LVI: Hijacking Transient Execution Through Microarchitectural Load Value Injection
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
SPP 2019.09.0 Component Release Notes
SPP 2019.09.0 Component Release Notes BIOS - System ROM Driver - Chipset Driver - Network Driver - Storage Driver - Storage Controller Driver - Storage Fibre Channel and Fibre Channel Over Ethernet Driver - System Driver - System Management Driver - Video Firmware - Blade Infrastructure Firmware - Lights-Out Management Firmware - Network Firmware - NVDIMM Firmware - PCIe NVMe Storage Disk Firmware - Power Management Firmware - SAS Storage Disk Firmware - SATA Storage Disk Firmware - Storage Controller Firmware - Storage Fibre Channel Firmware - System Firmware (Entitlement Required) - Storage Controller Software - Lights-Out Management Software - Management Software - Network Software - Storage Controller Software - Storage Fibre Channel Software - Storage Fibre Channel HBA Software - System Management BIOS - System ROM Top Online ROM Flash Component for Linux - HPE ProLiant DL380 Gen9/DL360 Gen9 (P89) Servers Version: 2.74_07-21-2019 (Optional) Filename: RPMS/i386/firmware-system-p89-2.74_2019_07_21-1.1.i386.rpm Important Note! Important Notes: None Deliverable Name: HPE ProLiant DL360/DL380 Gen9 System ROM - P89 Release Version: 2.74_07-21-2019 Last Recommended or Critical Revision: 2.72_03-25-2019 Previous Revision: 2.72_03-25-2019 Firmware Dependencies: None Enhancements/New Features: This revision of the System ROM includes the latest revision of the Intel microcode which provides mitigation for an Intel sighting where the system may experience a machine check after updating to the latest System ROM which contained a fix for an Intel TSX (Transactional Synchronizations Extensions) sightings. The previous microcode was first introduced in the v2.70 System ROM. This issue only impacts systems configured with Intel Xeon v4 Series processors. This issue is not unique to HPE servers. Problems Fixed: Addressed an extremely rare issue where a system booting to VMware may experience a PSOD in legacy boot mode. -
Microcode Revision Guidance August 31, 2019 MCU Recommendations
microcode revision guidance August 31, 2019 MCU Recommendations Section 1 – Planned microcode updates • Provides details on Intel microcode updates currently planned or available and corresponding to Intel-SA-00233 published June 18, 2019. • Changes from prior revision(s) will be highlighted in yellow. Section 2 – No planned microcode updates • Products for which Intel does not plan to release microcode updates. This includes products previously identified as such. LEGEND: Production Status: • Planned – Intel is planning on releasing a MCU at a future date. • Beta – Intel has released this production signed MCU under NDA for all customers to validate. • Production – Intel has completed all validation and is authorizing customers to use this MCU in a production environment. -
SDG Adhoc Reporting
VMware Deliverable Release Notes This document does not apply to HPE Superdome servers. For information on HPE Superdome, see the following links: HPE Integrity Superdome X HPE Superdome Flex Information on HPE Synergy supported VMware ESXi OS releases, HPE ESXi Custom Images and HPE Synergy Custom SPPs is available at: VMware OS Support Tool for HPE Synergy Information on HPE Synergy Software Releases is available at: HPE Synergy Software Releases - Overview SPP 2021.04.0 Release Notes for VMware vSphere 6.5 BIOS (Login Required) - System ROM Driver - Network Driver - Storage Controller Firmware - Network Firmware - NVDIMM Firmware - Storage Controller Firmware - Storage Fibre Channel Software - Management Software - Storage Controller Software - Storage Fibre Channel Software - System Management BIOS (Login Required) - System ROM Top ROM Flash Firmware Package - HPE Apollo 2000 Gen10/HPE ProLiant XL170r/XL190r Gen10 (U38) Servers Version: 2.42_01-23-2021 (Recommended) Filename: U38_2.42_01_23_2021.fwpkg Important Note! Important Notes: None Deliverable Name: HPE Apollo 2000 Gen10/HPE ProLiant XL170r/XL190r Gen10 System ROM - U38 Release Version: 2.42_01-23-2021 Last Recommended or Critical Revision: 2.42_01-23-2021 Previous Revision: 2.40_10-26-2020 Firmware Dependencies: None Enhancements/New Features: Updated the support for Fast Fault Tolerant Memory Mode (ADDDC) to improve system uptime. Added support to the BIOS/Platform Configuration (RBSU) Time Zones to add Dublin/London (UTC+1). This support also requires the latest version of iLO Firmware, version 2.40 or later. Problems Fixed: This revision of the System ROM includes the latest revision of the Intel microcode which provides a fix for a potential machine check exception under heavy stress with short loops of instructions. -
Efficiently Mitigating Transient Execution Attacks Using the Unmapped Speculation Contract Jonathan Behrens, Anton Cao, Cel Skeggs, Adam Belay, M
Efficiently Mitigating Transient Execution Attacks using the Unmapped Speculation Contract Jonathan Behrens, Anton Cao, Cel Skeggs, Adam Belay, M. Frans Kaashoek, and Nickolai Zeldovich, MIT CSAIL https://www.usenix.org/conference/osdi20/presentation/behrens This paper is included in the Proceedings of the 14th USENIX Symposium on Operating Systems Design and Implementation November 4–6, 2020 978-1-939133-19-9 Open access to the Proceedings of the 14th USENIX Symposium on Operating Systems Design and Implementation is sponsored by USENIX Efficiently Mitigating Transient Execution Attacks using the Unmapped Speculation Contract Jonathan Behrens, Anton Cao, Cel Skeggs, Adam Belay, M. Frans Kaashoek, and Nickolai Zeldovich MIT CSAIL Abstract designers have implemented a range of mitigations to defeat transient execution attacks, including state flushing, selectively Today’s kernels pay a performance penalty for mitigations— preventing speculative execution, and removing observation such as KPTI, retpoline, return stack stuffing, speculation channels [5]. These mitigations impose performance over- barriers—to protect against transient execution side-channel heads (see §2): some of the mitigations must be applied at attacks such as Meltdown [21] and Spectre [16]. each privilege mode transition (e.g., system call entry and exit), To address this performance penalty, this paper articulates and some must be applied to all running code (e.g., retpolines the unmapped speculation contract, an observation that mem- for all indirect jumps). In some cases, they are so expensive ory that isn’t mapped in a page table cannot be leaked through that OS vendors have decided to leave them disabled by de- transient execution. To demonstrate the value of this contract, fault [2, 22]. -
Class-Action Lawsuit
Case 3:20-cv-00863-SI Document 1 Filed 05/29/20 Page 1 of 279 Steve D. Larson, OSB No. 863540 Email: [email protected] Jennifer S. Wagner, OSB No. 024470 Email: [email protected] STOLL STOLL BERNE LOKTING & SHLACHTER P.C. 209 SW Oak Street, Suite 500 Portland, Oregon 97204 Telephone: (503) 227-1600 Attorneys for Plaintiffs [Additional Counsel Listed on Signature Page.] UNITED STATES DISTRICT COURT DISTRICT OF OREGON PORTLAND DIVISION BLUE PEAK HOSTING, LLC, PAMELA Case No. GREEN, TITI RICAFORT, MARGARITE SIMPSON, and MICHAEL NELSON, on behalf of CLASS ACTION ALLEGATION themselves and all others similarly situated, COMPLAINT Plaintiffs, DEMAND FOR JURY TRIAL v. INTEL CORPORATION, a Delaware corporation, Defendant. CLASS ACTION ALLEGATION COMPLAINT Case 3:20-cv-00863-SI Document 1 Filed 05/29/20 Page 2 of 279 Plaintiffs Blue Peak Hosting, LLC, Pamela Green, Titi Ricafort, Margarite Sampson, and Michael Nelson, individually and on behalf of the members of the Class defined below, allege the following against Defendant Intel Corporation (“Intel” or “the Company”), based upon personal knowledge with respect to themselves and on information and belief derived from, among other things, the investigation of counsel and review of public documents as to all other matters. INTRODUCTION 1. Despite Intel’s intentional concealment of specific design choices that it long knew rendered its central processing units (“CPUs” or “processors”) unsecure, it was only in January 2018 that it was first revealed to the public that Intel’s CPUs have significant security vulnerabilities that gave unauthorized program instructions access to protected data. 2. A CPU is the “brain” in every computer and mobile device and processes all of the essential applications, including the handling of confidential information such as passwords and encryption keys. -
NEC V. Intel: a Guide to Using "Clean Room" Procedures As Evidence, 10 Computer L.J
The John Marshall Journal of Information Technology & Privacy Law Volume 10 Issue 4 Computer/Law Journal - Winter 1990 Article 1 Winter 1990 NEC v. Intel: A Guide to Using "Clean Room" Procedures as Evidence, 10 Computer L.J. 453 (1990) David S. Elkins Follow this and additional works at: https://repository.law.uic.edu/jitpl Part of the Computer Law Commons, Internet Law Commons, Privacy Law Commons, and the Science and Technology Law Commons Recommended Citation David S. Elkins, NEC v. Intel: A Guide to Using "Clean Room" Procedures as Evidence, 10 Computer L.J. 453 (1990) https://repository.law.uic.edu/jitpl/vol10/iss4/1 This Article is brought to you for free and open access by UIC Law Open Access Repository. It has been accepted for inclusion in The John Marshall Journal of Information Technology & Privacy Law by an authorized administrator of UIC Law Open Access Repository. For more information, please contact [email protected]. NEC V. INTEL: A GUIDE TO USING "CLEAN ROOM" PROCEDURES AS EVIDENCE DAVID S. ELKINS* I. INTRODUCTION The recent United States District Court decision in NEC Corp. v. Intel Corp.' has made a significant imprint on the field of copyright law in two respects. The case marks the first time that computer microcode 2 has been held copyrightable,3 and the first time that "clean room" procedures have been used as evidence in an infringement ac- tion.4 Simply put, clean room procedures comprise a method of creating a certain type of technology without the possibility of influence from outside sources. These procedures may be necessary in situations where the mere creation of the technology gives rise to an inference of copy- * J.D., King Hall School of Law, University of California, Davis, 1990; A.B., Univer- sity of California, Berkeley, 1986. -
Accelerate Hybrid Cloud AI Workloads Solution Brief
Solution Brief Data Center | Hybrid Cloud Accelerate Hybrid Cloud AI Workloads Ease your journey to hybrid/multicloud with a reference architecture for Intel® technology and VMware Cloud Foundation Executive Summary To remain competitive in today’s world, organizations need a modern data center. Companies using these data centers must accelerate their product development, compete more successfully at a lower cost, and Solution Benefits reduce their downtime and maintenance overhead. Technology must move and change with the times—solutions for hosting applications and Intel’s VMware Cloud Foundation services must innovate and change as well. reference architecture takes advantage of Intel® compute, Companies with older and outdated data centers will want to meet these memory, storage, and networking challenges by upgrading to hybrid cloud solutions, where the data center innovations to help enable can easily and seamlessly interface between on‑premises and cloud software-defined data centers and systems. Based on VMware Cloud Foundation with VMware Tanzu, Intel hybrid/multicloudOptional adoption. partner logo goes here addressed these requirements by offering a hybrid/multicloud reference • Fast AI inference. AI workloads architecture—available in a Base and Plus configuration—that is easily can benefit from innovations deployable and manageable for virtual machines (VMs) and containers. from Intel such as Intel® DL Boost. • Flexibility and portability. VMware Cloud Foundation helps enable enterprises to run their workloads where it makes most sense, whether that’s Private Public on‑premises, in a public cloud, Cloud Cloud or in several clouds at once. VMware Cloud Foundation VMware VMware VMware VMware vSphere vRealize Suite vSA S‑T VMware SDDC Manager Figure 1. -
Beyond MOV ADD XOR – the Unusual and Unexpected
Beyond MOV ADD XOR the unusual and unexpected in x86 Mateusz "j00ru" Jurczyk, Gynvael Coldwind CONFidence 2013, Kraków Who • Mateusz Jurczyk o Information Security Engineer @ Google o http://j00ru.vexillium.org/ o @j00ru • Gynvael Coldwind o Information Security Engineer @ Google o http://gynvael.coldwind.pl/ o @gynvael Agenda • Getting you up to speed with new x86 research. • Highlighting interesting facts and tricks. • Both x86 and x86-64 discussed. Security relevance • Local vulnerabilities in CPU ↔ OS integration. • Subtle CPU-specific information disclosure. • Exploit mitigations on CPU level. • Loosely related considerations and quirks. x86 - introduction not required • Intel first ships 8086 in 1978 o 16-bit extension of the 8-bit 8085. • Only 80386 and later are used today. o first shipped in 1985 o fully 32-bit architecture o designed with security in mind . code and i/o privilege levels . memory protection . segmentation x86 - produced by... Intel, AMD, VIA - yeah, we all know these. • Chips and Technologies - left market after failed 386 compatible chip failed to boot the Windows operating system. • NEC - sold early Intel architecture compatibles such as NEC V20 and NEC V30; product line transitioned to NEC internal architecture http://www.cpu-collection.de/ x86 - other manufacturers Eastern Bloc KM1810BM86 (USSR) http://www.cpu-collection.de/ x86 - other manufacturers Transmeta, Rise Technology, IDT, National Semiconductor, Cyrix, NexGen, Chips and Technologies, IBM, UMC, DM&P Electronics, ZF Micro, Zet IA-32, RDC Semiconductors, Nvidia, ALi, SiS, GlobalFoundries, TSMC, Fujitsu, SGS-Thomson, Texas Instruments, ... (via Wikipedia) At first, a simple architecture... At first, a simple architecture... x86 bursted with new functions • No eXecute bit (W^X, DEP) o completely redefined exploit development, together with ASLR • Supervisor Mode Execution Prevention • RDRAND instruction o cryptographically secure prng • Related: TPM, VT-d, IOMMU Overall.. -
SDG Adhoc Reporting
VMware Deliverable Release Notes This document does not apply to HPE Superdome servers. For information on HPE Superdome, see the following links: HPE Integrity Superdome X HPE Superdome Flex Information on HPE Synergy supported VMware ESXi OS releases, HPE ESXi Custom Images and HPE Synergy Custom SPPs is available at: VMware OS Support Tool for HPE Synergy Information on HPE Synergy Software Releases is available at: HPE Synergy Software Releases - Overview VMware Upgrade Pack v1.4.2.1 Release Notes for VMware ESXi 7.0 U2 BIOS (Login Required) - System ROM Driver - Lights-Out Management Driver - Network Driver - Storage Controller Driver - System Management Firmware - Network Firmware - NVDIMM Firmware - Storage Controller Firmware - Storage Fibre Channel Software - Management Software - Storage Fibre Channel Software - System Management BIOS (Login Required) - System ROM Top ROM Flash Firmware Package - HPE Apollo 2000 Gen10/HPE ProLiant XL170r/XL190r Gen10 (U38) Servers Version: 2.42_01-23-2021 (Recommended) Filename: U38_2.42_01_23_2021.fwpkg Important Note! Important Notes: None Deliverable Name: HPE Apollo 2000 Gen10/HPE ProLiant XL170r/XL190r Gen10 System ROM - U38 Release Version: 2.42_01-23-2021 Last Recommended or Critical Revision: 2.42_01-23-2021 Previous Revision: 2.40_10-26-2020 Firmware Dependencies: None Enhancements/New Features: Updated the support for Fast Fault Tolerant Memory Mode (ADDDC) to improve system uptime. Added support to the BIOS/Platform Configuration (RBSU) Time Zones to add Dublin/London (UTC+1). This support also requires the latest version of iLO Firmware, version 2.40 or later. Problems Fixed: This revision of the System ROM includes the latest revision of the Intel microcode which provides a fix for a potential machine check exception under heavy stress with short loops of instructions. -
LVI-LFB: Scenarios 3 & 4
WHITEPAPER Security Load Value Injection in the Line Fill Buffers: How to Hijack Control Flow without Spectre www.bitdefender.com Contents Abstract .............................................................................................................................3 Introduction .......................................................................................................................3 Recap – Meltdown, Spectre & MDS .................................................................................4 Meltdown .................................................................................................................................4 Spectre ..................................................................................................................................... 4 Microarchitectural Data Sampling .......................................................................................... 5 Load Value Injection in the Line Fill Buffers ....................................................................5 Exploiting LVI-LFB: scenarios 3 & 4..................................................................................7 Real-life exploit ..................................................................................................................7 Mitigations .........................................................................................................................8 Conclusions .......................................................................................................................9 -
Introduction
Volume 3, Spring Issue, 1990 NEC v. INTEL : BREAKING NEW GROUND IN THE LAW OF COPYRIGHT Jorge Contreras,* Laura Handley,* and Terrence Yang* INTRODUCTION The status of copyright protection for computer programs has long been in a state of confusion. In NEC Corp. v. Intel Corp., 1 the U.S. Dis- trict Court for the Northern District of California shed some light on three previously unresolved issues in this murky and continually evolv- ing area of copyright. The court ruled that: (1) microcode embedded in certain Intel microprocessors constituted copyrightable material; (2) reverse engineering of the microcode did not infringe the microcode copyright; and (3)independent "clean room" development of similar microcode was persuasive evidence of non-infringement. The execution of a computer program within a computer involves a number of different, operational levels. 2 An applications programmer may write a program to'solve a problem in a high-level.problem-oriented language containing familiar words, variables, and operators. Examples of high-level languages include BASIC, C, FORTRAN, COBOL, and Pascal. However, high-level languages cannot be implemented as such by a computer, which is controlled by the operation of digital circuits. Before instructions can be executed, a program must undergo a series of transformations that enable it-to operate the computer's digital circuitry. The first step in this transformation may involve translation of the pro- gram by a compiler into an assembly-level program. Assembly languages generally reflect the internal organization and operation of the computer more than higher-level languages do, but are still incapable of directly controlling the computer. -
Software-Based Power Side-Channel Attacks on X86
PLATYPUS: Software-based Power Side-Channel Attacks on x86 Moritz Lipp∗, Andreas Kogler∗, David Oswald†, Michael Schwarz‡, Catherine Easdon∗, Claudio Canella∗, and Daniel Gruss∗ ∗ Graz University of Technology †University of Birmingham, UK ‡CISPA Helmholtz Center for Information Security Abstract—Power side-channel attacks exploit variations in on an ARM TrustZone-M platform using an onboard ADC, power consumption to extract secrets from a device, e.g., crypto- and Mantel et al. [56] distinguished different RSA keys by graphic keys. Prior attacks typically required physical access to measuring the power consumption on Intel desktop machines. the target device and specialized equipment such as probes and a high-resolution oscilloscope. The experimental results of Mantel et al. on RSA demonstrated In this paper, we present PLATYPUS attacks, which are that certain multiply operations of the square-and-multiply novel software-based power side-channel attacks on Intel server, implementation can be detected, but no full key recovery was desktop, and laptop CPUs. We exploit unprivileged access to achieved. Similarly, Fusi [20] tried to recover RSA-16384 keys the Intel Running Average Power Limit (RAPL) interface that but concluded that the sampling rate of the interface is too low exposes values directly correlated with power consumption, forming a low-resolution side channel. to mount an attack. We show that with sufficient statistical evaluation, we can In this work, we present PLATYPUS1 attacks which are observe variations in power consumption, which distinguish novel software-based power side-channel attacks on Intel different instructions and different Hamming weights of operands servers, desktops, and laptops by abusing unprivileged access and memory loads.