Erythropoietic Reconstitution, Macrophages and Reticulin Fibrosis

Total Page:16

File Type:pdf, Size:1020Kb

Erythropoietic Reconstitution, Macrophages and Reticulin Fibrosis Leukemia (2000) 14, 1378–1385 2000 Macmillan Publishers Ltd All rights reserved 0887-6924/00 $15.00 www.nature.com/leu Erythropoietic reconstitution, macrophages and reticulin fibrosis in bone marrow specimens of CML patients following allogeneic transplantation J Thiele1, HM Kvasnicka1, DW Beelen2, B Pilgram1, A Rose1, L-D Leder3 and UW Schaefer2 Institutes of Pathology, Universities of 1Cologne, Cologne and 3Essen, Essen; and 2Department of Bone Marrow Transplantation, University of Essen, Essen, Germany A clinicopathological study was conducted on 351 bone mar- ated or blastic phases,7 some data have been accumulated row trephine biopsies derived from 124 patients with chronic that histopathology may offer supportive evidence. Follow-up myeloid leukemia (CML) at standardized endpoints before and after allogeneic bone marrow transplantation (BMT). The pur- studies on bone marrow histopathology together with clinical pose was to investigate quantitative changes of the nucleated observations were in keeping with the finding that reduction erythroid precursor cell population and other associated fea- in erythropoiesis8 and extent of myelofibrosis9–12 may serve as tures such as resident bone marrow macrophages and myelo- valid parameters for the assessment of disease progression. fibrosis and to elucidate their relevance on engraftment para- Both variables have been shown to be significantly correlated meters. Monoclonal antibodies were applied for the and to exert a predictive value for survival.8,9,11,12 Contrasting identification of erythroid precursors and the labeling of mature the overall progress which has been achieved during the last macrophages; argyrophilic (reticulin-collagen) fibers were 2,13–18 demonstrated by a silver impregnation technique. Following decade concerning BMT in CML, hardly any information morphometric analysis of the pregraft bone marrow specimens exists about bone marrow morphology following marrow- statistical evaluation was in line with an adverse correlation ablative pretransplant regimens and the regeneration of hema- between early to moderate reticulin fibrosis and amount of topoiesis. In particular, this lack of knowledge applies to erythropoiesis. Moreover, a significant relationship was calcu- erythroid precursors in the pre- and post-transplant period and lable between numbers of erythroid precursors and CD68؉ macrophages. After myelo-ablative therapy and BMT a pro- the problem whether a greatly reduced erythropoiesis before nounced decrease in cellularity and in the quantity of erythro- BMT exerts a relevant influence on engraftment. Because poiesis was found. Comparable with the pregraft samples, a there is clear-cut evidence for an important functional role of significant association between erythroid precursors and the central resident (mature) macrophages of erythroblastic macrophages could be determined in the regenerating donor islets in iron turnover, hemoglobin synthesis, erythropoietin bone marrow. A pretransplant relevant reduction of the red cell production and phagocytosis of the expelled erythroblastic lineage and a manifest (reticulin) myelofibrosis indicating an 19 advanced stage of disease were accompanied by a significant nuclei, this cell lineage deserves special attention in the con- delay to reach transfusion independence. This result was text of erythropoietic regeneration. For this reason, the pur- further supported by comparable findings in trephine biopsies pose of the present study was focused on histopathology performed in the early post-transplant period (second month characterizing the reconstitution of erythropoiesis including after BMT). Corresponding examinations revealed an enhance- the macrophage population and associated changes of the ment of fiber density and a decrease in erythropoiesis in those fiber content during the critical phase of marrow engraftment patients who did not conform with the usually accepted criteria for successful engraftment. In conclusion, compelling evidence in CML. To elucidate the putative impact of these features on has been produced that a significantly reduced amount of BMT biology, appropriate analysis was carried out by histoch- erythroid precursors, which is usually associated with myelo- emical and morphometric methods on repeatedly performed fibrosis in the pretransplant bone marrow, exerts an impair- bone marrow trephine biopsies at standardized endpoints ment to undisturbed hematopoietic reconstitution. Moreover, a accompanied by corresponding clinical data. close spatial and numerical relationship between the erythroid lineage and resident (mature) macrophages is observable, in particular in the state of regeneration after BMT. Leukemia (2000) 14, 1378–1385. Materials and methods Keywords: erythropoiesis; macrophages; myelofibrosis; bone marrow biopsy; bone marrow transplantation; CML Patients The series considered for study was based on a retrospective Introduction evaluation of 124 patients presenting with first chronic (stable) phase of Philadelphia chromosome-positive (Ph1ϩ) CML. Stem cell and bone marrow transplantation (BMT) is generally Patients received unmanipulated marrow grafts from HLA- believed to be the only form of therapy with the option to identical family or alternate donors at a single referral trans- cure chronic myelogenous leukemia (CML).1,2 However, plantation center following standard procedures.14 Details among other factors, outcome determined as capacity for regarding, clinical findings and treatment characteristics are unsupported hematopoietic reconstitution at day 30 following summarized in Table 1. As may be easily derived from Table 1 BMT is significantly influenced by progression of disease at homogeneity of our cohort concerning specifications of cer- onset and thus timing.3–5 Regarding staging of chronic phase tain characteristics is established by showing about 80% sib- CML indicating a certain progress4–6 or definition of acceler- ling donors, in more than 70% an identical HLA constellation and the same conditioning regimen in 90% of patients. Endpo- int of hematological reconstitution with normal graft function was assumed if patients achieved transplant-derived absolute Correspondence: J Thiele, Institute of Pathology, University of × 9 Cologne, Joseph-Stelzmannstr. 9, D-50924 Cologne, Germany; neutrophil counts greater than 0.5 10 /l and self-sustaining 9 Fax: +49–0221–4786360 thrombocyte counts greater than 20.0 × 10 /l until day 30 fol- Received 10 March 2000; accepted 21 March 2000 lowing BMT. Delayed engraftment was diagnosed if these Erythropoiesis and BMT in CML J Thiele et al 1379 Table 1 Characteristics of 123 CML patients with allogeneic BMT for 3–4 days in 10% buffered ethylene-diamine tetra-acetic under study acid (EDTA), pH 7.2, paraffin embedding, and employment of several routine staining techniques, involving Giemsa, PAS Median age (years) 35 (periodic acid Schiff reagent), naphthol-AS-D-chloroacetate range (15–55) Gender (M/F) 73/51 esterase, Perls’ reaction for iron and finally a silver impreg- Sokal index-risk groups, n (%) nation method (Gomori’s technique) for the assessment of low 106 (85) argyrophilic (reticulin-collagen) fiber density. For specific intermediate 11 (9) staining of nucleated erythroid precursor cells the monoclonal high 7 (6) antibody Ret40f (anti-glycophorin C) was used20 and for the Median interval from diagnosis to BMT (months) 20 CD68ϩ mature-resident macrophage population PG-M .21 range 5–133 1 Relation – Donors, n (%) Monoclonal antibodies and other reagents were purchased sibling 97 (79) from Dako-Diagnostica (Hamburg, Germany). Details of stain- unrelated 26 (21) ing procedures (APAAP-method) were reported in a previous Median donor age (years) 37 communication.12,21 range 18–66 Gender of donor (F/M) 64/59 Donor/recipient sex, n M → F34 F → M20Morphometry Predominant pretransplant therapya, n (%) hydroxyurea (HU) 89 (72) interferon-␣ (IFN-␣) 62 (50) Following immunostaining and silver impregnation morpho- busulfan (BU) 43 (35) metric analysis was performed by two manual optic plan- HLA constellation, n (%) HLA identical 90 (73) imeters (MOP-A-MO1-Kontron and VIDAS-Zeiss-Kontron, 1 MM 34 (27) Carl Zeiss, Oberkochen, Germany) with a standard program Conditioning regimen, n (%) set (Kontron software, Kontron, Eching, Germany) on large tre- (Cy 60 mg/kg/day ×2) phine biopsies with an artefact-free mean marrow area of dose of TBI × 2 1 (1) 14.5 4.8 mm . Frequencies of erythroid precursors and 8.6 Gy 60 Colbalt 2 7 (6) macrophages were calculated per square millimeter (mm ) 4 × 2.5 Gy LINAC 116 (93) 4 × 2.5 Gy 60 Cobalt total marrow area by regarding the age- or therapy-related adi- GVHD prophylaxis, n(%) pose tissue and also per hematopoiesis (cellularity). After sil- MTX alone 9 (8) ver impregnation procedures density of argyrophilic (reticulin- sMTX + CyA 98 (79) collagen) fibers was determined by the point-intersection CyA 4 (3) method using an ocular grid. Thus the amount of fibers was + CyA BMA031 12 (10) expressed as intersections (i) per area (mm2) of total bone mar- ABO-blood group constellation, n (%) matched 73 (59) row and also per hematopoietic tissue (cellularity). Reference mismatched to cellularity was necessary to focus on the areas relevant for minor 24 (19) hematopoietic reconstitution and further to avoid the major 27 (22) erroneous impression of a significant reduction of these vari- Marrow cell dose ables due to the expansion of adipose tissue or interstitial × 8 graft size ( 10 /kg nucleated cells) median 2.3 edema. This feature was prominent
Recommended publications
  • Mechanisms of Erythrocyte Development and Regeneration: Implications for Regenerative Medicine and Beyond Emery H
    © 2018. Published by The Company of Biologists Ltd | Development (2018) 145, dev151423. http://dx.doi.org/10.1242/dev.151423 REVIEW Mechanisms of erythrocyte development and regeneration: implications for regenerative medicine and beyond Emery H. Bresnick1,*, Kyle J. Hewitt1, Charu Mehta1, Sunduz Keles2, Robert F. Paulson3 and Kirby D. Johnson1 ABSTRACT better understanding of how stress can influence erythropoiesis, Hemoglobin-expressing erythrocytes (red blood cells) act as both during development and in a regenerative context. In this fundamental metabolic regulators by providing oxygen to cells and Review, we focus on cell-autonomous and non-cell-autonomous tissues throughout the body. Whereas the vital requirement for mechanisms governing erythrocyte development, the applicability oxygen to support metabolically active cells and tissues is well of these mechanisms to stress-instigated erythropoiesis (erythrocyte established, almost nothing is known regarding how erythrocyte regeneration) and their implications for other regenerative development and function impact regeneration. Furthermore, many processes. We begin by considering the principles that govern the questions remain unanswered relating to how insults to hematopoietic cell fate transitions that produce the diverse complement of blood stem/progenitor cells and erythrocytes can trigger a massive cells, including erythrocytes. It is not our intent, however, to regenerative process termed ‘stress erythropoiesis’ to produce comprehensively address this topic, as it has been heavily reviewed billions of erythrocytes. Here, we review the cellular and molecular elsewhere (Crisan and Dzierzak, 2016; Dzierzak and de Pater, 2016; mechanisms governing erythrocyte development and regeneration, Orkin and Zon, 2008; Tober et al., 2016). and discuss the potential links between these events and other regenerative processes.
    [Show full text]
  • Fetal-Like Erythropoiesis During Recovery from Transient Erythroblastopenia of Childhood (TEC)
    Pediatr. Res. 15: 1036-1039 (198 1) erythrocyte, aplasia transient erythroblastopenia of childhood fetal-like erythropoiesis Fetal-Like Erythropoiesis during Recovery from Transient Erythroblastopenia of Childhood (TEC) Division of Hematolog). and Oncology, Children's Hospital Medical Center and the Sidney Farber Cancer It~stitule, and the Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA Summary bone marrow failure (7.%. 16)' or in states of ra~idbone marrow recovery from aplasia after bone marrow transplantation (1, 3, Fetal-like erythropoiesis frequently accompanies marrow stress 17). The term "fetal-like" is used because the erythrocytes may conditions such as Diamond-Blackfan syndrome and aplastic ane- express only one and not all of the characteristics of fetal red mia. In contrast, patients with transient erythroblastopenia of blood cells. childhood have erythrocytes which lack fetal characteristics at the To if fetal-like erythropoiesis accompanies bone mar- time of diagnosis. This report describes nine children with transient row recovery from other hypoplastic states, we studied children erythroblastopenia of childhood in whom transient, fetal-like eryth- with transient erythroblastopenia of childhood (TEC) from the was observed during the period These pa- tirne of presentation to full recovery, TEC is an unusual disease of tients initially presented with anemia, reticulocytopenia, erythro- infants and young children, characterized by the insidious onset cytes of normal size for age, low levels of fetal hemoglobin, and of hypoproliferative anemia without decreases in leukocyte and i-antigen. During the recovery period, however, erythrocytes man- platelet production. Although the anemia may be quite severe at ifested one or more fetal characteristics. These included an in- presentation, rapid and complete recovery is the rule with per- creased fetal hemoglobin (in three of five patients), the presence manent restoration of normal hematopoiesis (2, 11, 19, 23, 25, 26).
    [Show full text]
  • The Role of Macrophages in Erythropoiesis and Erythrophagocytosis
    CORE Metadata, citation and similar papers at core.ac.uk Provided by Frontiers - Publisher Connector REVIEW published: 02 February 2017 doi: 10.3389/fimmu.2017.00073 From the Cradle to the Grave: The Role of Macrophages in Erythropoiesis and Erythrophagocytosis Thomas R. L. Klei†, Sanne M. Meinderts†, Timo K. van den Berg and Robin van Bruggen* Department of Blood Cell Research, Sanquin Research and Landsteiner Laboratory, University of Amsterdam, Amsterdam, Netherlands Erythropoiesis is a highly regulated process where sequential events ensure the proper differentiation of hematopoietic stem cells into, ultimately, red blood cells (RBCs). Macrophages in the bone marrow play an important role in hematopoiesis by providing signals that induce differentiation and proliferation of the earliest committed erythroid progenitors. Subsequent differentiation toward the erythroblast stage is accompanied by the formation of so-called erythroblastic islands where a central macrophage provides further cues to induce erythroblast differentiation, expansion, and hemoglobinization. Edited by: Robert F. Paulson, Finally, erythroblasts extrude their nuclei that are phagocytosed by macrophages Pennsylvania State University, USA whereas the reticulocytes are released into the circulation. While in circulation, RBCs Reviewed by: slowly accumulate damage that is repaired by macrophages of the spleen. Finally, after Xinjian Chen, 120 days of circulation, senescent RBCs are removed from the circulation by splenic and University of Utah, USA Reinhard Obst, liver macrophages. Macrophages are thus important for RBCs throughout their lifespan. Ludwig Maximilian University of Finally, in a range of diseases, the delicate interplay between macrophages and both Munich, Germany developing and mature RBCs is disturbed. Here, we review the current knowledge on *Correspondence: Robin van Bruggen the contribution of macrophages to erythropoiesis and erythrophagocytosis in health [email protected] and disease.
    [Show full text]
  • Lecture 2 Haemopoiesis, Erythropoiesis and Leucopoiesis Haemopoiesis Haemopoiesis Or Haematopoiesis Is the of Process Formation of New Blood Cellular Components
    NPTEL – Biotechnology – Cell Biology Lecture 2 Haemopoiesis, erythropoiesis and leucopoiesis Haemopoiesis Haemopoiesis or haematopoiesis is the of process formation of new blood cellular components. It has been estimated that in an adult human, approximately 1011–1012 new blood cells are produced daily in order to maintain steady state levels in the peripheral circulation. The mother cells from which the progeny daughter blood cells are generated are known as haematopoietic stem cells. In an embryo yolk sac is the main site of haemopoiesis whereas in human the basic sites where haemopoiesis occurs are the bone marrow (femur and tibia in infants; pelvis, cranium, vertebrae, and sternum of adults), liver, spleen and lymph nodes (Table 1). In other vertebrates haemapoiesis occurs in loose stroma of connective tissue of the gut, spleen, kidney or ovaries. Table 1: Sites of Haemopoiesis in humans Stage Sites Fetus 0–2 months (yolk sac) 2–7 months (liver, spleen) 5–9 months (bone marrow) Infants Bone marrow Adults Vertebrae, ribs, sternum, skull, sacrum and pelvis, proximal ends of femur The process of haemopoiesis Pluripotent stem cells with the capability of self renewal, in the bone marrow known as the haemopoiesis mother cell give rise to the separate blood cell lineages. This haemopoietic stem cell is rare, perhaps 1 in every 20 million nucleated cells in bone marrow. Figure 1 illustrates the bone marrow pluripotent stem cell and the cell lines that arise from it. Cell differentiation occurs from a committed progenitor haemopoietic stem cell and one stem cell is capable of producing about 106 mature blood cells after 20 cell divisions.
    [Show full text]
  • Regulation of Erythropoiesis in the Fetus and Newborn
    Arch Dis Child: first published as 10.1136/adc.47.255.683 on 1 October 1972. Downloaded from Review Article Archives of Disease in Childhood, 1972, 47, 683. Regulation of Erythropoiesis in the Fetus and Newborn PER HAAVARDSHOLM FINNE and SVERRE HALVORSEN From the Paediatric Research Institute, Barneklinikken, Rikshospitalet, Oslo, Norway The present concept of the regulation of erythro- sis in the human is predominantly myeloid during poiesis is based on the theory that a humoral factor, normal conditions. In other species (mice, rats) erythropoietin, stimulates red cell production it is different, with the shift from hepatic to myeloid through its effects on the erythropoietin sensitive stage occurring after birth (Lucarelli, Howard, stem cell, on DNA synthesis in the erythroblast, and Stohlman, 1964; Stohlman, 1970). and on the release of reticulocytes (Gordon and A progressive increase in erythrocyte content per Zanjani, 1970; Hodgson, 1970). Erythropoietin ml and in Hb concentration has been found in production is regulated by the difference between human blood during the course of intrauterine oxygen supply and demand within the oxygen development, leading to the normal high values at sensitive cells in the kidney. As a response to birth (Thomas and Yoffey, 1962; Walker and hypoxia, a factor called erythrogenin is produced in Tumbull, 1953). Marks, Gairdner, and Roscoe the kidney. This factor acts on a serum substrate (1955), however, found no increase in Hb values copyright. to generate an active humoral factor, the erythro- with gestational age after 31 weeks gestation. poietic stimulating factor (ESF) or erythropoietin The alteration in Hb structure during intrauterine (Gordon, 1971), increased amount of which leads and early neonatal life changes its physical proper- to increased red cell production.
    [Show full text]
  • Resolving the Distinct Stages in Erythroid Differentiation Based on Dynamic Changes in Membrane Protein Expression During Erythropoiesis
    Resolving the distinct stages in erythroid differentiation based on dynamic changes in membrane protein expression during erythropoiesis Ke Chena,1, Jing Liua,1, Susanne Heckb, Joel A. Chasisc, Xiuli Ana,d,2, and Narla Mohandasa aRed Cell Physiology Laboratory, bFlow Cytometry Core, New York Blood Center, New York, NY 10065; cLife Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720; and dDepartment of Biophysics, Peking University Health Science Center, Beijing 100191, China Communicated by Joseph F. Hoffman, Yale University School of Medicine, New Haven, CT, August 18, 2009 (received for review June 25, 2009) Erythropoiesis is the process by which nucleated erythroid progeni- results in loss of cohesion between the bilayer and the skeletal tors proliferate and differentiate to generate, every second, millions network, leading to membrane loss by vesiculation. This diminution of nonnucleated red cells with their unique discoid shape and mem- in surface area reduces red cell life span with consequent anemia. brane material properties. Here we examined the time course of A number of additional transmembrane proteins, including CD44 appearance of individual membrane protein components during and Lu, have been characterized, although their structural organi- murine erythropoiesis to throw new light on our understanding of zation in the membrane has not been fully defined. the evolution of the unique features of the red cell membrane. We Some transmembrane proteins exhibit multiple functions. Band found that the accumulation of all of the major transmembrane and 3 serves as an anion exchanger, while Rh/RhAG are probably gas all skeletal proteins of the mature red blood cell, except actin, accrued transporters (8, 9), and Duffy functions as a chemokine receptor progressively during terminal erythroid differentiation.
    [Show full text]
  • WBC Aplasia: Case Report
    Hematology & Transfusion International Journal Case Report Open Access WBC Aplasia: Case Report Abstract Volume 8 Issue 6 - 2020 Pure white cell aplasia (PWCA) is a rare acquired cause of agranulocytosis characterized Mariam AlGhazal,1 Rehab Bu Khamseen,1 by absence of all myeloid lineages in bone marrow with intact erythropoiesis and 2 2 megakaryopoiesis. Reported cases were associated with autoimmune conditions, thymomas, Mona AlZaher, Lama AlGharyafi, Zainab 2 1 chronic lymphocytic leukemia, infections, and as an adverse drug reaction. Presentation Alruwaiy, Manal alghazal 1 ranges from asymptomatic severe neutropenia to fatal sepsis. Several medications were Department of hematopathology Ministry of health, Dammam tried along with treatment of the underlying cause if identified. Steroids, immunoglobulin, regional laboratory & blood banking, Saudi Arabia 2 azathioprine, cyclosporine, rutiximab, GCSF and bone marrow transplant were all tried Department of hematology Dammam medical complex hospital, Saudi Arabia with variable response. Here we report a case of PWCA in middle age male, who responded to cyclosporine. Correspondence: Mariam AlGhazal, Department of hematopathology Ministry of health, Dammam regional laboratory & blood banking, Saudi Arabia, Email Received: November 12, 2020 | Published: November 26, 2020 Introduction of the total hematopoiesis and basically normoblastic in maturation. Megakaryocytes are present & normal in morphology Mature Pure white cell aplasia (PWCA) is a rare cause of neutropenia lymphocytes and plasma cells constitutes 50% and 2% respectively and mechanisms remain uncertain. The diagnosis is based on bone (there is around 11% large granular lymphocytes with abundant marrow examination, which reveals virtually absent granulopoiesis, cytoplasm & fine azurophilic granules out of total lymphocytes). 1 while erythropoiesis and megakaryocytopoiesis are intact.
    [Show full text]
  • Proposed Decision Memo for Erythropoiesis Stimulating Agents (Esas) for Non-Renal Disease Indications (CAG-00383N)
    Proposed Decision Memo for Erythropoiesis Stimulating Agents (ESAs) for non-renal disease indications (CAG-00383N) Decision Summary Emerging safety concerns (thrombosis, cardiovascular events, tumor progression, reduced survival) have prompted CMS to review its coverage of erythropoiesis stimulating agents (ESAs). The initial scope of this national coverage analysis (NCA) was "non-renal" uses. Current non-renal indications for ESA use that are approved by the FDA are: cancer treatment related anemia (erythropoietin, darbepoetin), AZT-induced anemia in HIV-AIDS (erythropoietin only), and prophylactic use for select patients undergoing elective orthopedic procedures with significant expected blood loss (erythropoietin only) (Aranesp® drug label; Procrit® drug label). Because there is a preponderance of emerging data for ESA use in the oncology setting, the focus of the NCA will be ESA use in cancer and related conditions. The other non-renal uses may be addressed in future NCAs. We expect that our future reviews will also include the more adequately powered study of ESA use in spine surgery patients. In the interim, local Medicare contractors may continue to make reasonable and necessary determinations on all non-cancer and non-neoplastic conditions as well as other non-renal uses of ESAs. CMS is seeking public comment on our proposed determination that there is sufficient evidence to conclude that erythropoiesis stimulating agent (ESA) treatment is not reasonable and necessary for beneficiaries with certain clinical conditions, either because of a deleterious effect of the ESA on their underlying disease or because the underlying disease increases their risk of adverse effects related to ESA use. These conditions include: 1.
    [Show full text]
  • A Three-Dimensional in Vitro Model of Erythropoiesis Recapitulates Erythroid Failure in Myelodysplastic Syndromes
    Leukemia (2020) 34:271–282 https://doi.org/10.1038/s41375-019-0532-7 ARTICLE Myelodysplastic syndrome A three-dimensional in vitro model of erythropoiesis recapitulates erythroid failure in myelodysplastic syndromes 1 1 1 1 Edda María Elvarsdóttir ● Teresa Mortera-Blanco ● Marios Dimitriou ● Thibault Bouderlique ● 1 1 1 1 2 1 Monika Jansson ● Isabel Juliana F. Hofman ● Simona Conte ● Mohsen Karimi ● Birgitta Sander ● Iyadh Douagi ● 1 1 Petter S. Woll ● Eva Hellström-Lindberg Received: 19 January 2019 / Revised: 13 May 2019 / Accepted: 20 May 2019 / Published online: 2 August 2019 © The Author(s) 2019. This article is published with open access Abstract Established cell culture systems have failed to accurately recapitulate key features of terminal erythroid maturation, hampering our ability to in vitro model and treat diseases with impaired erythropoiesis such as myelodysplastic syndromes with ring sideroblasts (MDS-RS). We developed an efficient and robust three-dimensional (3D) scaffold culture model supporting terminal erythroid differentiation from both mononuclear (MNC) or CD34+-enriched primary bone marrow cells from healthy donors and MDS-RS patients. While CD34+ cells did not proliferate beyond two weeks in 2D suspension + 1234567890();,: 1234567890();,: cultures, the 3D scaffolds supported CD34 and MNC erythroid proliferation over four weeks demonstrating the importance of the 3D environment. CD34+ cells cultured in 3D facilitated the highest expansion and maturation of erythroid cells, including generation of erythroblastic islands and enucleated erythrocytes, while MNCs supported multi-lineage hemopoietic differentiation and cytokine secretion relevant for MDS-RS. Importantly, MDS-RS 3D-cultures supported de novo generation of ring sideroblasts and maintenance of the mutated clone.
    [Show full text]
  • Stress Erythropoiesis Is a Key Inflammatory Response
    cells Review Stress Erythropoiesis is a Key Inflammatory Response 1, 2 3, 3 Robert F. Paulson *, Baiye Ruan , Siyang Hao y and Yuanting Chen 1 Department of Veterinary and Biomedical Sciences, Center for Molecular Immunology and Infectious Disease at Penn State University, University Park, PA 16802, USA 2 Department of Veterinary and Biomedical Sciences, Pathobiology Graduate Program at Penn State University, University Park, PA 16802, USA; [email protected] 3 Department of Veterinary and Biomedical Sciences, Graduate Program in Molecular, Cellular and Integrative Biosciences at Penn State University, University Park, PA 16802, USA; [email protected] (S.H.); [email protected] (Y.C.) * Correspondence: [email protected]; Tel.: +814-863-6306 Present Address: Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, y USA; [email protected]. Received: 9 February 2020; Accepted: 3 March 2020; Published: 6 March 2020 Abstract: Bone marrow medullary erythropoiesis is primarily homeostatic. It produces new erythrocytes at a constant rate, which is balanced by the turnover of senescent erythrocytes by macrophages in the spleen. Despite the enormous capacity of the bone marrow to produce erythrocytes, there are times when it is unable to keep pace with erythroid demand. At these times stress erythropoiesis predominates. Stress erythropoiesis generates a large bolus of new erythrocytes to maintain homeostasis until steady state erythropoiesis can resume. In this review, we outline the mechanistic differences between stress erythropoiesis and steady state erythropoiesis and show that their responses to inflammation are complementary. We propose a new hypothesis that stress erythropoiesis is induced by inflammation and plays a key role in maintaining erythroid homeostasis during inflammatory responses.
    [Show full text]
  • Erythropoiesis and Splenomegaly
    Innate Immune Activation during Salmonella Infection Initiates Extramedullary Erythropoiesis and Splenomegaly This information is current as Amy Jackson, Minelva R. Nanton, Hope O'Donnell, Adovi of September 27, 2021. D. Akue and Stephen J. McSorley J Immunol published online 15 October 2010 http://www.jimmunol.org/content/early/2010/10/15/jimmun ol.1001198 Downloaded from Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision http://www.jimmunol.org/ • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication *average Subscription Information about subscribing to The Journal of Immunology is online at: by guest on September 27, 2021 http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. Published October 15, 2010, doi:10.4049/jimmunol.1001198 The Journal of Immunology Innate Immune Activation during Salmonella Infection Initiates Extramedullary Erythropoiesis and Splenomegaly Amy Jackson, Minelva R. Nanton, Hope O’Donnell, Adovi D. Akue, and Stephen J. McSorley Systemic Salmonella infection commonly induces prolonged splenomegaly in murine or human hosts. Although this increase in splenic cellularity is often assumed to be due to the recruitment and expansion of leukocytes, the actual cause of splenomegaly remains unclear. We monitored spleen cell populations during Salmonella infection and found that the most prominent increase is found in the erythroid compartment.
    [Show full text]
  • Erythropoiesis Stimulating Agents (ESA)
    Erythropoiesis Stimulating Agents (ESA) Policy Number: Original Effective Date: MM.04.008 04/15/2007 Line(s) of Business: Current Effective Date: HMO; PPO; QUEST 03/01/2013 Section: Prescription Drugs Place(s) of Service: Home; Office; Outpatient I. Description Endogenous erythropoietin (EPO) is a glycoprotein hematopoietic growth factor that regulates hemoglobin levels in response to changes in the blood oxygen concentration. Erythropoiesis- stimulating agents (ESAs) are produced using recombinant DNA technologies and have pharmacologic properties similar to EPO. The primary clinical use of ESAs is in patients with chronic anemia. II. Criteria/Guidelines A. Epoetin alfa and darbepoetin alfa are covered (subject to Limitations/Exclusions and Administrative Guidelines) for the following: 1. Treatment of anemia associated with chronic kidney disease, (pre-treatment hemoglobin is less than 10g/dL.) with or without the use of dialysis until hemoglobin reaches a target of 10 to 11 g/dL. 2. Treatment of anemia (pre-treatment hemoglobin is less than (10g/dL) in AZT-treated HIV infected patients, when the dose of AZT is equal to or less than 4,200 mg per week and the patient's pre-treatment endogenous erythropoietin level is less than or equal to 500 mUnits/mL. The maximum dosage of erythropoietin should not exceed a total of 60,000 units per week. 3. Treatment of anemia due to the effects of concomitantly administered chemotherapy in patients with non-myeloid malignancies. 4. Treatment of anemia (pre-treatment hemoglobin is greater than 10 to less than or equal to 13 g/dL) in patients scheduled to undergo elective, non-cardiac, nonvascular surgery to reduce the need for allogeneic blood transfusions.
    [Show full text]