495 uc 113 T Whitehall Bay Bay Bridge 50 495 Greensboro 193 495 Queen Milford Anne 7 14 50 Selby 404 Harrington Bay 1 14 Denton 66 4 113 y P 258 a a B t u rn 404 x te 66 Washington D.C. -
Maryland's Lower Choptank River Cultural Resource Inventory
Maryland’s Lower Choptank River Cultural Resource Inventory by Ralph E. Eshelman and Carl W. Scheffel, Jr. “So long as the tides shall ebb and flow in Choptank River.” From Philemon Downes will, Hillsboro, circa 1796 U.S. Geological Survey Quadrangle 7.5 Minute Topographic maps covering the Lower Choptank River (below Caroline County) include: Cambridge (1988), Church Creek (1982), East New Market (1988), Oxford (1988), Preston (1988), Sharp Island (1974R), Tilghman (1988), and Trappe (1988). Introduction The Choptank River is Maryland’s longest river of the Eastern Shore. The Choptank River was ranked as one of four Category One rivers (rivers and related corridors which possess a composite resource value with greater than State signific ance) by the Maryland Rivers Study Wild and Scenic Rivers Program in 1985. It has been stated that “no river in the Chesapeake region has done more to shape the character and society of the Eastern Shore than the Choptank.” It has been called “the noblest watercourse on the Eastern Shore.” Name origin: “Chaptanck” is probably a composition of Algonquian words meaning “it flows back strongly,” referring to the river’s tidal changes1 Geological Change and Flooded Valleys The Choptank River is the largest tributary of the Chesapeake Bay on the eastern shore and is therefore part of the largest estuary in North America. This Bay and all its tributaries were once non-tidal fresh water rivers and streams during the last ice age (15,000 years ago) when sea level was over 300 feet below present. As climate warmed and glaciers melted northward sea level rose, and the Choptank valley and Susquehanna valley became flooded. -
Shorerivers-Advocate-Spring-2020
ShoreRivers Advocate CHESTER RIVER | CHOPTANK RIVER MILES & WYE RIVERS | SASSAFRAS RIVER SPRING 2020 Combatting climate change Improving Farm Resiliency through Soil Health & Water Management ShoreRivers Supports LOCAL GREEN SCHOOLS 2019 Donor Appreciation and more… LETTER FROM THE EXECUTIVE DIRECTOR The cover of this edition of the Advocate newsletter footprint, build resiliency into our natural systems, and presents an iconic image of the impacts of climate plan for the future. change on the Eastern Shore. Unfortunately, as you’ll Advocacy: We are promoting legislation to require all discover in the following articles, it is neither a rare development in flood-prone areas to take climate change occurrence, nor is it the only type of impact we are impacts into account. We are recommending regulatory experiencing. The ecological effects on our region of a changes to address increased pollution from construction changing climate include drowned forests, higher tides, site runoff associated with increasingly stronger storms. salty farm fields, and fresher water flowing in our brackish rivers. This translates into Restoration: Restoring our climate crisis: costly the landscape to its infrastructure fixes, natural form protects our canceled events and loss of communities, stores carbon tourism, lower home values, from the atmosphere, flooded main streets, more and builds resiliency in polluted rivers, dangerous the face of a changing swimming conditions, loss future. ShoreRivers excels of productive farmland, and in projects including I could go on. The fact is, a wetland and stream changing climate with restoration, innovative higher temperatures, water management on stronger and more farmland, streamside buffer intense storms, and rising installation, and planting seas increases pollution in our rivers. -
Recommended Maximum Fish Meals Each Year For
Recommended Maximum Meals Each Year for Maryland Waters Recommendation based on 8 oz (0.227 kg) meal size, or the edible portion of 9 crabs (4 crabs for children) Meal Size: 8 oz - General Population; 6 oz - Women; 3 oz - Children NOTE: Consumption recommendations based on spacing of meals to avoid elevated exposure levels Recommended Meals/Year Species Waterbody General PopulationWomen* Children** Contaminants 8 oz meal 6 oz meal 3 oz meal Anacostia River 15 11 8 PCBs - risk driver Back River AVOID AVOID AVOID Pesticides*** Bush River 47 35 27 PCBs - risk driver Middle River 13 9 7 Northeast River 27 21 16 Patapsco River/Baltimore Harbor AVOID AVOID AVOID American Eel Patuxent River 26 20 15 Potomac River (DC Line to MD 301 1511 9 Bridge) South River 37 28 22 Centennial Lake No Advisory No Advisory No Advisory Methylmercury - risk driver Lake Roland 12 12 12 Pesticides*** - risk driver Liberty Reservoir 96 48 48 Methylmercury - risk driver Tuckahoe Lake No Advisory 93 56 Black Crappie Upper Potomac: DC Line to Dam #3 64 49 38 PCBs - risk driver Upper Potomac: Dam #4 to Dam #5 77 58 45 PCBs & Methylmercury - risk driver Crab meat Patapsco River/Baltimore Harbor 96 96 24 PCBs - risk driver Crab "mustard" Middle River DO NOT CONSUME Blue Crab Mid Bay: Middle to Patapsco River (1 meal equals 9 crabs) Patapsco River/Baltimore Harbor "MUSTARD" (for children: 4 crabs ) Other Areas of the Bay Eat Sparingly Anacostia 51 39 30 PCBs - risk driver Back River 33 25 20 Pesticides*** Middle River 37 28 22 Northeast River 29 22 17 Brown Bullhead Patapsco River/Baltimore Harbor 17 13 10 South River No Advisory No Advisory 88 * Women = of childbearing age (women who are pregnant or may become pregnant, or are nursing) ** Children = all young children up to age 6 *** Pesticides = banned organochlorine pesticide compounds (include chlordane, DDT, dieldrin, or heptachlor epoxide) As a general rule, make sure to wash your hands after handling fish. -
Bicycle Map Bicycle
BicBiyccleyc Male Map p BicBicycley cleSaf Setyafety MarylandMaryland law requires law requires all bicyclists all bicyclists under under the age the of age 16 ofto 16wear to weara bicycle a bicycle safetysafety helmet helmet when when riding riding on public on public propert property. Thisy. includesThis includes roadways, roadways, trails trailsand sidewalks. and sidewalks. Some Some local localjurisdictions jurisdictions maintain maintain their owntheir localown local rules:rules: • Ride• Rideon the on right the rightside of side the of road the withroad thewith tra theffic tra flofficw, flonotw against, not against it; it; • Obey• Obey traffic tra signsffic signsand signals; and signals; • Never• Never change change directions directions or lanes or laneswithout without first looking first looking behind behind you, andyou, and alwaysalways use the use correct the correct hand handsignals. signals. Use your Use leftyour arm left for arm all for hand all handsignals: signals: Left turn:Left turn: After After checking checking behind behind you, holdyou, yourhold armyour arm straightstraight out to out the to left the and left ride and forward ride forward slowl slowly. y. Stop:S Aftertop: After checking checking behind behind you, bendyou, bendyour elboyourw elbo, point-w, point- ing youring armyour downward arm downward in an inupside an upside down down “L” shape “L” shape and and comecome to a stop. to a stop. RightRight turn: turn: After After checking checking behind behind you, bendyou, bendyour elboyourw elbo, w, holdingholding your armyour up arm in upan in“L” an shape, “L” shape, and ride and forward ride forward slowlslowly. Or,y hold. Or, yourhold rightyour rightarm straight arm straight out from out fromyour side.your side.