Structure and Ordering in Solvents and Solutions of Carbon Nanotubes

Total Page:16

File Type:pdf, Size:1020Kb

Structure and Ordering in Solvents and Solutions of Carbon Nanotubes Structure and Ordering in Solvents and Solutions of Carbon Nanotubes Nadir S. Basma A thesis submitted in partial fulfilment of the requirements for the degree of Doctor of Philosophy Department of Physics and Astronomy University College London October 2018 Dedicated to my parents ii Declaration I, Nadir Basma, confirm that the work presented in this thesis is my own. Where information has been derived from other sources, I confirm that this has been indicated, and that appropriate credit has been given where reference has been made to the work of others. Copyright © 2018 by Nadir S. Basma “The copyright of this thesis rests with the author. No quotations from it should be published without the author’s prior written consent and information derived from it should be acknowledged.” iii Abstract Our lack of understanding of interactions between nanoparticles in liquids is impeding our ability to controllably produce and manipulate nanomaterials. Traditionally, nanoparticle dispersions are treated using classical colloidal theories originally developed for micron-scale particles. These theories have recently been called into question as significant deviations from micro-scale models are routinely seen as dimensions of the dispersed particle are reduced. The deviations are prominent in the liquid phase where low-dimensional nanomaterials are often processed to produce individualised species with which desirable properties are associated. In this context, a few solvents have proven to more effective than others. Yet, their liquid structures, which ultimately underpins their solvation properties, has not been established. In the first part of this work, advanced neutron scattering methods was used to probe the structure of three solvents: N-methyl-2-pyrrolidone (NMP), dimethylformamide (DMF) and dimethylacetamide (DMA). Monte Carlo molecular modelling was used to analyse the neutron data. In NMP, an unusually well-developed mix of interactions is uncovered and its dipole moment was found to have a profound effect on its structure, inducing molecular organisation extending into the nanometer range. In the case of DMF and DMA, structural information pertaining to spatial and orientational correlations in each of the solvents was revealed. The results demonstrate a variety of differences between these two structurally-analogous solvents. Most notably, a higher degree of ordering was found in DMF, dictated by its polar moment, though stronger hydrogen bonding interactions were found in DMA. The intrinsic order in all of these solvents enables a range of local solvent-solute interactions, rationalising their ability to coordinate to and solvate a variety of species. The influence of a nanoparticle on both local and system solvent structures is then investigated in the second part of this work. Solutions of nanomaterials provide a unique system to explore local solvent ordering effects at smaller particle dimensions, and examine the crossover from colloidal to solution behaviour, allowing comparison to classical models. The investigation represents the first atomistically-resolved neutron scattering measurement of a nanomaterial solution. Single-Walled Carbon Nanotubes (SWCNTs) have been shown to thermodynicamlly dissolve to high concentrations in aprotic solvents, though the underpinning mechanisms to their dissolution are unknown. Thus, the system studied was of a concentrated solution of SWCNTs in DMF. The findings provide experimental evidence of enhanced solvent ordering near the nanoparticle’s surface, and contributes crucial insights that differ from conventional standpoints in understanding nanoparticle dissolution. iv Impact Statement Nanomaterials promise to have a huge impact on many technologies, in areas as diverse as healthcare, energy infrastructure, and multifunctional composites. However, their widespread use has been historically hampered by issues of synthesis, agglomeration, and manipulation. Processing can be facilitated by dispersion of the nanomaterials in a liquid; such dispersions can be used to apply the nanomaterials over large areas at low costs. However, while promising, little is known about the underpinning forces and mechanisms at the atomic level for such dispersions to form and stabilise. This work uses neutron scattering methods to uncover local order in such liquids and finds far more developed solvent ordering and structure than as is proposed in conventional models and traditional understandings. The work not only points us a new direction in understanding nanoparticle dispersions, but develops a versatile methodology which is applicable to a wide range of similar systems, which range from electrochemical to biological devices. v Acknowledgements I take the opportunity to express my gratitude to many whom have in some way or another contributed to this thesis. First and foremost, to Chris Howard, for his supervision, support and guidance that have been paramount over the course of the project. His positive outlook and his confidence in my research have truly inspired me. His enthusiasm was contagious and motivational, and translated into my immense enjoyment of the process. To Milo Shaffer, for his supervision and counsel, and his commendable knowledge of all chemistry things which was invaluable to me from the beginning till the end of the project. I am thankful for many of his ideas and suggestions at various stages. To Tom Headen, with whom I collaborated with for most of the work in this thesis. I owe Tom a debt of gratitude for sharing his expertise so willingly and lending me his intuition. To Neal Skipper too, for his counsel and valuable input during the entire process. To Tristan Youngs, Daniel Bowron and Alan Soper whom during beam-time experiments at the Rutherford Appleton Laboratory provided a great deal of help. To post-doctoral researchers, David Buckley for showing me the ropes at the beginning of the journey, and Adam Clancy for timely advice, as well as thoughtful and detailed feedback on the thesis. To colleagues at the London Centre for Nanotechnology, and to members of both the Howard and the Shaffer groups at UCL and Imperial College. To many at the ACM doctoral training centre, and indeed the centre’s directors, Neil Curson and Stephen Skinner, for their management and direction. Finally, to my parents. I’m indebted to you both. I am so much of what I learned from you. Thank you the for the values you instilled in me. I dedicate this thesis to you. vi Contents Title page . i Dedication . ii Declaration . iii Abstract . iv Impact Statement . v Acknowledgements . vi Table of Contents . vii Contributions . xi List of Figures . xii List of Tables . .xxiii Chapter 1 Introduction 1 Chapter 2 Background and Literature 5 2.1 Introduction . 5 2.2 On Liquids and Liquid Structure . 6 2.2.1 The Liquid State . 6 2.2.2 Structure in Liquids . 7 2.2.3 Liquid Structure as Probed Experimentally . 10 2.3 On Interactions Within Liquids . 12 2.3.1 The Electrostatic Interaction . 12 2.3.2 Ion-Dipole Interaction . 12 2.3.3 van der Waals (vdW) Interactions . 13 2.3.4 Hydrogen Bonding . 16 2.4 On Single-Walled Carbon Nanotubes (SWCNTs) . 19 2.4.1 History of SWCNTs . 19 2.4.2 Geometry of SWCNTs . 19 2.4.3 Electronic Properties . 24 2.4.4 Applications and Challenges . 25 2.4.5 Dispersion of SWCNTs . 27 2.4.6 Charging SWCNTs . 28 2.4.7 Suitable Solvents for SWCNT Solubilisation . 30 2.5 Understanding SWCNTs in Solution . 31 2.5.1 Dissolution at the Nanoscale . 31 vii Contents Page viii 2.5.2 DLVO and Polyelectrolyte Theories . 34 2.5.3 The Breakdown of DLVO-OM . 37 2.5.4 Thermodynamic Considerations . 38 2.5.5 SWCNT-Solvent Systems in the Literature . 42 Chapter 3 Neutron Diffraction and Computational Modelling 46 3.1 Introduction . 46 3.2 Basics of Diffraction . 47 3.2.1 Wave Interference and Bragg’s Law . 47 3.2.2 Reciprocal Space and the Fourier Transform . 47 3.2.3 The Scattering Vector . 49 3.2.4 Small-Angle and Wide-Angle Diffraction . 51 3.2.5 Probes and Sample Interaction . 51 3.3 Neutron Diffraction Theory . 53 3.3.1 The Neutron . 53 3.3.2 Scattering Geometry . 53 3.3.3 Scattering by a Single Nucleus . 55 3.3.4 Scattering from a system of particles . 56 3.3.5 The Time-Dependent Pair-Correlation function . 57 3.3.6 Self and Distinct Scattering . 58 3.3.7 Coherent and Incoherent Scattering . 58 3.3.8 The Neutron Correlation Function . 59 3.3.9 Pair Correlation Functions and Structure Factors . 60 3.3.10 Isotopic Substitution . 61 3.4 The Neutron Diffraction Experiment . 62 3.4.1 Neutron Sources . 62 3.4.2 Instrumentation . 63 3.4.3 Experimental Details . 64 3.4.4 Correction and Calibration of Raw Data . 64 3.5 Empirical Potential Structure Refinement . 67 3.5.1 Computational Modelling and Simulations . 67 3.5.2 Constructing an EPSR Simulation Box . 67 3.5.3 Interatomic Potentials . 69 3.5.4 Running the Simulation . 71 3.5.5 The Empirical Potential . 74 3.5.6 The Case for EPSR . 75 Chapter 4 Results I: The Liquid Structure of NMP 77 4.1 Introduction . 77 4.2 About NMP . 77 Contents Page ix 4.3 Experimental Details . 79 4.4 Details of EPSR Simulation Runs . 80 4.5 Results and Analysis . 82 4.5.1 Data Fitting . 82 4.5.2 Radial Distribution Functions in NMP . 86 4.5.3 Positional Arrangement of NMP Molecules . 90 4.5.4 Orientation in the First Solvation Shell . 91 4.5.5 Orientational Ordering due to Dipole Moment . 94 4.5.6 Extent of Hydrogen Bonding in NMP . 97 4.6 Discussion . 98 Chapter 5 Results II: The Liquid Structures of DMF and DMA 101 5.1 Introduction . 101 5.2 About DMF and DMA . 101 5.3 Experimental Details . 105 5.4 Details of EPSR Simulations . 106 5.5 Results and Analysis . 109 5.5.1 Data Fitting .
Recommended publications
  • Advances in Theoretical & Computational Physics
    ISSN: 2639-0108 Review Article Advances in Theoretical & Computational Physics Cosmology: Preprogrammed Evolution (The problem of Providence) Besud Chu Erdeni Unified Theory Lab, Bayangol disrict, Ulan-Bator, Mongolia *Corresponding author Besud Chu Erdeni, Unified Theory Lab, Bayangol disrict, Ulan-Bator, Mongolia. Submitted: 25 March 2021; Accepted: 08 Apr 2021; Published: 18 Apr 2021 Citation: Besud Chu Erdeni (2021) Cosmology: Preprogrammed Evolution (The problem of Providence). Adv Theo Comp Phy 4(2): 113-120. Abstract This is continued from the article Superunification: Pure Mathematics and Theoretical Physics published in this journal and intended to discuss the general logical and philosophical consequences of the universal mathematical machine described by the superunified field theory. At first was mathematical continuum, that is, uncountably infinite set of real numbers. The continuum is self-exited and self- organized into the universal system of mathematical harmony observed by the intelligent beings in the Cosmos as the physical Universe. Consequently, cosmology as a science of evolution in the Uni- verse can be thought as a preprogrammed natural phenomenon beginning with the Big Bang event, or else, the Creation act pro- (6) cess. The reader is supposed to be acquinted with the Pythagoras’ (Arithmetization) and Plato’s (Geometrization) concepts. Then, With this we can derive even the human gene-chromosome topol- the numeric, Pythagorean, form of 4-dim space-time shall be ogy. (1) The operator that images the organic growth process from nothing is where time is an agorithmic (both geometric and algebraic) bifur- cation of Newton’s absolute space denoted by the golden section exp exp e.
    [Show full text]
  • A Survey of Network Performance Monitoring Tools
    A Survey of Network Performance Monitoring Tools Travis Keshav -- [email protected] Abstract In today's world of networks, it is not enough simply to have a network; assuring its optimal performance is key. This paper analyzes several facets of Network Performance Monitoring, evaluating several motivations as well as examining many commercial and public domain products. Keywords: network performance monitoring, application monitoring, flow monitoring, packet capture, sniffing, wireless networks, path analysis, bandwidth analysis, network monitoring platforms, Ethereal, Netflow, tcpdump, Wireshark, Ciscoworks Table Of Contents 1. Introduction 2. Application & Host-Based Monitoring 2.1 Basis of Application & Host-Based Monitoring 2.2 Public Domain Application & Host-Based Monitoring Tools 2.3 Commercial Application & Host-Based Monitoring Tools 3. Flow Monitoring 3.1 Basis of Flow Monitoring 3.2 Public Domain Flow Monitoring Tools 3.3 Commercial Flow Monitoring Protocols 4. Packet Capture/Sniffing 4.1 Basis of Packet Capture/Sniffing 4.2 Public Domain Packet Capture/Sniffing Tools 4.3 Commercial Packet Capture/Sniffing Tools 5. Path/Bandwidth Analysis 5.1 Basis of Path/Bandwidth Analysis 5.2 Public Domain Path/Bandwidth Analysis Tools 6. Wireless Network Monitoring 6.1 Basis of Wireless Network Monitoring 6.2 Public Domain Wireless Network Monitoring Tools 6.3 Commercial Wireless Network Monitoring Tools 7. Network Monitoring Platforms 7.1 Basis of Network Monitoring Platforms 7.2 Commercial Network Monitoring Platforms 8. Conclusion 9. References and Acronyms 1.0 Introduction http://www.cse.wustl.edu/~jain/cse567-06/ftp/net_perf_monitors/index.html 1 of 20 In today's world of networks, it is not enough simply to have a network; assuring its optimal performance is key.
    [Show full text]
  • Journal of Computational Physics
    JOURNAL OF COMPUTATIONAL PHYSICS AUTHOR INFORMATION PACK TABLE OF CONTENTS XXX . • Description p.1 • Audience p.2 • Impact Factor p.2 • Abstracting and Indexing p.2 • Editorial Board p.2 • Guide for Authors p.6 ISSN: 0021-9991 DESCRIPTION . Journal of Computational Physics has an open access mirror journal Journal of Computational Physics: X which has the same aims and scope, editorial board and peer-review process. To submit to Journal of Computational Physics: X visit https://www.editorialmanager.com/JCPX/default.aspx. The Journal of Computational Physics focuses on the computational aspects of physical problems. JCP encourages original scientific contributions in advanced mathematical and numerical modeling reflecting a combination of concepts, methods and principles which are often interdisciplinary in nature and span several areas of physics, mechanics, applied mathematics, statistics, applied geometry, computer science, chemistry and other scientific disciplines as well: the Journal's editors seek to emphasize methods that cross disciplinary boundaries. The Journal of Computational Physics also publishes short notes of 4 pages or less (including figures, tables, and references but excluding title pages). Letters to the Editor commenting on articles already published in this Journal will also be considered. Neither notes nor letters should have an abstract. Review articles providing a survey of particular fields are particularly encouraged. Full text articles have a recommended length of 35 pages. In order to estimate the page limit, please use our template. Published conference papers are welcome provided the submitted manuscript is a significant enhancement of the conference paper with substantial additions. Reproducibility, that is the ability to reproduce results obtained by others, is a core principle of the scientific method.
    [Show full text]
  • Free and Open Source Software for Computational Chemistry Education
    Free and Open Source Software for Computational Chemistry Education Susi Lehtola∗,y and Antti J. Karttunenz yMolecular Sciences Software Institute, Blacksburg, Virginia 24061, United States zDepartment of Chemistry and Materials Science, Aalto University, Espoo, Finland E-mail: [email protected].fi Abstract Long in the making, computational chemistry for the masses [J. Chem. Educ. 1996, 73, 104] is finally here. We point out the existence of a variety of free and open source software (FOSS) packages for computational chemistry that offer a wide range of functionality all the way from approximate semiempirical calculations with tight- binding density functional theory to sophisticated ab initio wave function methods such as coupled-cluster theory, both for molecular and for solid-state systems. By their very definition, FOSS packages allow usage for whatever purpose by anyone, meaning they can also be used in industrial applications without limitation. Also, FOSS software has no limitations to redistribution in source or binary form, allowing their easy distribution and installation by third parties. Many FOSS scientific software packages are available as part of popular Linux distributions, and other package managers such as pip and conda. Combined with the remarkable increase in the power of personal devices—which rival that of the fastest supercomputers in the world of the 1990s—a decentralized model for teaching computational chemistry is now possible, enabling students to perform reasonable modeling on their own computing devices, in the bring your own device 1 (BYOD) scheme. In addition to the programs’ use for various applications, open access to the programs’ source code also enables comprehensive teaching strategies, as actual algorithms’ implementations can be used in teaching.
    [Show full text]
  • An Introduction
    This chapter is from Social Media Mining: An Introduction. By Reza Zafarani, Mohammad Ali Abbasi, and Huan Liu. Cambridge University Press, 2014. Draft version: April 20, 2014. Complete Draft and Slides Available at: http://dmml.asu.edu/smm Chapter 10 Behavior Analytics What motivates individuals to join an online group? When individuals abandon social media sites, where do they migrate to? Can we predict box office revenues for movies from tweets posted by individuals? These questions are a few of many whose answers require us to analyze or predict behaviors on social media. Individuals exhibit different behaviors in social media: as individuals or as part of a broader collective behavior. When discussing individual be- havior, our focus is on one individual. Collective behavior emerges when a population of individuals behave in a similar way with or without coordi- nation or planning. In this chapter we provide examples of individual and collective be- haviors and elaborate techniques used to analyze, model, and predict these behaviors. 10.1 Individual Behavior We read online news; comment on posts, blogs, and videos; write reviews for products; post; like; share; tweet; rate; recommend; listen to music; and watch videos, among many other daily behaviors that we exhibit on social media. What are the types of individual behavior that leave a trace on social media? We can generally categorize individual online behavior into three cate- gories (shown in Figure 10.1): 319 Figure 10.1: Individual Behavior. 1. User-User Behavior. This is the behavior individuals exhibit with re- spect to other individuals. For instance, when befriending someone, sending a message to another individual, playing games, following, inviting, blocking, subscribing, or chatting, we are demonstrating a user-user behavior.
    [Show full text]
  • Computational Science and Engineering
    Computational Science and Engineering, PhD College of Engineering Graduate Coordinator: TBA Email: Phone: Department Chair: Marwan Bikdash Email: [email protected] Phone: 336-334-7437 The PhD in Computational Science and Engineering (CSE) is an interdisciplinary graduate program designed for students who seek to use advanced computational methods to solve large problems in diverse fields ranging from the basic sciences (physics, chemistry, mathematics, etc.) to sociology, biology, engineering, and economics. The mission of Computational Science and Engineering is to graduate professionals who (a) have expertise in developing novel computational methodologies and products, and/or (b) have extended their expertise in specific disciplines (in science, technology, engineering, and socioeconomics) with computational tools. The Ph.D. program is designed for students with graduate and undergraduate degrees in a variety of fields including engineering, chemistry, physics, mathematics, computer science, and economics who will be trained to develop problem-solving methodologies and computational tools for solving challenging problems. Research in Computational Science and Engineering includes: computational system theory, big data and computational statistics, high-performance computing and scientific visualization, multi-scale and multi-physics modeling, computational solid, fluid and nonlinear dynamics, computational geometry, fast and scalable algorithms, computational civil engineering, bioinformatics and computational biology, and computational physics. Additional Admission Requirements Master of Science or Engineering degree in Computational Science and Engineering (CSE) or in science, engineering, business, economics, technology or in a field allied to computational science or computational engineering field. GRE scores Program Outcomes: Students will demonstrate critical thinking and ability in conducting research in engineering, science and mathematics through computational modeling and simulations.
    [Show full text]
  • RESOURCES in NUMERICAL ANALYSIS Kendall E
    RESOURCES IN NUMERICAL ANALYSIS Kendall E. Atkinson University of Iowa Introduction I. General Numerical Analysis A. Introductory Sources B. Advanced Introductory Texts with Broad Coverage C. Books With a Sampling of Introductory Topics D. Major Journals and Serial Publications 1. General Surveys 2. Leading journals with a general coverage in numerical analysis. 3. Other journals with a general coverage in numerical analysis. E. Other Printed Resources F. Online Resources II. Numerical Linear Algebra, Nonlinear Algebra, and Optimization A. Numerical Linear Algebra 1. General references 2. Eigenvalue problems 3. Iterative methods 4. Applications on parallel and vector computers 5. Over-determined linear systems. B. Numerical Solution of Nonlinear Systems 1. Single equations 2. Multivariate problems C. Optimization III. Approximation Theory A. Approximation of Functions 1. General references 2. Algorithms and software 3. Special topics 4. Multivariate approximation theory 5. Wavelets B. Interpolation Theory 1. Multivariable interpolation 2. Spline functions C. Numerical Integration and Differentiation 1. General references 2. Multivariate numerical integration IV. Solving Differential and Integral Equations A. Ordinary Differential Equations B. Partial Differential Equations C. Integral Equations V. Miscellaneous Important References VI. History of Numerical Analysis INTRODUCTION Numerical analysis is the area of mathematics and computer science that creates, analyzes, and implements algorithms for solving numerically the problems of continuous mathematics. Such problems originate generally from real-world applications of algebra, geometry, and calculus, and they involve variables that vary continuously; these problems occur throughout the natural sciences, social sciences, engineering, medicine, and business. During the second half of the twentieth century and continuing up to the present day, digital computers have grown in power and availability.
    [Show full text]
  • Three-Dimensional Integrated Circuit Design: EDA, Design And
    Integrated Circuits and Systems Series Editor Anantha Chandrakasan, Massachusetts Institute of Technology Cambridge, Massachusetts For other titles published in this series, go to http://www.springer.com/series/7236 Yuan Xie · Jason Cong · Sachin Sapatnekar Editors Three-Dimensional Integrated Circuit Design EDA, Design and Microarchitectures 123 Editors Yuan Xie Jason Cong Department of Computer Science and Department of Computer Science Engineering University of California, Los Angeles Pennsylvania State University [email protected] [email protected] Sachin Sapatnekar Department of Electrical and Computer Engineering University of Minnesota [email protected] ISBN 978-1-4419-0783-7 e-ISBN 978-1-4419-0784-4 DOI 10.1007/978-1-4419-0784-4 Springer New York Dordrecht Heidelberg London Library of Congress Control Number: 2009939282 © Springer Science+Business Media, LLC 2010 All rights reserved. This work may not be translated or copied in whole or in part without the written permission of the publisher (Springer Science+Business Media, LLC, 233 Spring Street, New York, NY 10013, USA), except for brief excerpts in connection with reviews or scholarly analysis. Use in connection with any form of information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed is forbidden. The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to proprietary rights. Printed on acid-free paper Springer is part of Springer Science+Business Media (www.springer.com) Foreword We live in a time of great change.
    [Show full text]
  • Development of Electrochemical Methods for Detection of Pesticides and Biofuel
    Development of Electrochemical Methods for Detection of Pesticides and Biofuel Production Asli Sahin Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Graduate School of Arts and Sciences COLUMBIA UNIVERSITY 2012 © 2012 Asli Sahin All Rights Reserved ABSTRACT Development of Electrochemical Methods for Detection of Pesticides and Biofuel Production Asli Sahin Electrochemical methods coupled with biological elements are used in industrial, medical and environmental applications. In this thesis we will discuss two such applications: an electrochemical biosensor for detection of pesticides and biofuel generation using electrochemical methods coupled with microorganisms. Electrochemical biosensors are commonly used as a result of their selectivity, sensitivity, rapid response and portability. A common application for electrochemical biosensors is detection of pesticides and toxins in water samples. In this thesis, we will focus on detection of organosphosphates (OPs), a group of compounds that are commonly used as pesticides and nerve agents. Rapid and sensitive detection of these compounds has been an area of active research due to their high toxicity. Amperometric and potentiometric electrochemical biosensors that use organophosphorus hydrolase (OPH), an enzyme that can hydrolyze a broad class of OPs, have been reported for field detection of OPs. Amperometry is used for detection of electroactive leaving groups and potentiometry is used for detection of pH changes that take place during the hydrolysis reaction. Both these methods have limitations: using amperometric biosensors, very low limits of detection are achieved but this method is limited to the few OPs with electroactive leaving groups, on the other hand potentiometric biosensor can be used for detection of all OPs but they don’t have low enough limits of detection.
    [Show full text]
  • Computational Chemistry
    G UEST E DITORS’ I NTRODUCTION COMPUTATIONAL CHEMISTRY omputational chemistry has come of chemical, physical, and biological phenomena. age. With significant strides in com- The Nobel Prize award to John Pople and Wal- puter hardware and software over ter Kohn in 1998 highlighted the importance of the last few decades, computational these advances in computational chemistry. Cchemistry has achieved full partnership with the- With massively parallel computers capable of ory and experiment as a tool for understanding peak performance of several teraflops already on and predicting the behavior of a broad range of the scene and with the development of parallel software for efficient exploitation of these high- end computers, we can anticipate that computa- tional chemistry will continue to change the scientific landscape throughout the coming cen- tury. The impact of these advances will be broad and encompassing, because chemistry is so cen- tral to the myriad of advances we anticipate in areas such as materials design, biological sci- ences, and chemical manufacturing. Application areas Materials design is very broad in scope. It ad- dresses a diverse range of compositions of matter that can better serve structural and functional needs in all walks of life. Catalytic design is one such example that clearly illustrates the promise and challenges of computational chemistry. Al- most all chemical reactions of industrial or bio- chemical significance are catalytic. Yet, catalysis is still more of an art (at best) or an empirical fact than a design science. But this is sure to change. A recent American Chemical Society Sympo- sium volume on transition state modeling in catalysis illustrates its progress.1 This sympo- sium highlighted a significant development in the level of modeling that researchers are em- 1521-9615/00/$10.00 © 2000 IEEE ploying as they focus more and more on the DONALD G.
    [Show full text]
  • COMPUTER PHYSICS COMMUNICATIONS an International Journal and Program Library for Computational Physics
    COMPUTER PHYSICS COMMUNICATIONS An International Journal and Program Library for Computational Physics AUTHOR INFORMATION PACK TABLE OF CONTENTS XXX . • Description p.1 • Audience p.2 • Impact Factor p.2 • Abstracting and Indexing p.2 • Editorial Board p.2 • Guide for Authors p.4 ISSN: 0010-4655 DESCRIPTION . Visit the CPC International Computer Program Library on Mendeley Data. Computer Physics Communications publishes research papers and application software in the broad field of computational physics; current areas of particular interest are reflected by the research interests and expertise of the CPC Editorial Board. The focus of CPC is on contemporary computational methods and techniques and their implementation, the effectiveness of which will normally be evidenced by the author(s) within the context of a substantive problem in physics. Within this setting CPC publishes two types of paper. Computer Programs in Physics (CPiP) These papers describe significant computer programs to be archived in the CPC Program Library which is held in the Mendeley Data repository. The submitted software must be covered by an approved open source licence. Papers and associated computer programs that address a problem of contemporary interest in physics that cannot be solved by current software are particularly encouraged. Computational Physics Papers (CP) These are research papers in, but are not limited to, the following themes across computational physics and related disciplines. mathematical and numerical methods and algorithms; computational models including those associated with the design, control and analysis of experiments; and algebraic computation. Each will normally include software implementation and performance details. The software implementation should, ideally, be available via GitHub, Zenodo or an institutional repository.In addition, research papers on the impact of advanced computer architecture and special purpose computers on computing in the physical sciences and software topics related to, and of importance in, the physical sciences may be considered.
    [Show full text]
  • Outline of Physical Science
    Outline of physical science “Physical Science” redirects here. It is not to be confused • Astronomy – study of celestial objects (such as stars, with Physics. galaxies, planets, moons, asteroids, comets and neb- ulae), the physics, chemistry, and evolution of such Physical science is a branch of natural science that stud- objects, and phenomena that originate outside the atmosphere of Earth, including supernovae explo- ies non-living systems, in contrast to life science. It in turn has many branches, each referred to as a “physical sions, gamma ray bursts, and cosmic microwave background radiation. science”, together called the “physical sciences”. How- ever, the term “physical” creates an unintended, some- • Branches of astronomy what arbitrary distinction, since many branches of physi- cal science also study biological phenomena and branches • Chemistry – studies the composition, structure, of chemistry such as organic chemistry. properties and change of matter.[8][9] In this realm, chemistry deals with such topics as the properties of individual atoms, the manner in which atoms form 1 What is physical science? chemical bonds in the formation of compounds, the interactions of substances through intermolecular forces to give matter its general properties, and the Physical science can be described as all of the following: interactions between substances through chemical reactions to form different substances. • A branch of science (a systematic enterprise that builds and organizes knowledge in the form of • Branches of chemistry testable explanations and predictions about the • universe).[1][2][3] Earth science – all-embracing term referring to the fields of science dealing with planet Earth. Earth • A branch of natural science – natural science science is the study of how the natural environ- is a major branch of science that tries to ex- ment (ecosphere or Earth system) works and how it plain and predict nature’s phenomena, based evolved to its current state.
    [Show full text]