Genetic Mapping and Molecular Characterisation of Russian Wheat Aphid Resistance Loci in Wheat

Total Page:16

File Type:pdf, Size:1020Kb

Genetic Mapping and Molecular Characterisation of Russian Wheat Aphid Resistance Loci in Wheat Genetic mapping and molecular characterisation of Russian wheat aphid resistance loci in wheat By Surendran Selladurai B.Sc in Agriculture (1st Class); PG. Dip. (Biotech. and Mol. Biol.) The thesis is presented in fulfilment of the requirements for the degree of Doctor of Philosophy School of Veterinary and Life Sciences, Murdoch University, Western Australia April 2016 This thesis was supported by Murdoch University (Western Australia) providing infrastructure at the State Agricultural Biotechnology Centre (SABC) and funds through Murdoch University Research Scholarship. A co-contribution was provided by a Grains Industry Research and Development Corporation. Declaration I declare that this thesis is my own account of my research and contains as its main content work which has not been previously submitted for a degree at any tertiary education institute. Surendran Selladurai Date: ii Abstract The Russian wheat aphid (RWA, Diuraphis noxia Kurdmojov) is considered as one of the most destructive pest of wheat around the world, causing significant yield loss in wheat cultivation. A continuous process of searching for novel resistance loci (Dn) to combat evolving new RWA biotypes has been successful in providing RWA resistance to breeding programs. Australia was declared as a RWA free country but Infestation of RWA was first time reported in Tarlee, South Australia in April, 2016. A novel resistance source, PI94365 with expressing resistance to several biotypes found in other countries was selected to incorporate its resistance into the Australian cultivar EGA Gregory. A double haploid (DH) population developed through the microspore technique was phenotyped in South Africa, Turkey and Morocco with respective biotypes. A genetic linkage map was constructed with 4053 molecular markers including simple sequence repeats (SSR), genome by sequencing (GBS) and Diversity array technology (DArT) molecular markers. Major QTLs to RWA resistance were mapped on 1DS, 7DS and 7BL and minor QTLs were mapped on 3BL, 4AS and 4DL. POPSEQ genetic map distances for the QTLs identified on chromosomes 1DS and 7DS were determined by comparative genomics studies with published consensus and POPSEQ maps. A large number of molecular markers have been identified in the region of RWA resistance loci for the marker assisted plant breeding. Proteomics studies in the absence of live aphids (due to quarantine restriction in Australia) were carried out in order to reveal the resistance mechanism driven by constitutive genes. Ten proteins were significantly differentially expressed between resistance and susceptible lines selected from the double haploid population that was mapped in detail through haplotype analysis. These proteins were annotated using the current wheat genome assembly and functional annotation in relation to RWA resistance. iii Studies identified several induced proteins with RWA infestations. Differentially expressed genes identified in these studies annotated to the wheat genome together with their genetic map location assigned some of the genes to major RWA resistance QTLs and thus this study provided some new insights into RWA resistance. Over all, the work carried out in this study delivered RWA resistant wheat lines for breeding resistance cultivars that are well characterized by a broad range of molecular markers in the regions of the RWA resistance loci. The high density of new molecular markers provides for the efficient tracking of RWA resistance loci in the pipe-line of cultivar development within the framework of quarantine restrictions. iv Publications and presentations Publications in preparation Selladurai, S., Appels, R., Diepeveen, D., Tolmay, V. and EI Bouhssini, M. Genetic mapping of Russian wheat aphid resistance loci in a doubled haploid mapping population. Selladurai, S., Appels, R. and Diepeveen, D. A proteomic approach to unravel host plant resistance mechanism to Russian wheat aphid in double haploid lines derived from double haploid mapping populations. Presentations Oral Presentation: Royal Society of Western Australia – Postgraduate Symposium 2015 Title: Molecular interaction between Russian wheat aphid and wheat and its control via host plant resistance. Poster Presentation: Selladurai, S., Appels, R., Cakir, M., Webster, H., Tolmay, V., Turanli, V., EI Bouhssini, M., Berryman, D. and O’Hara, G. Genetic mapping of Russian wheat aphid resistance genes in a Double haploid population derived from Australian wheat cultivar. International Wheat conference Sydney Australia (IWC2015), 20-25 September 2015, pp142. Selladurai, S., Appels, R., Cakir, M., Tolmay, V., Turanli, V. and EI Bouhssini, M. Genetic mapping of Russian wheat aphid resistance genes in wheat. Veterinary and Life Sciences poster day, Murdoch University, November 2014. v Acknowledgements The goals achieved by this thesis were made possible by collaboration and contribution from many individuals. First and foremost I would like to thank my supervisors Professors Rudi Appels and Dean Diepeveen for their support and encouragement. My sincere gratitude goes to my principal supervisor Professor Rudi Appels for sharing his research wisdom and providing valuable advice, tireless effort and constant encouragement. I am also grateful to Rudi for adopting me (he always says) as his PhD student showing me the respect as a research colleague rather PhD student and also sharing his office and nibbles. It is unforgettable Rudi, your constant guidance, support and encouragement that you have shown me even in the difficult times you faced. There are not enough words to express my appreciation. I would like to thank Dean who joined with me as a team member in the latter part of my PhD career. Your help on statistical analysis, thesis correction and providing moral support and strength were valuable. I would like to thank Dr. Mehmet Cakir, and Professor Michael G. K. Jones for initially giving me the opportunity to change my carrier from private research to PhD research. Special thanks to Mehmet for providing seed materials and valuable advice and helping me to conduct experiments with overseas collaborators. Dr. Hollie Webster’s contributions at the early stages of my thesis production are gratefully acknowledged. Valuable contributions from Dr. Vicki Tolmay (ARC-Small Grain Institute, South Africa), Professor Ferit Turanli (Ege University, Istanbul, Turkey) and Dr. Mustapha EL-Bouhssini (International Centre for Agricultural Research in the Dry Areas (ICARDA) to conduct Russian aphid screening experiments in overseas were greatly appreciated. vi Thanks to A/P Graham O’Hara and Dr. David Berryman for their advice towards my PhD project. The financial support provided by Murdoch University is kindly acknowledged. I would like to thank Dr. Reetinder Gill and Mirza Nazim Ud Dowla for their help to conduct field experiments here in Australia. My sincere thanks go to Ms Bee Lay Addis (SABC administrative officer) for processing my purchase orders and Ms Frankie DeRousie (Academic support & Streaming Coordinator, College of Veterinary Medicine) for facilitating seminar room each week. I also thank SABC staff members Professor Michael G. K. Jones (SABC Director), Dr. David Berryman (SABC Manager) and Ms Frances Brigg (SABC Officer) for providing excellent facilities to carry out my research at the State Agricultural Biotechnology Centre (SABC), Murdoch University. To my friends at the State Agricultural Biotechnology Wujun Ma, Steve Wylie, John Fosu-Nyarko, Mike Frankie, Shahid Islam, Rongchang Yang, Chris Florides, Rowan Maddern, Karl Benton, Mirza Nazim Ud Dowla, Samier Dilipkhot, Jamie Ong, Shu Hui, Sadia Iqbal, Sharon Wescott, Xiaolong Wang, I say thank you all for having helpful discussion and social gatherings. Lastly my family, I wouldn’t hold this without you. To my wife, Vathani your love, constant encouragements and tireless support during this bumpy long journey with hurdles are unforgettable and I am forever indebted. My beautiful daughters Asmitha and Lakshana, your dedication and sacrifice in your childhood life and vii staying with me patiently while I was working was marvellous. I offer big thank you and heartfelt kiss. You have made this whole journey fruitful. viii List of abbreviation Abbreviations Description AAMPs Aphid-associated molecular pattern(s) ABA Abscisic acid ABS Australian Bureau of Statistics ADP Adenosine diphosphate AFLP Amplified Fragment Length Polymorphism ANT Adenine nucleotide translocator ARC Agricultural Research Council ATP Adenosine triphosphate AUD Australian dollar BMV Brome mosaic virus BSA Bovine serum albumin BYDV Barley yellow dwarf virus CC-NB LRR Coiled-coil nucleotide-binding domain leucine-rich repeat CIMMYT International Maize and Wheat Improvement Centre cM Centimorgan cMap Comparative map CPO Corproporphyrinogen DAFWA Department of Agriculture and Food Western Australia DArT Diversity Array Technology ddRAD double digest Restriction-Site Associated DNA sequencing DH Double haploid Dn Diuraphis noxia DNA Deoxyribonucleic acid EDU Education EPG Electrical penetration graph ET Ethylene ETI Effector-triggered immunity FAO Food and Agriculture Organisation of the United Nations FDR False discovery rate GA Gibberellic acid GBS Genotyping-by-sequencing GDC Glycine decarboxylase dehydrogenase complex GMOD Generic model organism database GST Glutathione transferases GWAS Genome wide association study HR Hypersensitive response HR-CD Hypersensitive response cell death HSP Heat shock protein ix IAA Indole-3-acetic acid ICIM Inclusive
Recommended publications
  • Russian Wheat Aphid
    Fact sheet Russian wheat aphid What is Russian wheat aphid? Russian wheat aphid (Diuraphis noxia) is a soft bodied insect that feeds mainly on wheat and barley, but can attack most cereal crops. If this pest enters Australia, it has been estimated that it could cause significant damage to crops, resulting in up to 75% yield losses. è è What does it look like? The aphid is small (up to 1.8 mm long), has a ‘needle-like’ mouthpart, and is light green in colour. The body is elongated compared with other cereal Bugwood.org Frank Peairs, Colorado State University, Wingless adult Russian wheat aphid, showing lack of aphid species. Adults can be winged or wing-less. siphuncles (‘exhaust pipes’ – circled) and presence of a Juveniles (nymphs) look similar to adults but lack ‘double tail’ end (cauda – arrowheads) wings. Characteristic features include dual structures at the rear (cauda) of the insect giving it a ‘double-tail’ appearance (see arrowheads in image top right) and lack visible siphuncles (‘exhaust pipes’ – circles in images on right) that are characteristic for most aphids. What can it be confused with? If it were present, Russian wheat aphid could be found with other cereal aphids on crops. The elongated body shape and lack of ‘exhaust SARDI pipes’ distinguish this aphid from common cereal Adult Oat aphid, with siphuncles (‘exhaust pipe’) structures species (compare top image to middle image). (circled) and no double tail What should I look for? Whilst feeding, the aphid injects salivary toxins into the plant tissue causing the leaves to roll up and white, purple or yellowish streaks to form.
    [Show full text]
  • Areawide Pest Management of Cereal Aphids in Dryland Wheat Systems of the Great Plains, USA
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Panhandle Research and Extension Center Agricultural Research Division of IANR 2008 Areawide Pest Management of Cereal Aphids in Dryland Wheat Systems of the Great Plains, USA Kristopher Giles Oklahoma State University, [email protected] Gary L. Hein University of Nebraska-Lincoln, [email protected] Frank Peairs Colorado State University - Fort Collins Follow this and additional works at: https://digitalcommons.unl.edu/panhandleresext Part of the Agriculture Commons Giles, Kristopher; Hein, Gary L.; and Peairs, Frank, "Areawide Pest Management of Cereal Aphids in Dryland Wheat Systems of the Great Plains, USA" (2008). Panhandle Research and Extension Center. 33. https://digitalcommons.unl.edu/panhandleresext/33 This Article is brought to you for free and open access by the Agricultural Research Division of IANR at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Panhandle Research and Extension Center by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. 19 Areawide Pest Management of Cereal Aphids in Dryland Wheat Systems of the Great Plains, USA KRISTOPHER GILES, 1 GARY HEIN2 AND FRANK PEAIRS3 1Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, Oklahoma, USA 2Department of Entomology, University of Nebraska Panhandle R&E Center, Scottsbluff, Nebraska, USA 3Department of Bioagricultural Sciences and Pest Management, Colorado State University, Fort Collins, Colorado, USA Introduction: Description of the Problem and Need for an Areawide Pest Management Approach In the Great Plains of the USA from Wyoming to Texas, dryland winter wheat either is regularly grown continuously or is followed by a year of fallow in semi-arid locales (Royer and Krenzer, 2000).
    [Show full text]
  • Genome Sequence of the Progenitor of the Wheat D Genome Aegilops Tauschii Ming-Cheng Luo1*, Yong Q
    OPEN LETTER doi:10.1038/nature24486 Genome sequence of the progenitor of the wheat D genome Aegilops tauschii Ming-Cheng Luo1*, Yong Q. Gu2*, Daniela Puiu3*, Hao Wang4,5,6*, Sven O. Twardziok7*, Karin R. Deal1, Naxin Huo1,2, Tingting Zhu1, Le Wang1, Yi Wang1,2, Patrick E. McGuire1, Shuyang Liu1, Hai Long1, Ramesh K. Ramasamy1, Juan C. Rodriguez1, Sonny L. Van1, Luxia Yuan1, Zhenzhong Wang1,8, Zhiqiang Xia1, Lichan Xiao1, Olin D. Anderson2, Shuhong Ouyang2,8, Yong Liang2,8, Aleksey V. Zimin3, Geo Pertea3, Peng Qi4,5, Jeffrey L. Bennetzen6, Xiongtao Dai9, Matthew W. Dawson9, Hans-Georg Müller9, Karl Kugler7, Lorena Rivarola-Duarte7, Manuel Spannagl7, Klaus F. X. Mayer7,10, Fu-Hao Lu11, Michael W. Bevan11, Philippe Leroy12, Pingchuan Li13, Frank M. You13, Qixin Sun8, Zhiyong Liu8, Eric Lyons14, Thomas Wicker15, Steven L. Salzberg3,16, Katrien M. Devos4,5 & Jan Dvořák1 Aegilops tauschii is the diploid progenitor of the D genome of We conclude therefore that the size of the Ae. tauschii genome is about hexaploid wheat1 (Triticum aestivum, genomes AABBDD) and 4.3 Gb. an important genetic resource for wheat2–4. The large size and To assess the accuracy of our assembly, sequences of 195 inde- highly repetitive nature of the Ae. tauschii genome has until now pendently sequenced and assembled AL8/78 BAC clones8, which precluded the development of a reference-quality genome sequence5. contained 25,540,177 bp in 2,405 unordered contigs, were aligned to Here we use an array of advanced technologies, including ordered- Aet v3.0. Five contigs failed to align and six extended partly into gaps, clone genome sequencing, whole-genome shotgun sequencing, accounting for 0.25% of the total length of the contigs.
    [Show full text]
  • Taxonomy, Morphology and Palynology of Aegilops Vavilovii (Zhuk.) Chennav
    African Journal of Agricultural Research Vol. 5(20), pp. 2841-2849, 18 October, 2010 Available online at http://www.academicjournals.org/AJAR ISSN 1991-637X ©2010 Academic Journals Full Length Research Paper Taxonomy, morphology and palynology of Aegilops vavilovii (Zhuk.) Chennav. (Poaceae: Triticeae) Evren Cabi1* Musa Doan1 Hülya Özler2, Galip Akaydin3 and Alptekin Karagöz4 1Department of Biological Sciences, Faculty of Arts and Sciences, Middle East Technical University, Ankara, Turkey. 2Department of Biology, Faculty of Arts and Sciences, Sinop University, Sinop Turkey. 3Department of Biology Education, Hacettepe University, 06800 Ankara, Turkey. 4Department of Biology, Aksaray University, Aksaray, Turkey. Accepted 23 September, 2010 Aegilops vavilovii (Zhuk.) Chennav., a rare species, was collected from Southeast Anatolia, Turkey. During the field studies of the project “Taxonomic revision of Tribe Triticeae in Turkey”, Ae. vavilovii was accidentally recollected from three localities in anliurfa and Mardin provinces in 2007 and 2008, respectively. The main objective of this study is to shed light on the diagnostic characteristics of this rare species including its morphological, palynological and micro morphological features. Moreover, an emended and expanded description, distribution, phenology and ecology of this rare species are also provided. A. vavilovii and A. crassa are naturally found in the Southeastern part of Turkey and they share similar morphological features that caused a confused taxonomy. Pollen grains of A. vavilovii are heteropolar, monoporate and spheroidal (A/B: 1,13) typically as Poaceous. However, it generally, prefers clayish loam soils that are slightly alkaline (pH 7.7) with low organic content (1.54%). Although it is a rare species with very narrow area of distribution, very few samples have been represented in ex situ collections and the species has not been involved in any in situ conservation activities to save its genetic resources in Turkey.
    [Show full text]
  • Hippodamia Variegata (Goeze) (Coleoptera: Coccinellidae) Detected in Michigan Soybean Fields
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by ValpoScholar The Great Lakes Entomologist Volume 38 Numbers 3 & 4 - Fall/Winter 2005 Numbers 3 & Article 8 4 - Fall/Winter 2005 October 2005 Hippodamia Variegata (Goeze) (Coleoptera: Coccinellidae) Detected in Michigan Soybean Fields Mary M. Gardiner Michigan State University Gary L. Parsons Michigan State University Follow this and additional works at: https://scholar.valpo.edu/tgle Part of the Entomology Commons Recommended Citation Gardiner, Mary M. and Parsons, Gary L. 2005. "Hippodamia Variegata (Goeze) (Coleoptera: Coccinellidae) Detected in Michigan Soybean Fields," The Great Lakes Entomologist, vol 38 (2) Available at: https://scholar.valpo.edu/tgle/vol38/iss2/8 This Peer-Review Article is brought to you for free and open access by the Department of Biology at ValpoScholar. It has been accepted for inclusion in The Great Lakes Entomologist by an authorized administrator of ValpoScholar. For more information, please contact a ValpoScholar staff member at [email protected]. Gardiner and Parsons: <i>Hippodamia Variegata</i> (Goeze) (Coleoptera: Coccinellidae) D 164 THE GREAT LAKES ENTOMOLOGIST Vol. 38, Nos. 3 & 4 HIPPODAMIA VARIEGATA (GOEZE) (COLEOPTERA: COCCINELLIDAE) DETECTED IN MICHIGAN SOYBEAN FIELDS Mary M. Gardiner1 and Gary L. Parsons2 ABSTRACT Since its initial detection near Montreal, Canada in 1984, the variegated lady beetle Hippodamia variegata (Goeze) (Coleoptera:Coccinellidae) has spread throughout the northeastern United States. In 2005, this immigrant Old World species was detected in Michigan for the first time. Twenty-nine adults were found in soybean fields in 4 counties: Ingham, Gratiot, Kalamazoo, and Saginaw.
    [Show full text]
  • Cereal Aphids G
    G1284 (Revised August 2005) Cereal Aphids G. L. Hein, Extension Entomologist, J. A. Kalisch, Extension Technologist, and J. Thomas, Research Coordinator to living young. A female may produce two to three young Identification and general discussion of the cereal per day under warm conditions, and females may mature in aphid species most commonly found in Nebraska small 7-10 days. This tremendous reproduction potential can result grains, corn, sorghum and millet. in rapid aphid population buildup. Males of some species are seldom if ever seen. Cereal aphids can be a serious threat to several Nebraska Both winged and wingless aphids may be present in the crops. Aphid feeding may cause direct damage to the plant or field. Winged forms are produced when the quality of the host result in transmission of plant diseases. Aphids also may cause plant declines, such as at maturity. Other factors, including damage by injecting toxic salivary secretions during feeding. temperature, photoperiod or seasonality, and population density In Nebraska the most serious cereal aphid problems result also may be involved. The ability of aphids to use flight for from Russian wheat aphid infestations on wheat and barley dispersal is an important factor that contributes to the status and greenbug infestations on sorghum and to a lesser extent of these insects as pests. on wheat. Growers must monitor their crops for these aphids. Greenbug, Schizaphis graminum (Rondani) Several other cereal aphid species also may be present, but they seldom cause significant damage. Accurate aphid identi- The greenbug is a light green aphid with a dark green fication is necessary to make the best management decisions.
    [Show full text]
  • Airborne Multispectral Remote Sensing for Russian Wheat Aphid
    AIRBORNE MULTI-SPECTRAL REMOTE SENSING FOR RUSSIAN WHEAT APHID INFESTATIONS Norm Elliott1, Mustafa Mirik2, Zhiming Yang3, Tom Dvorak4, Mahesh Rao3, Jerry Michels2, Vasile Catana2, Mpho Phoofolo2, Kris Giles2, and Tom Royer2 1USDA-ARS-PSRL 1301 N. Western Rd., Stillwater, OK 74074 [email protected] 2Texas Agricultural Experiment Station 2301 Experiment Station Rd., Bushland, TX 79012 [email protected], [email protected] 3Oklahoma State University Stillwater, OK 74078 [email protected], [email protected] [email protected], [email protected] [email protected], [email protected] 4University of Iowa Iowa City, IA 52243 [email protected] ABSTRACT The Russian wheat aphid (RWA) is a severe pest of wheat in the High Plains region of the United States. Remote sensing could be effective for detecting RWA infestations for pest management decision-making. We evaluated an airborne multi-spectral remote sensing system for its ability to differentiate varying levels of injury caused by RWA infestation in winter wheat fields. Two study fields were located in southeastern Colorado in spring 2004, and two fields were located in far western Oklahoma in spring 2005. In each field, RWA density and plant damage were determined for 20-24 3x3 m plots with varying levels of RWA damage. Prior to sampling plots, multi-spectral imagery was obtained using an SSTCRIS® multi-spectral imaging system mounted NADIR in a Cessna 172 aircraft. The multi-spectral data were used to compare with RWA infestation level for each plot. Correlations between vegetation indices and the proportion of RWA damaged wheat tillers per plot were negative for all vegetation indices calculated.
    [Show full text]
  • The Russian Wheat Aphid in Utah
    Extension Entomology Department of Biology, Logan, UT 84322 Utah State University Extension Fact Sheet No. 80 February 1993 THE RUSSIAN WHEAT APHID IN UTAH Introduction Since arriving in Utah in 1987, the Russian wheat aphid, Diuraphis noxia (Kurdjumov), has spread to all grain growing areas of the state. It is very unpredictable in that at times it becomes an economic pest and at other times it is just present. In some areas it has caused losses in wheat and barley of up to 50 percent or more. It can be a problem in fall or spring planted grains. Biology Russian wheat aphids infest wheat, barley, and triticale, as well as several wild and cultivated grasses. Broadleaf plants such as alfalfa, clover, potatoes, and sunflowers are not hosts. Volunteer grain plays a key role in the life cycle of this pest by providing a food source in the interval between grain harvest and the emergence of fall-seeded crops. Many species of grasses act as reservoir hosts during the late-summer dry season; however, grasses such as barnyard grass and foxtail grass that grow on irrigation ditch banks and other wet waste areas are poor hosts. Most wild desert grasses are normally dormant and unsuitable for aphids during this period. In some cases, winged forms may feed on corn during heavy flights, but no colonization occurs. In the summer, all Russian wheat aphids are females that do not lay eggs but give birth to live young at a rate of four to five per day for up to four weeks. The new young females can mature in as little as 7-10 days.
    [Show full text]
  • Molecular Phylogeny of the Genus Triticum L
    Comparative and evolutionary genomics and proteomics 147 Chapter # MOLECULAR PHYLOGENY OF THE GENUS TRITICUM L. Golovnina K.1, Glushkov S.*1, Blinov A.1, Mayorov V.2, Adkison L.2 , Goncharov N.1 1 Institute of Cytology and Genetics, SB RAS, Novosibirsk, 630090, Russia; 2 Mercer University School of Medicine, Macon, USA * Corresponding author: e-mail: [email protected] Key words: wheat, Aegilops, molecular evolution, plasmon and B genome inheritance SUMMARY Motivation: The genus Triticum L. includes the major cereal crop, common or bread wheat (hexaploid Triticum aestivum L.), and other important cultivated species. Wheat has emerged as a classic polyploid model and a significant role of polyploidy as a widespread evolutionary strategy in angiosperms is known. Research on wheat phylogeny has contributed to the understanding of this important phenomenon, but there are still discrepancies and deficiencies in information. Results: Here, we conducted a phylogenetic analysis of all known wheat species and the closely related Aegilops species. This analysis was based on chloroplast matK gene comparison along with trnL intron sequences of some species. Polyploid wheat species are successfully divided only into two groups – Emmer (Dicoccoides and Triticum sections) and Timopheevii (Timopheevii section). Results reveal a strictly maternal plastid inheritance of all synthetic wheat amphyploids included in the study. Moreover, a concordance of chloroplast origin with the definite nuclear genomes of polyploid species that were inherited at the last hybridization events was found. This fact allows the most probable donor of the certain nuclear genome and plasmon at the same time to be determined. This suggests that there were two ancestor representatives of Aegilops speltoides that participated in the speciation of polyploid wheats with B and G genome in their genome composition.
    [Show full text]
  • Resistance in Bread Wheat (Triticum Aestivum L.) Accession Citr 2401
    Genetics of Russian wheat aphid (Diuraphis noxia) resistance in bread wheat (Triticum aestivum L.) accession CItr 2401 By THANDEKA NOKUTHULA SIKHAKHANE Submitted in accordance with the requirements for the degree of MASTER OF SCIENCE in the subject LIFE SCIENCES at the UNIVERSITY OF SOUTH AFRICA SUPERVISOR : Prof T.J. Tsilo CO-SUPERVISOR : Dr V.L. Tolmay JANUARY 2017 DECLARATION Name: ______________________________________________________ Student number: ______________________________________________________ Degree: ______________________________________________________ Exact wording of the title of the dissertation or thesis as appearing on the copies submitted for examination: Genetics of Russian wheat aphid (Diuraphis noxia) resistance in bread wheat (Triticum aestivum L.) accession CItr 2401 I declare that the above dissertation/thesis is my own work and that all the sources that I have used or quoted have been indicated and acknowledged by means of complete references. ________________________ _____________________ SIGNATURE DATE STUDENT NUMBER: 57652538 i ACKNOWLEDGEMENTS I would like to extend my sincere appreciation and gratitude to: My supervisors, Prof Toi Tsilo and Dr Vicki Tolmay for always being there for me whenever I required assistance, for teaching and grooming me, The Agricultural Research Council and the National Research Foundation for funding, Dr Astrid Jankielsohn, for all the RWA information she shared with me and her images and figures she allowed me to use, Dr Scott Sydenham, for all the molecular study information,
    [Show full text]
  • ITCHGRASS (Rottboellia Cochinchinensis) from COSTA RICA1
    Molecular basis for resistance to fluazifop-P-butyl in itchgrass ... 143 MOLECULAR BASIS FOR RESISTANCE TO FLUAZIFOP-P-BUTYL IN ITCHGRASS (Rottboellia cochinchinensis) FROM COSTA RICA1 Base Molecular para Resistência a Fluazifop-P-Butyl em Capim-Camalote (Rottboellia cochinchinensis) da Costa Rica CASTILLO-MATAMOROS, R.2, BRENES-ANGULO, A.2, HERRERA-MURILLO, F.3, and GÓMEZ-ALPÍZAR. L.2 ABSTRACT - Rottboellia cochinchinensis is an annual grass weed species known as itchgrass, or “caminadora” in America´s Spanish speaking countries, and has become a major and troublesome weed in several crops. The application of fluazifop-P-butyl at recommended rates (125 g a.i. ha-1) was observed to be failing to control itchgrass in a field in San José, Upala county, Alajuela province, Costa Rica. Plants from the putative resistant R. cochinchinensis population survived fluazifop-P-butyl when treated with 250 g a.i. ha-1 (2X label rate) at the three- to four-leaf stage under greenhouse conditions. PCR amplification and sequencing of partial carboxyl transferase domain (CT) of the acetyl-CoA carboxylase (ACCase) gene were used to determine the molecular mechanism of resistance. A single non-synonymous point mutation from TGG (susceptible plants) to TGC (putative resistant plants) that leads to a Trp-2027-Cys substitution was found. This Trp-2027-Cys mutation is known to confer resistance to all aryloxyphenoxyproprionate (APP) herbicides to which fluazifop-P-butyl belongs. To the best of our knowledge, this is the first report of fluazifop-P-butyl resistance and a mutation at position 2027 for a Costa Rican R. cochinchinensis population.
    [Show full text]
  • Mitochondrial DNA and the Origin of the B Genome of Bread Wheat, Triticum Aestivum *
    Heredity 62 (1989) 335—342 The Genetical Society of Great Britain Received 22 September 1988 Restriction endonuclease profiles of mitochondrial DNA and the origin of the B genome of bread wheat, Triticum aestivum * Dan Graur,t t Department of Zoology, George S. Wise Faculty of Maia Boghert and Life Science, Tel Aviv University, Ramat Aviv 69978, Adina Breimant Israel. Department of Botany, George S. Wise Faculty of Life Science, Tel Aviv University, Ramat Aviv 69978, Israel. In an attempt to identify the donor of the B genome in the emmer (AABB) and dinkel (AABBDD) wheats (Triticum turgidum and T. aestivum, respectively), the restriction endonuclease profiles of two regions around the mitochondrial cytochrome oxidase subunit I gene were compared with those of five putative diploid ancestors belonging to the Sitopsis section of the Aegilops genus: Ac. longissima, Ac. speltoidcs, Ac. bicornis, Ac. sharoncnsis and Ac. scarsii. The mitochondria of the diploid donors of genome A (T. monococcum, section Monococca) and genome D (Ac. squarrosa, section Vertebrata) were also tested. The results indicate that none of these diploid species is likely to have either donated the B genome or to be closely related to the donor. The restriction fragment patterns of T. turgidum and T. acstivum were identical, supporting the hypothesis that T. turgidum is the immediate maternal relative of T. aestivum. The restriction endonuclease profiles of T. monococcum var. boeoticum and T. m. var. urartu were also identical supporting their conspecific systematic assignment. No real taxonomic distinction exists between Triticum and Acgilops. With the possible exception of Ac. longissima, the mitochondria of the Sitopsis section constitute a natural dade.
    [Show full text]