<<

CHAPTER 11. AND 91

∞ ln(n) Therefore, by the Test, we have that ( 1)n con- − n n=1 verges. ￿

11.6 Absolute Convergence and the Ratio and Root Tests

Example 1. Can we apply any of the tests we’ve learned so far to the series ∞ cos(n) ? n2 n=1 ￿ Solution. If we write out the first five terms we get cos(1) cos(2) cos(3) cos(4) cos(5) + + + + + ... 12 22 32 42 52 + + ... −−− where we have indicated the sign of each term with a + or below the term. Since some of the terms are negative, we cannot apply the− Comparison Tests or the Test. Since the terms do not alternate perfectly, we cannot apply the alternating series test.

∞ cos(n) Example 2. [Continued] Show that is absolutely convergent. n2 n=1 ￿ Solution. We take absolute values of each term

∞ cos(n) ∞ cos(n) = | |. n2 n2 n=1 ￿ ￿ n=1 ￿ ￿ ￿ ￿ ￿ ￿ This series is better than the￿ original￿ one because now we can apply the comparison test. cos(n) | | 0 n2 ≥ ￿ 1 0 n2 ≥ ￿ cos(n) 1 | | n2 ≤ n2 ￿ 1 converges, p-series test, p =2 n2 ￿ ￿ cos(n) Therefore, by the Comparison Test, converges. n2 ￿ ￿ ￿cos(￿n) ￿ Therefore, by Theorem ??, ￿ converges￿ too. In other words, n2￿ ￿ cos(n) is absolutely convergent.￿ n2 ￿ CHAPTER 11. SEQUENCES AND SERIES 92

Example 3. Determine whether the series is absolutely convergent, conditionally convergent, or divergent. ∞ 1 ( 1)n . − √n n=1 ￿ Solution. The divergence test does not apply here. Thus, we think the series might have some sort of convergence.

Original series 1 ( 1)n − √n￿ 1 0 √n ≥ ￿ 1 ? 1 ? ,i.e.√n +1 √n, n +1 n￿. √n ≥ √n +1 ≥ ≥ 1 1 lim = =0.￿ n √n →∞ ∞ ∞ 1 ( 1)n converges by AST. − √n ￿ n=1 ￿ Absolute convergence

∞ ∞ 1 ∞ 1 a = ( 1)n = | n| − √n √n n=1 n=1 ￿ ￿ n=1 ￿ ￿ ￿ ￿ ￿ ￿ ￿ Diverges, p-series test, p =1/2.￿ ￿ ￿

Summary

∞ 1 The series ( 1)n is conditionally convergent. − √n n=1 ￿ ∞ 10n Example 4. Apply the to ( 1)n . − n! n=1 ￿ Solution. The main trick here is to simplify the :

n+1 ( 1)n+1 10 − (n+1)! L =lim 10n n ￿ ( 1)n ￿ →∞ ￿ − n! ￿ ￿( 1)n+1 10n￿ +1 n! =lim￿ − ￿ n ￿ ( 1)n · (n +1)!￿ · 10n →∞ ￿ − ￿ ￿ 10n+1 n! ￿ =lim￿( 1) ￿ n ￿ − 10n · (n +1)! ￿ →∞ ￿ ￿ ￿ 1 ￿ =lim1￿ 101 ￿ n ￿ ￿ →∞ · · n +1 CHAPTER 11. SEQUENCES AND SERIES 93

=1 101 0 · · =0

∞ 10n Since L =0,and0< 1, the Ratio Test implies that ( 1)n is Abs Conv. − n! n=1 ￿ ∞ n10 Example 5. Apply the Ratio Test to ( 1)n . − 1.5n n=1 ￿ Solution.

n+1 (n+1)10 ( 1) 1.5n+1 L =lim − 10 n n n ￿ ( 1) n ￿ →∞ ￿ − 1.5 ￿ ￿( 1)n+1 (n +1)￿10 1.5n =lim￿ − ￿ n ￿ ( 1)n 1.5n+1￿ · n10 →∞ ￿ − ￿ ￿ 1.5n (n +1)10 ￿ =lim￿( 1) ￿ n ￿ − · 1.5n+1 · n10 ￿ →∞ ￿ ￿ ￿ 1 (n +1)10 ￿ =lim1￿ ￿ n ￿ 10 ￿ →∞ · 1.5 · n 1 =1 1 · 1.5 · 1 = 1.5

1 1 ∞ n10 Since L = ,and < 1, the Ratio Test implies that ( 1)n is 1.5 1.5 − 1.5n n=1 Abs. Conv. ￿ Example 6. What happens when you apply the Ratio test to the following series:

∞ ln(n) n2 n=1 ￿ Solution. ln(n+1) 2 L =lim (n+1) n ln(n) →∞ n2 ln(n +1) n2 =lim n 2 →∞ (n +1) · ln(n) ln(n +1) n2 =lim n 2 →∞ ln(n) · (n +1) We analyse each the limit of each factor here by itself, starting with the simpler n2 one, , (n +1)2 n2 n2 lim =lim =1 n 2 n 2 →∞ (n +1) →∞ n CHAPTER 11. SEQUENCES AND SERIES 94

ln(n +1) Now we look at the limit of ln(n) ln(n +1) ln( ) lim = ∞ n ln(n) ln( ) →∞ ∞ = ∞ use L’Hospital ∞ 1 ln(n +1) lim LH=lim n+1 n n 1 →∞ ln(n) →∞ n 1 n =lim n n +11 →∞ n =lim n n +1 →∞ n =lim =1 n →∞ n Combining the limits we’ve found with our formula for L above, we have

L =1 1 · So, this test tells us nothing about this series.

Example 7. Determine if the following series converges:

n ∞ 2n3 + n − 3n3 + n2 +1 n=1 ￿ ￿ ￿ Solution.

2n3 + n n L =lim n − n 3n3 + n2 +1 →∞ ￿￿￿ ￿ ￿ ￿ 2 ￿ ￿ 2n + n ￿ =lim −￿ ￿ n 3n3 + n2 +1 →∞ ￿ ￿ ￿ 2n2 ￿ =lim￿− ￿ n ￿ 3n3 ￿ →∞ ￿ ￿ 2 ￿ ￿ = − ￿ ￿ 3 ￿ ￿ ￿ ￿ ￿2 ￿ = ￿ ￿ ￿3 ￿

n 2 2 ∞ 2n3 + n Since L = ,and < 1, the Root Test implies that − Make sure you see that the 3 3 3n3 + n2 +1 absolute values make the final n=1 ￿ ￿ 2 2 converges. ￿ limit here, not .Inthis 3 − 3 example, the difference doesn’t matter, but it would matter a lot if we had an example with L = 3/2 . |− |