Molekulare Analysen Zur Knochenregeneration Im Alter Und Bei Osteoporose

Total Page:16

File Type:pdf, Size:1020Kb

Molekulare Analysen Zur Knochenregeneration Im Alter Und Bei Osteoporose Molekulare Analysen zur Knochenregeneration im Alter und bei Osteoporose Dissertation zur Erlangung des naturwissenschaftlichen Doktorgrades der Julius-Maximilians-Universität Würzburg vorgelegt von Peggy Benisch geboren in Zeitz Würzburg, 2011 Eingereicht am: Mitglieder der Promotionskommission: Vorsitzender: Prof. Dr. Thomas Dandekar Gutachter: Prof. Dr. Franz Jakob Gutachter: Prof. Dr. Georg Krohne Tag des Promotionskolloquiums: Doktorurkunde ausgehändigt am: Hiermit erkläre ich ehrenwörtlich, dass ich die vorliegende Dissertation selbstständig angefertigt und keine anderen als die von mir angegebenen Hilfsmittel und Quellen verwendet habe. Des Weiteren erkläre ich, dass diese Arbeit weder in gleicher noch in ähnlicher Form in einem Prüfungsverfahren vorgelegen hat und ich noch keinen Promotionsversuch unternommen habe. Würzburg, 04.03.2011 Peggy Benisch Inhaltsverzeichnis 1 Zusammenfassung ........................................................................................................................... 1 2 Summary.......................................................................................................................................... 2 3 Einleitung ......................................................................................................................................... 3 3.1 Knochenhomöostase ............................................................................................................... 3 3.1.1 Knochenumbau ................................................................................................................... 4 3.1.1.1 Knochenabbau ............................................................................................................. 4 3.1.1.2 Knochenaufbau............................................................................................................ 5 3.1.2 Quelle der Regeneration: Mesenchymale Stammzellen (MSC) .......................................... 7 3.1.3 Steuerung des Knochenumbaus .......................................................................................... 8 3.1.3.1 WNT-Signalweg ........................................................................................................... 8 3.1.3.2 BMP-Signalweg ............................................................................................................ 9 3.1.3.3 Wachstumsfaktoren .................................................................................................. 10 3.1.3.4 Mechanotransduktion ............................................................................................... 12 3.1.3.5 Hormonelle Steuerung .............................................................................................. 13 3.2 Alterung ................................................................................................................................. 15 3.2.1 Alterung des Organismus .................................................................................................. 15 3.2.2 Zelluläre Seneszenz ........................................................................................................... 15 3.2.3 Ursachen für Alterung ....................................................................................................... 17 3.2.3.1 Telomere ................................................................................................................... 17 3.2.3.2 DNA- Reparatur ......................................................................................................... 17 3.2.3.3 Oxidativer Stress ........................................................................................................ 18 3.2.3.4 Proliferationsstress und Mitogene ............................................................................ 18 3.2.3.5 Epigenetik .................................................................................................................. 19 3.2.3.6 Genetische Prädisposition ......................................................................................... 20 3.2.4 Immunseneszenz ............................................................................................................... 20 3.2.5 Auswirkung der Alterung auf Knochenhomöostase .......................................................... 22 3.2.5.1 Auswirkungen der Alterung auf MSC ........................................................................ 22 3.3 Osteoporose .......................................................................................................................... 24 3.3.1 Gestörte Knochenhomöostase bei Osteoporose .............................................................. 24 3.3.2 Ursachen für Osteoporose ................................................................................................ 24 3.3.2.1 Alterung ..................................................................................................................... 24 3.3.2.2 Veränderungen im Hormonspiegel ........................................................................... 24 3.3.2.3 Verhalten ................................................................................................................... 25 3.3.2.4 Genetik ...................................................................................................................... 25 3.3.3 MSC und Osteoporose ....................................................................................................... 26 3.4 Ziel der Arbeit ........................................................................................................................ 26 4 Material und Methoden ................................................................................................................ 27 4.1 Material ................................................................................................................................. 27 4.1.1 Geräte ................................................................................................................................ 27 4.1.2 Verbrauchsmaterial ........................................................................................................... 28 4.1.3 Chemikalien/ Reagenzien .................................................................................................. 28 4.1.4 Kits ..................................................................................................................................... 30 4.1.5 Primer ................................................................................................................................ 31 4.1.5.1 Primer für semi-quantitative PCR .............................................................................. 31 4.1.5.2 Sequenzierungsprimer .............................................................................................. 33 4.1.6 Enzyme .............................................................................................................................. 33 4.1.7 Antikörper.......................................................................................................................... 33 4.1.7.1 Primärantikörper ....................................................................................................... 33 4.1.7.2 Sekundärantikörper ................................................................................................... 34 4.1.8 Proteine ............................................................................................................................. 34 4.1.9 Kompetente Bakterien ...................................................................................................... 34 4.1.10 Vektoren ........................................................................................................................ 35 4.1.11 Software und Internet-Seiten ........................................................................................ 35 4.1.1 Lösungen für Molekularbiologie und Proteinbiochemie ................................................... 36 4.1.2 Bakteriennährmedien/-nährboden ................................................................................... 39 4.1.3 Zellkulturmedien ............................................................................................................... 39 4.2 Methoden .............................................................................................................................. 40 4.2.1 Molekularbiologische Methoden ...................................................................................... 40 4.2.1.1 Isolation von zellulärer RNA ...................................................................................... 40 4.2.1.2 Konzentrationsbestimmung von Nukleinsäuren ....................................................... 40 4.2.1.3 Reverse Transkription ................................................................................................ 40 4.2.1.4 Semi-quantitative Polymerase Kettenreaktion (PCR) ............................................... 41 4.2.1.5 Agarosegelelektrophorese ........................................................................................ 42 4.2.1.6 Densitometrie ............................................................................................................ 42 4.2.1.7 Agarosegel-Eluation................................................................................................... 42 4.2.1.8 DNA-Sequenzierung .................................................................................................
Recommended publications
  • The Title of the Article
    Mechanism-Anchored Profiling Derived from Epigenetic Networks Predicts Outcome in Acute Lymphoblastic Leukemia Xinan Yang, PhD1, Yong Huang, MD1, James L Chen, MD1, Jianming Xie, MSc2, Xiao Sun, PhD2, Yves A Lussier, MD1,3,4§ 1Center for Biomedical Informatics and Section of Genetic Medicine, Department of Medicine, The University of Chicago, Chicago, IL 60637 USA 2State Key Laboratory of Bioelectronics, Southeast University, 210096 Nanjing, P.R.China 3The University of Chicago Cancer Research Center, and The Ludwig Center for Metastasis Research, The University of Chicago, Chicago, IL 60637 USA 4The Institute for Genomics and Systems Biology, and the Computational Institute, The University of Chicago, Chicago, IL 60637 USA §Corresponding author Email addresses: XY: [email protected] YH: [email protected] JC: [email protected] JX: [email protected] XS: [email protected] YL: [email protected] - 1 - Abstract Background Current outcome predictors based on “molecular profiling” rely on gene lists selected without consideration for their molecular mechanisms. This study was designed to demonstrate that we could learn about genes related to a specific mechanism and further use this knowledge to predict outcome in patients – a paradigm shift towards accurate “mechanism-anchored profiling”. We propose a novel algorithm, PGnet, which predicts a tripartite mechanism-anchored network associated to epigenetic regulation consisting of phenotypes, genes and mechanisms. Genes termed as GEMs in this network meet all of the following criteria: (i) they are co-expressed with genes known to be involved in the biological mechanism of interest, (ii) they are also differentially expressed between distinct phenotypes relevant to the study, and (iii) as a biomodule, genes correlate with both the mechanism and the phenotype.
    [Show full text]
  • Supplemental Table S1
    Entrez Gene Symbol Gene Name Affymetrix EST Glomchip SAGE Stanford Literature HPA confirmed Gene ID Profiling profiling Profiling Profiling array profiling confirmed 1 2 A2M alpha-2-macroglobulin 0 0 0 1 0 2 10347 ABCA7 ATP-binding cassette, sub-family A (ABC1), member 7 1 0 0 0 0 3 10350 ABCA9 ATP-binding cassette, sub-family A (ABC1), member 9 1 0 0 0 0 4 10057 ABCC5 ATP-binding cassette, sub-family C (CFTR/MRP), member 5 1 0 0 0 0 5 10060 ABCC9 ATP-binding cassette, sub-family C (CFTR/MRP), member 9 1 0 0 0 0 6 79575 ABHD8 abhydrolase domain containing 8 1 0 0 0 0 7 51225 ABI3 ABI gene family, member 3 1 0 1 0 0 8 29 ABR active BCR-related gene 1 0 0 0 0 9 25841 ABTB2 ankyrin repeat and BTB (POZ) domain containing 2 1 0 1 0 0 10 30 ACAA1 acetyl-Coenzyme A acyltransferase 1 (peroxisomal 3-oxoacyl-Coenzyme A thiol 0 1 0 0 0 11 43 ACHE acetylcholinesterase (Yt blood group) 1 0 0 0 0 12 58 ACTA1 actin, alpha 1, skeletal muscle 0 1 0 0 0 13 60 ACTB actin, beta 01000 1 14 71 ACTG1 actin, gamma 1 0 1 0 0 0 15 81 ACTN4 actinin, alpha 4 0 0 1 1 1 10700177 16 10096 ACTR3 ARP3 actin-related protein 3 homolog (yeast) 0 1 0 0 0 17 94 ACVRL1 activin A receptor type II-like 1 1 0 1 0 0 18 8038 ADAM12 ADAM metallopeptidase domain 12 (meltrin alpha) 1 0 0 0 0 19 8751 ADAM15 ADAM metallopeptidase domain 15 (metargidin) 1 0 0 0 0 20 8728 ADAM19 ADAM metallopeptidase domain 19 (meltrin beta) 1 0 0 0 0 21 81792 ADAMTS12 ADAM metallopeptidase with thrombospondin type 1 motif, 12 1 0 0 0 0 22 9507 ADAMTS4 ADAM metallopeptidase with thrombospondin type 1
    [Show full text]
  • Age Dependence of Tumor Genetics in Unfavorable
    Cetinkaya et al. BMC Cancer 2013, 13:231 http://www.biomedcentral.com/1471-2407/13/231 RESEARCH ARTICLE Open Access Age dependence of tumor genetics in unfavorable neuroblastoma: arrayCGH profiles of 34 consecutive cases, using a Swedish 25-year neuroblastoma cohort for validation Cihan Cetinkaya1,2, Tommy Martinsson3, Johanna Sandgren1,4, Catarina Träger5, Per Kogner5, Jan Dumanski1, Teresita Díaz de Ståhl1,4† and Fredrik Hedborg1,6*† Abstract Background: Aggressive neuroblastoma remains a significant cause of childhood cancer death despite current intensive multimodal treatment protocols. The purpose of the present work was to characterize the genetic and clinical diversity of such tumors by high resolution arrayCGH profiling. Methods: Based on a 32K BAC whole-genome tiling path array and using 50-250K Affymetrix SNP array platforms for verification, DNA copy number profiles were generated for 34 consecutive high-risk or lethal outcome neuroblastomas. In addition, age and MYCN amplification (MNA) status were retrieved for 112 unfavorable neuroblastomas of the Swedish Childhood Cancer Registry, representing a 25-year neuroblastoma cohort of Sweden, here used for validation of the findings. Statistical tests used were: Fisher’s exact test, Bayes moderated t-test, independent samples t-test, and correlation analysis. Results: MNA or segmental 11q loss (11q-) was found in 28/34 tumors. With two exceptions, these aberrations were mutually exclusive. Children with MNA tumors were diagnosed at significantly younger ages than those with 11q- tumors (mean: 27.4 vs. 69.5 months; p=0.008; n=14/12), and MNA tumors had significantly fewer segmental chromosomal aberrations (mean: 5.5 vs. 12.0; p<0.001).
    [Show full text]
  • Instability of the Pseudoautosomal Boundary in House Mice
    Genetics: Early Online, published on April 26, 2019 as 10.1534/genetics.119.302232 Article/Investigation Instability of the pseudoautosomal boundary in house mice Andrew P Morgan∗, Timothy A Bell∗, James J Crowley∗; y; z, and Fernando Pardo-Manuel de Villena∗ ∗Department of Genetics and Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC yDepartment of Psychiatry, University of North Carolina, Chapel Hill, NC zDepartment of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden April 26, 2019 Corresponding authors: Andrew P Morgan ([email protected]) Fernando Pardo-Manuel de Villena ([email protected]) 5049C Genetic Medicine Building Department of Genetics University of North Carolina Chapel Hill NC 27599-7264 Keywords: meiosis, recombination, pseudoautosomal region, sex chromosome evolution 1 Copyright 2019. Abstract Faithful segregation of homologous chromosomes at meiosis requires pairing and recombination. In taxa with dimorphic sex chromosomes, pairing between them in the heterogametic sex is limited to a narrow inter- val of residual sequence homology known as the pseudoautosomal region (PAR). Failure to form the obligate crossover in the PAR is associated with male infertility in house mice (Mus musculus) and humans. Yet despite this apparent functional constraint, the boundary and organization of the PAR is highly variable in mammals, and even between subspecies of mice. Here we estimate the genetic map in a previously-documented ex- pansion of the PAR in the Mus musculus castaneus subspecies and show that the local recombination rate is 100-fold higher than the autosomal background. We identify an independent shift in the PAR boundary in the Mus musculus musculus subspecies and show that it involves a complex rearrangement but still recombines in heterozygous males.
    [Show full text]
  • (12) Patent Application Publication (10) Pub. No.: US 2012/0264.634 A1 Amersdorfer Et Al
    US 20120264.634A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2012/0264.634 A1 Amersdorfer et al. (43) Pub. Date: Oct. 18, 2012 (54) MARKER SEQUENCES FOR PANCREATIC Publication Classification CANCER DISEASES, PANCREATIC (51) Int. Cl. CARCINOMIA AND USE THEREOF C40B 30/04 (2006.01) GOIN 2L/64 (2006.01) (75) Inventors: Peter Amersdorfer, Graz (AT); GOIN 27/72 (2006.01) Annabel Höpfner, Dortmund (DE); C07K I4/435 (2006.01) Angelika Lueking, Bochum (DE) C40B 40/06 (2006.01) C40B 40/10 (2006.01) CI2N 5/09 (2010.01) (73) Assignee: PROTAGEN Aktiengesellschaft, C7H 2L/04 (2006.01) Dortmund (DE) GOIN 33/574 (2006.01) GOIN 27/62 (2006.01) (21) Appl. No.: 13/498,964 (52) U.S. Cl. ........... 506/9:436/501; 435/6.14; 435/7.92; 506/16:506/18: 435/2:536/23.1; 530/350 (22) PCT Filed: Sep. 29, 2010 (57) ABSTRACT The present invention relates to novel marker sequences for (86). PCT No.: PCT/EP2010/064510 pancreatic cancer diseases, pancreatic carcinoma and the diagnostic use thereof together with a method for Screening of S371 (c)(1), potential active Substances for pancreatic cancer diseases, (2), (4) Date: Jun. 22, 2012 pancreatic carcinoma by means of these marker sequences. Furthermore, the invention relates to a diagnostic device con (30) Foreign Application Priority Data taining Such marker sequences for pancreatic cancer diseases, pancreatic carcinoma, in particular a protein biochip and the Sep. 29, 2009 (EP) .................................. O9171690.2 use thereof. Patent Application Publication Oct. 18, 2012 US 2012/0264.634 A1 US 2012/0264.634 A1 Oct.
    [Show full text]
  • Supplementary Table 1: Adhesion Genes Data Set
    Supplementary Table 1: Adhesion genes data set PROBE Entrez Gene ID Celera Gene ID Gene_Symbol Gene_Name 160832 1 hCG201364.3 A1BG alpha-1-B glycoprotein 223658 1 hCG201364.3 A1BG alpha-1-B glycoprotein 212988 102 hCG40040.3 ADAM10 ADAM metallopeptidase domain 10 133411 4185 hCG28232.2 ADAM11 ADAM metallopeptidase domain 11 110695 8038 hCG40937.4 ADAM12 ADAM metallopeptidase domain 12 (meltrin alpha) 195222 8038 hCG40937.4 ADAM12 ADAM metallopeptidase domain 12 (meltrin alpha) 165344 8751 hCG20021.3 ADAM15 ADAM metallopeptidase domain 15 (metargidin) 189065 6868 null ADAM17 ADAM metallopeptidase domain 17 (tumor necrosis factor, alpha, converting enzyme) 108119 8728 hCG15398.4 ADAM19 ADAM metallopeptidase domain 19 (meltrin beta) 117763 8748 hCG20675.3 ADAM20 ADAM metallopeptidase domain 20 126448 8747 hCG1785634.2 ADAM21 ADAM metallopeptidase domain 21 208981 8747 hCG1785634.2|hCG2042897 ADAM21 ADAM metallopeptidase domain 21 180903 53616 hCG17212.4 ADAM22 ADAM metallopeptidase domain 22 177272 8745 hCG1811623.1 ADAM23 ADAM metallopeptidase domain 23 102384 10863 hCG1818505.1 ADAM28 ADAM metallopeptidase domain 28 119968 11086 hCG1786734.2 ADAM29 ADAM metallopeptidase domain 29 205542 11085 hCG1997196.1 ADAM30 ADAM metallopeptidase domain 30 148417 80332 hCG39255.4 ADAM33 ADAM metallopeptidase domain 33 140492 8756 hCG1789002.2 ADAM7 ADAM metallopeptidase domain 7 122603 101 hCG1816947.1 ADAM8 ADAM metallopeptidase domain 8 183965 8754 hCG1996391 ADAM9 ADAM metallopeptidase domain 9 (meltrin gamma) 129974 27299 hCG15447.3 ADAMDEC1 ADAM-like,
    [Show full text]
  • Genome-Wide DNA Methylation Analysis of KRAS Mutant Cell Lines Ben Yi Tew1,5, Joel K
    www.nature.com/scientificreports OPEN Genome-wide DNA methylation analysis of KRAS mutant cell lines Ben Yi Tew1,5, Joel K. Durand2,5, Kirsten L. Bryant2, Tikvah K. Hayes2, Sen Peng3, Nhan L. Tran4, Gerald C. Gooden1, David N. Buckley1, Channing J. Der2, Albert S. Baldwin2 ✉ & Bodour Salhia1 ✉ Oncogenic RAS mutations are associated with DNA methylation changes that alter gene expression to drive cancer. Recent studies suggest that DNA methylation changes may be stochastic in nature, while other groups propose distinct signaling pathways responsible for aberrant methylation. Better understanding of DNA methylation events associated with oncogenic KRAS expression could enhance therapeutic approaches. Here we analyzed the basal CpG methylation of 11 KRAS-mutant and dependent pancreatic cancer cell lines and observed strikingly similar methylation patterns. KRAS knockdown resulted in unique methylation changes with limited overlap between each cell line. In KRAS-mutant Pa16C pancreatic cancer cells, while KRAS knockdown resulted in over 8,000 diferentially methylated (DM) CpGs, treatment with the ERK1/2-selective inhibitor SCH772984 showed less than 40 DM CpGs, suggesting that ERK is not a broadly active driver of KRAS-associated DNA methylation. KRAS G12V overexpression in an isogenic lung model reveals >50,600 DM CpGs compared to non-transformed controls. In lung and pancreatic cells, gene ontology analyses of DM promoters show an enrichment for genes involved in diferentiation and development. Taken all together, KRAS-mediated DNA methylation are stochastic and independent of canonical downstream efector signaling. These epigenetically altered genes associated with KRAS expression could represent potential therapeutic targets in KRAS-driven cancer. Activating KRAS mutations can be found in nearly 25 percent of all cancers1.
    [Show full text]
  • Physical and Linkage Mapping of Mammary-Derived Expressed Sequence Tags in Cattle
    Genomics 83 (2004) 148–152 www.elsevier.com/locate/ygeno Physical and linkage mapping of mammary-derived expressed sequence tags in cattle E.E. Connor,a,* T.S. Sonstegard,a J.W. Keele,b G.L. Bennett,b J.L. Williams,c R. Papworth,c C.P. Van Tassell,a and M.S. Ashwella a U.S. Beltsville Agricultural Research Center, ARS, U.S. Department of Agriculture, 10300 Baltimore Avenue, Beltsville, MD 20705, USA b U.S. Meat Animal Research Center, ARS, U.S. Department of Agriculture, P.O. Box 166, Clay Center, NE 68933-0166, USA c Roslin Institute (Edinburgh), Roslin, Midlothian EH25 9PS, Scotland, United Kingdom Received 2 June 2003; accepted 5 July 2003 Abstract This study describes the physical and linkage mapping of 42 gene-associated markers developed from mammary gland-derived expressed sequence tags to the cattle genome. Of the markers, 25 were placed on the USDA reference linkage map and 37 were positioned on the Roslin 3000-rad radiation hybrid (RH) map, with 20 assignments shared between the maps. Although no novel regions of conserved synteny between the cattle and the human genomes were identified, the coverage was extended for bovine chromosomes 3, 7, 15, and 29 compared with previously published comparative maps between human and bovine genomes. Overall, these data improve the resolution of the human–bovine comparative maps and will assist future efforts to integrate bovine RH and linkage map data. Crown Copyright D 2003 Published by Elsevier Inc. All rights reserved. Keywords: RH mapping; Linkage mapping; SNP; Cattle; EST Selection of positional candidate genes controlling eco- pig [4,5], and cattle [6], and serve as a resource for nomically important traits in cattle requires a detailed candidate gene identification.
    [Show full text]
  • Identification of Potential Key Genes and Pathway Linked with Sporadic Creutzfeldt-Jakob Disease Based on Integrated Bioinformatics Analyses
    medRxiv preprint doi: https://doi.org/10.1101/2020.12.21.20248688; this version posted December 24, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. All rights reserved. No reuse allowed without permission. Identification of potential key genes and pathway linked with sporadic Creutzfeldt-Jakob disease based on integrated bioinformatics analyses Basavaraj Vastrad1, Chanabasayya Vastrad*2 , Iranna Kotturshetti 1. Department of Biochemistry, Basaveshwar College of Pharmacy, Gadag, Karnataka 582103, India. 2. Biostatistics and Bioinformatics, Chanabasava Nilaya, Bharthinagar, Dharwad 580001, Karanataka, India. 3. Department of Ayurveda, Rajiv Gandhi Education Society`s Ayurvedic Medical College, Ron, Karnataka 562209, India. * Chanabasayya Vastrad [email protected] Ph: +919480073398 Chanabasava Nilaya, Bharthinagar, Dharwad 580001 , Karanataka, India NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice. medRxiv preprint doi: https://doi.org/10.1101/2020.12.21.20248688; this version posted December 24, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. All rights reserved. No reuse allowed without permission. Abstract Sporadic Creutzfeldt-Jakob disease (sCJD) is neurodegenerative disease also called prion disease linked with poor prognosis. The aim of the current study was to illuminate the underlying molecular mechanisms of sCJD. The mRNA microarray dataset GSE124571 was downloaded from the Gene Expression Omnibus database. Differentially expressed genes (DEGs) were screened.
    [Show full text]
  • Dissertation V2.2 XR
    UCLA UCLA Electronic Theses and Dissertations Title Lysophosphatidylcholine acyltransferase 3-dependent phospholipid remodeling regulates lipid homeostasis and inflammation Permalink https://escholarship.org/uc/item/93c9r39k Author Rong, Xin Publication Date 2015 Peer reviewed|Thesis/dissertation eScholarship.org Powered by the California Digital Library University of California UNIVERSITY OF CALIFORNIA Los Angeles Lysophosphatidylcholine acyltransferase 3-dependent phospholipid remodeling regulates lipid homeostasis and inflammation A dissertation submitted in partial satisfaction of the requirements for the degree Doctor of Philosophy in Cellular and Molecular Pathology by Xin Rong 2015 © Copyright by Xin Rong 2015 ABSTRACT OF THE DISSERTATION Lysophosphatidylcholine acyltransferase 3-dependent phospholipid remodeling regulates lipid homeostasis and inflammation by Xin Rong Doctor of Philosophy in Cellular and Molecular Pathology University of California, Los Angeles 2015 Professor Peter John Tontonoz, Chair Phospholipids (PLs) are important structural components of biological membranes and precursors of numerous signaling molecules. The fatty acyl composition of PLs determines the biophysical characteristics of membranes. Multiple lines of evidence demonstrated that changes in fatty acyl composition could potentially affect the properties of proteins associated with membranes and influence the biological processes that occur on membranes. However, there is little understanding of how regulatory pathways control PL fatty acyl composition in vivo or how such regulation dictates physiological responses. In this work, we investigated the regulation of membrane fatty acyl composition by the Liver X Receptor (LXR)-Lysophosphatidylcholine Acyltranferase 3 (Lpcat3) pathway and its physiological or pathological relevance in lipid homeostasis and metabolic diseases. ii In chapter 2, we define a nuclear receptor pathway for the dynamic modulation of membrane composition in response to changes in cellular lipid metabolism.
    [Show full text]
  • Appendix 2. Significantly Differentially Regulated Genes in Term Compared with Second Trimester Amniotic Fluid Supernatant
    Appendix 2. Significantly Differentially Regulated Genes in Term Compared With Second Trimester Amniotic Fluid Supernatant Fold Change in term vs second trimester Amniotic Affymetrix Duplicate Fluid Probe ID probes Symbol Entrez Gene Name 1019.9 217059_at D MUC7 mucin 7, secreted 424.5 211735_x_at D SFTPC surfactant protein C 416.2 206835_at STATH statherin 363.4 214387_x_at D SFTPC surfactant protein C 295.5 205982_x_at D SFTPC surfactant protein C 288.7 1553454_at RPTN repetin solute carrier family 34 (sodium 251.3 204124_at SLC34A2 phosphate), member 2 238.9 206786_at HTN3 histatin 3 161.5 220191_at GKN1 gastrokine 1 152.7 223678_s_at D SFTPA2 surfactant protein A2 130.9 207430_s_at D MSMB microseminoprotein, beta- 99.0 214199_at SFTPD surfactant protein D major histocompatibility complex, class II, 96.5 210982_s_at D HLA-DRA DR alpha 96.5 221133_s_at D CLDN18 claudin 18 94.4 238222_at GKN2 gastrokine 2 93.7 1557961_s_at D LOC100127983 uncharacterized LOC100127983 93.1 229584_at LRRK2 leucine-rich repeat kinase 2 HOXD cluster antisense RNA 1 (non- 88.6 242042_s_at D HOXD-AS1 protein coding) 86.0 205569_at LAMP3 lysosomal-associated membrane protein 3 85.4 232698_at BPIFB2 BPI fold containing family B, member 2 84.4 205979_at SCGB2A1 secretoglobin, family 2A, member 1 84.3 230469_at RTKN2 rhotekin 2 82.2 204130_at HSD11B2 hydroxysteroid (11-beta) dehydrogenase 2 81.9 222242_s_at KLK5 kallikrein-related peptidase 5 77.0 237281_at AKAP14 A kinase (PRKA) anchor protein 14 76.7 1553602_at MUCL1 mucin-like 1 76.3 216359_at D MUC7 mucin 7,
    [Show full text]
  • MBOAT5 (D-19): Sc-161831
    SAN TA C RUZ BI OTEC HNOL OG Y, INC . MBOAT5 (D-19): sc-161831 BACKGROUND APPLICATIONS MBOAT5 (membrane-bound O-acyltransferase domain-containing protein 5), MBOAT5 (D-19) is recommended for detection of MBOAT5 of mouse, rat and also known as lysophosphatidylcholine acyltransferase 3 (LPCAT3), lysophos - human origin by Western Blotting (starting dilution 1:200, dilution range 1:100- pholipid acyltransferase 5 (LPLAT 5), 1-acylglycerophosphocholine O-acyl - 1:1000), immunoprecipitation [1-2 µg per 100-500 µg of total protein (1 ml of transferase, C3F, OACT5 or nessy, is a 487 amino acid multi-pass membrane cell lysate)], immunofluorescence (starting dilution 1:50, dilution range 1:50- protein of the endoplasmic reticulum that belongs to the membrane-bound 1:500) and solid phase ELISA (starting dilution 1:30, dilution range 1:30- acyltransferase family. As an acyltransferase, MBOAT5 aids in the conversion 1:3000); non cross-reactive with MBOAT1, MBOAT2 or MBOAT4. of lysophosphatidylcholine into phosphatidylcholine, lysophosphatidylserine MBOAT5 (D-19) is also recommended for detection of MBOAT5 in additional into phosphatidylserine, and participates in the Lands cycle by catalyzing species, including equine, canine and porcine. reacylation of phospholipid remodeling. Encoded by a gene located on human chromosome 12, MBOAT5 is highly expressed in liver, adipose tissue and Suitable for use as control antibody for MBOAT5 siRNA (h): sc-95749, pancreas, with lower levels found in skeletal muscle and heart. MBOAT5 siRNA (m): sc-149310, MBOAT5 shRNA Plasmid (h): sc-95749-SH, MBOAT5 shRNA Plasmid (m): sc-149310-SH, MBOAT5 shRNA (h) Lentiviral REFERENCES Particles: sc-95749-V and MBOAT5 shRNA (m) Lentiviral Particles: sc- 149310-V.
    [Show full text]