Biochemistry Glycogenolysis

Total Page:16

File Type:pdf, Size:1020Kb

Biochemistry Glycogenolysis Paper : 04 Metabolism of carbohydrates Module : 24 Glycogenolysis Dr. Vijaya Khader Dr. MC Varadaraj Dr.S.K.Khare,Professor Principal Investigator IIT Delhi. Dr. Ramesh Kothari,Professor Paper Coordinator UGC-CAS Department of Biosciences Saurashtra University, Rajkot-5, Gujarat-INDIA Dr. S. P. SinghProfessor Content Reviewer UGC-CAS Department of Biosciences Saurashtra University, Rajkot-5, Gujarat-INDIA Content Writer Dr.VikramRaval,Assistant Professor UGC-CAS Department of Biosciences Saurashtra University, Rajkot-5, Gujarat-INDIA 1 Metabolism of Carbohydrates Biochemistry Glycogenolysis Description of Module Subject Name Biochemistry Paper Name 04 Metabolism of carbohydrates Module Name/Title 24 Glycogenolysis 2 Metabolism of Carbohydrates Biochemistry Glycogenolysis GLYCOGENOLYSIS Objectives 1. To understand the breakdown of glycogen. 2. To understand the role of glycogen phosphorylase in glycogen breakdown. 3. To understand the role of Glycogen Debranching enzyme 3 Metabolism of Carbohydrates Biochemistry Glycogenolysis Introduction . The biological degradation of glycogen is termed as glycogenolysis. Glycogen is a highly branched, large polymer of glucose molecules linked along its main line by α-1, 4 glycosidic linkages; branches arise by α-1,6 glycosidic bond at about every tenth residues. Fig: 25.1 STRUCTURE OF GLYCOGEN . Glycogen founds in the cytoplasm as granules. Granules also contain the enzymes and regulatory proteins which is required for its synthesis and degradation.It acts as an important energy reserve for the body. It is stored in the liver and skeletal muscle.Glycogen stored in the muscles will be utilized for the energy requirement of muscles only, while glycogen stored in the liver will be used for the energy requirement of the rest of the body. Regulation of glycogenesis and glycogenolysis is very important in maintaining the glycogen homeostasis. These two processes are commonly regulated. Hormones which stimulate glycogenolysis (e.g. glucagon, cortisol, epinephrine, nor 4 Metabolism of Carbohydrates Biochemistry Glycogenolysis epinephrine) concurrently inhibit glycogenesis. On the other hand, insulin, which promotes the body to store glycogenesis, is inhibiting glycogenolysis. Glycogen is degraded by two different pathways. In the first, glucose is released in muscles to fuel its contraction or it is released in liver to transport it in to the blood. It is catalysed by the Glycogen phosphorylase and Debranching enzyme. In the second pathway, glycogen is degraded to glucose within the lysosome by the enzyme α-glucosidase and acid maltase. Glycogen metabolism is very important because it facilitate the blood glucose level to be maintained between meals (liver glycogen) and also act as an energy reserve for muscular activity. The maintenanceof blood glucose is essential in order to supply energy to tissues. GLYCOGEN GLUCOSE Fig: 24.1 Glycogenolysis leads to formation of glucose STEPS OF GLYCOGENOLYSIS Glycogenolysis requires2main enzymes. Glycogenolysisoccurs by a different pathwayfrom glycogenesis. 5 Metabolism of Carbohydrates Biochemistry Glycogenolysis 1. Glucose-1-phosphate formation from non reducing end of glycogen by Glycogen phosphorylase 2. Removal of α-1,6 branches from glycogen by Glycogen Debranching enzyme 3. Glucose-6-phosphate formation from Glucose-1-phosphateby Phosphoglucomutase. GLYCOGEN (n residues) Pi Glycogen phosphorylase GLYCOGEN (n-1 residues) GLUCOSE-1-PHOSPHATE Phosphoglucomutase GLUCOSE-6-PHOSPHATE Glucose-6-Phosphatase (In liver) GLUCOSE Diffuse in to the bloodstream Fig: 24.2OVERVIEW OF GLYCOGENOLYSIS 1. Glucose-1-phosphate formation from non reducing end of glycogen by Glycogen phosphorylase . Glycogen is broken-down in to Glucose-1-Phosphate (G1P) by Glycogen Phosphorylase. It is carried out by phosphorolysis reaction. Phosphorolysis 6 Metabolism of Carbohydrates Biochemistry Glycogenolysis reaction involves the cleavage of larger molecules into smaller molecules. It uses phosphate for the cleavage. Such breakdown of bonds by the addition of orthophosphate is referred to as phosphorolysis. A hydrolysis reaction also involves the same process but it uses water instead of phosphate for the cleavage of bond. GLYCOGEN (n residues) HPO4-2 GLYCOGEN PHOSPHORYLASE GLYCOGEN (n-1) . Cleavage by phosphorolysisFig: 24.3 Formation is energetically of G- 1favourable-P from glycogen because released glucose is phosphorylated. While hydrolytically release of sugar needs to be phosphorylated before enters into the glycolytic pathway. 7 Metabolism of Carbohydrates Biochemistry Glycogenolysis . Glycogen phosphorylase act on exoglycosidic bond. Pyridoxal phosphate is an necessary cofactor in the glycogen phosphorylase reaction. This cofactor is linked to lysine 680 of the enzyme. Glycogen phosphorylase will act repeatedly on non-reducing ends of a glycogen chain. Glycogen phosphorylase can act continuously until it reaches 4 glucose away from α 1-6 branch point. Glycogen phosphorylase is an allosteric enzyme. AMP acts as an allosteric activator while ATP, G6P and glucose acts as an allosteric inhibitor. Glycogen phosphorylase is also regulated by covalent modification. ( For further details please refer module:26 , regulation of glycogen degradation) . Generally in the structure of glycogen about 1 in 10 residues is branched. In such situation phosphorylase enzyme cannot degrade glycogen independently. It will stop to a halt after the release of six glucose molecules per branch. 2. Removal of α-1,6 branches from glycogen by Glycogen Debranching enzyme . In glycogen, α- 1-6 glycosidic bonds at the branch point are not susceptible to cleavage by glycogen phosphorylase while it can act continuously until it reaches four glucose away from α 1-6 branch point. Thus further degradation of glycogen chain by glycogen phosphorylase occurs only after the action of a glycogen debranching enzyme. Glycogen debranching enzyme shows two differentactivities. o Transferase activity o α 16 glucosidase activity . In transferase activity, the enzyme removes and transfers terminal 3 of the 4 glucose residues. It transfers this moiety intact to the non reducing end of another 8 Metabolism of Carbohydrates Biochemistry Glycogenolysis branch. It involves cleaving of an α (14) linkage and formation of new α (14) linkage in another branch. This action leaves a single glucose at the α1,6 branch. In α 16 glucosidase activity, enzyme removes the single glucose residue which is remaining at branch point by an alpha (16 glucosidase activity of the same debranching enzyme. 91 % of the glycogen residues are converted to Glucose-1-phosphate by the combined activity of glycogen phosphorylase and glycogen debranching enzyme. Remaining about 8 % are converted to glucose by the α 16 glucosidase activity of the glycogen debranching enzyme. 3. Glucose-6-phosphate formation from Glucose-1-phosphate by Phosphoglucomutase . Glucose-1-phosphate is converted to Glucose-6-phosphate by Phosphoglucomutase. Active site of the active Phosphoglucomutase molecule has a phosphorylated serine residue. The phosphoryl group istransferred from the amino acid serine to the hydroxyl group (C-6) of glucose 1-phosphate. It result in to the formation of intermediate called glucose1, 6-bisphosphate. The phosphoryl group from the C-1 9 Metabolism of Carbohydrates Biochemistry Glycogenolysis of glucose 1, 6-bisphosphate is then transfer to the serine residue of the enzyme. It results in to the formation of glucose 6-phosphate and the regeneration of the enzyme. This reaction is reversible. It allows the inter conversion of Glucose-6-Phosphate and Glucose-1-Phosphate. This isvery important. Phosphoglucomutase is also required to form. GLUCOSE-1-PHOSPHATE Phosphoglucomutase (Phosphoryl group from serine residue transferred to G-1-P) GLUCOSE-1-6-BISPHOSPHATE Phosphoglucomutase (Phosphoryl group from G-1-6-P transferred to serine residue GLUCOSE-6-PHOSPHATE of enzyme) Fig: 24.4 Formation of G-6-P from G-1-P 10 Metabolism of Carbohydrates Biochemistry Glycogenolysis .
Recommended publications
  • • Glycolysis • Gluconeogenesis • Glycogen Synthesis
    Carbohydrate Metabolism! Wichit Suthammarak – Department of Biochemistry, Faculty of Medicine Siriraj Hospital – Aug 1st and 4th, 2014! • Glycolysis • Gluconeogenesis • Glycogen synthesis • Glycogenolysis • Pentose phosphate pathway • Metabolism of other hexoses Carbohydrate Digestion! Digestive enzymes! Polysaccharides/complex carbohydrates Salivary glands Amylase Pancreas Oligosaccharides/dextrins Dextrinase Membrane-bound Microvilli Brush border Maltose Sucrose Lactose Maltase Sucrase Lactase ‘Disaccharidase’ 2 glucose 1 glucose 1 glucose 1 fructose 1 galactose Lactose Intolerance! Cause & Pathophysiology! Normal lactose digestion Lactose intolerance Lactose Lactose Lactose Glucose Small Intestine Lactase lactase X Galactose Bacteria 1 glucose Large Fermentation 1 galactose Intestine gases, organic acid, Normal stools osmotically Lactase deficiency! active molecules • Primary lactase deficiency: อาการ! genetic defect, การสราง lactase ลด ลงเมออายมากขน, พบมากทสด! ปวดทอง, ถายเหลว, คลนไสอาเจยนภาย • Secondary lactase deficiency: หลงจากรบประทานอาหารทม lactose acquired/transient เชน small bowel เปนปรมาณมาก เชนนม! injury, gastroenteritis, inflammatory bowel disease! Absorption of Hexoses! Site: duodenum! Intestinal lumen Enterocytes Membrane Transporter! Blood SGLT1: sodium-glucose transporter Na+" Na+" •! Presents at the apical membrane ! of enterocytes! SGLT1 Glucose" Glucose" •! Co-transports Na+ and glucose/! Galactose" Galactose" galactose! GLUT2 Fructose" Fructose" GLUT5 GLUT5 •! Transports fructose from the ! intestinal lumen into enterocytes!
    [Show full text]
  • Articles Catalytic Cycling in Β-Phosphoglucomutase: a Kinetic
    9404 Biochemistry 2005, 44, 9404-9416 Articles Catalytic Cycling in â-Phosphoglucomutase: A Kinetic and Structural Analysis†,‡ Guofeng Zhang, Jianying Dai, Liangbing Wang, and Debra Dunaway-Mariano* Department of Chemistry, UniVersity of New Mexico, Albuquerque, New Mexico 87131-0001 Lee W. Tremblay and Karen N. Allen* Department of Physiology and Biophysics, Boston UniVersity School of Medicine, Boston, Massachusetts 02118-2394 ReceiVed March 26, 2005; ReVised Manuscript ReceiVed May 18, 2005 ABSTRACT: Lactococcus lactis â-phosphoglucomutase (â-PGM) catalyzes the interconversion of â-D-glucose 1-phosphate (â-G1P) and â-D-glucose 6-phosphate (G6P), forming â-D-glucose 1,6-(bis)phosphate (â- G16P) as an intermediate. â-PGM conserves the core domain catalytic scaffold of the phosphatase branch of the HAD (haloalkanoic acid dehalogenase) enzyme superfamily, yet it has evolved to function as a mutase rather than as a phosphatase. This work was carried out to identify the structural basis underlying this diversification of function. In this paper, we examine â-PGM activation by the Mg2+ cofactor, â-PGM activation by Asp8 phosphorylation, and the role of cap domain closure in substrate discrimination. First, the 1.90 Å resolution X-ray crystal structure of the Mg2+-â-PGM complex is examined in the context of + + previously reported structures of the Mg2 -R-D-galactose-1-phosphate-â-PGM, Mg2 -phospho-â-PGM, and Mg2+-â-glucose-6-phosphate-1-phosphorane-â-PGM complexes to identify conformational changes that occur during catalytic turnover. The essential role of Asp8 in nucleophilic catalysis was confirmed by demonstrating that the D8A and D8E mutants are devoid of catalytic activity.
    [Show full text]
  • Glycogenolysis and Pentose Phosphate Pathway
    E-content M.Sc. Zoology (Semester-II) Paper: CC7 Unit: 2.3 Topic: Glycogenolysis and Pentose Phosphate Pathway Dr. Gajendra Kumar Azad Assistant Professor Post Graduate Department of Zoology Patna University, Patna 1 Glycogenolysis Glycogen is a polymer of glucose and is a primary carbohydrate storage form in animals. The glycogen is composed of units of glucose linked by α(1, 4) and branches have α(1, 6) occurring approximately every 8-12 residues. Each glycogen molecule have a single reducing and multiple non-reducing ends. Figure: Glycogen structure Because glycogen contains so many glucoses, it acts like a battery backup for the body, providing a quick source of glucose when needed and providing a place to store excess glucose when glucose concentrations in the blood rise. 2 Breakdown of glycogen (glycogenolysis) involves following steps All steps of glycogenolysis occurs in cytosol Step 1: Release of glucose 1-phosphate from glycogen Step 2: Rearrangement of the remaining glycogen molecule Step 3: Conversion of glucose 1-phosphate to glucose 6-phosphate Glucose 6-phosphate can have following fates: 1) broken down by glycolysis 2) converted to glucose by gluconeogenesis, 3) oxidized in the pentose phosphate pathway. Phosphoglucomutase glucose 1-phosphate glucose 6-phosphate Figure: Steps of glycogenolysis 3 Step 1: Release of glucose 1-phosphate from glycogen Glycogen Phosphorylase catalyses breakdown of glycogen into glucose-1- phosphate. Note that the phosphate does not come from ATP. Since ATP is not used to put phosphate on glucose-1-phosphate, thus this reaction saves energy. Glycogen phosphorylase The reaction that produces glucose-1-phosphate from glycogen is a phosphorolysis, not a hydrolysis reaction.
    [Show full text]
  • Glucose and Lipid Metabolism in Insulin Resistance
    Umeå University Medical Dissertations New Series No 817 * ISSN 0346-6612 * ISBN 91-7305-359-7 ___________________________________________________________________________ From the Department of Public Health and Clinical Medicine, Medicine, Umeå University, S-901 85 Umeå, Sweden Glucose and lipid metabolism in insulin resistance – an experimental study in fat cells Jonas Burén Umeå 2002 ISBN 91-7305-359-7 © Copyright: Jonas Burén Department of Public Health and Clinical Medicine, Medicine, Umeå University, S-901 85 Umeå, Sweden Printed in Sweden by Landstingstryckeriet, Umeå, 2002 2 CONTENTS ABSTRACT 4 LIST OF PAPERS 5 ABBREVIATIONS 6 INTRODUCTION 7 Insulin resistance 8 The role of insulin in glucose and lipid turnover 8 Insulin signalling 10 Cellular glucose transport 13 Cellular insulin resistance 14 Lipid metabolism and the adipose tissue in insulin resistance 16 Human insulin resistance and type 2 diabetes 18 Neuroendocrine and humoral factors causing insulin resistance in vivo 19 AIMS 25 METHODS 26 Animals (study I, II) 26 Patients and healthy volunteers (study III, IV) 26 Cell preparation 26 Cell culture 27 Glucose uptake 27 Insulin binding 28 Lipolysis 28 Western blot analysis of proteins in cell lysates and membranes 28 PKB phosphorylation 29 Lipoprotein lipase (LPL) and hepatic lipase (HL) 29 Blood chemistry 30 Insulin sensitivity in vivo 30 Standardized meal test 30 Statistical analyses 31 SUMMARY OF RESULTS 32 Paper I 32 Paper II 33 Paper III 33 Paper IV 35 DISCUSSION 36 Effects of glucocorticoids 36 Effects of elevated glucose and insulin concentrations 37 In vivo insulin resistance in type 2 diabetes – is glucotoxicity critical? 40 Postprandial blood lipids and lipoprotein lipase 42 SUMMARY 44 CONCLUDING REMARKS 45 POPULÄRVETENSKAPLIG SAMMANFATTNING PÅ SVENSKA 46 ACKNOWLEDGEMENTS 49 REFERENCES 50 PAPERS I-IV 3 ABSTRACT Type 2 diabetes is usually caused by a combination of pancreatic β-cell failure and insulin resistance in target tissues like liver, muscle and fat.
    [Show full text]
  • Glycogenesis
    Glycogenesis Glycogen is the storage form of glucose in animals and humans which is analogous to the starch in plants. Glycogen is synthesized and stored mainly in the liver and the muscles. Structurally, glycogen is very similar to amylopectin with alpha acetal linkages, however, it has even more branching and more glucose units are present than in amylopectin. Various samples of glycogen have been measured at 1,700-600,000 units of glucose. The structure of glycogen consists of long polymer chains of glucose units connected by an alpha acetal linkage. All of the monomer units are alpha-D-glucose, and all the alpha acetal links connect C # 1 of one glucose to C # 4 of the next glucose. The branches are formed by linking C # 1 to a C # 6 through acetal linkages. In glycogen, the branches occur at intervals of 8-10 glucose units (in amylopectin the branches are separated by 12-20 glucose units). Carbon # 1 is called the anomeric carbon and is the center of an acetal functional group. The Alpha position is defined as the ether oxygen being on the opposite side of the ring as the C # 6. In the chair structure this results in a downward projection. Plants make starch and cellulose through the photosynthesis processes. Animals and human in turn eat plant materials and products. Digestion is a process of hydrolysis where the starch is broken ultimately into the various monosaccharides. A major product is of course glucose which can be used immediately for metabolism to make energy. The glucose that is not used immediately is converted in the liver and muscles into glycogen for storage by the process of glycogenesis.
    [Show full text]
  • Carbohydrate Metabolism I & II Central Aspects of Macronutrient
    Carbohydrate Metabolism I & II - General concepts of glucose metabolism - - Glycolysis - -TCA - FScN4621W Xiaoli Chen, PhD Food Science and Nutrition University of Minnesota 1 Central Aspects of Macronutrient Metabolism Macronutrients (carbohydrate, lipid, protein) Catabolic metabolism Oxidation Metabolites (smaller molecules) Anabolic metabolism Energy (ATP) Synthesis of cellular components or energy stores Chemical Reactions Cellular Activities 2 Central Aspects of Macronutrient Metabolism High-energy compounds ◦ ATP (adenosine triphosphate) ◦ NADPH (reduced nicotinamide adenine dinucleotide phosphate) ◦ NADH (reduced nicotinamide adenine dinucleotide) ◦ FADH2 (reduced flavin adenine dinucleotide) Oxidation of macronutrients NADH NADPH FADH2 ATP and NADPH are required ATP for anabolic metabolism 3 1 Unit I General Concepts of Glucose Metabolism Metabolic pathways of glucose Glucose homeostasis Glucose transport in tissues Glucose metabolism in specific tissues 4 Overview Digestion, Absorption and Transport of Carbs ◦ Final products of digestion: ________, ________, and ________ Cellular fuels ◦ Glucose, fatty acids, ketone bodies, amino acids, other gluoconeogenic precursors (glycerol, lactate, propionate) Glucose: primary metabolic fuel in humans ◦ Provide 32% to 70% of the energy in diet of American population All tissues are able to use glucose as energy fuels ◦ Glucose has different metabolic fate in different tissues Physiological states determine glucose metabolic fate ◦ Fed/fasted – glucose is metabolized through distinct
    [Show full text]
  • Expression of a Phosphoglucomutase Gene in Rainbow Trout (Polymorphism/Developmental Rate/Glycolysis/Salmo Gairdneri) FRED W
    Proc. Natt Acad. Sci. USA Vol. 80, pp. 1397-1400, March 1983 Genetics Adaptive significance of differences in the tissue-specific expression of a phosphoglucomutase gene in rainbow trout (polymorphism/developmental rate/glycolysis/Salmo gairdneri) FRED W. ALLENDORF, KATHY L. KNUDSEN, AND ROBB F. LEARY Department of Zoology,, University of Montana, Missoula, Montana 59812 Communicated by G. Ledyard Stebbins, November 17, 1982 ABSTRACT We have investigated the phenotypic effects of fold increase in the expression of a phosphoglucomutase (PGM; a mutant allele that results in the expression of a phosphogluco- a-D-glucose-1,6-bisphosphate:a-D-glucose-l-phosphate phos- mutase locus (Pgml) in the liver of rainbow trout. Embryos with photransferase EC 2.7.5. 1) locus, Pgml, in liver tissue (14, 15). liver Pgml expression hatch earlier than embryos without liver The results of inheritance experiments are consistent with a sin- Pgml expression. These differences apparently result from in- gle regulatory gene, Pgml-t, with additive inheritance being re- creased flux through glycolysis in embryos with liver PGM1 ac- sponsible for the differences in the expression of this locus (15). tivity while they are dependent on the yolk for energy. Fish with We report here that the presence or absence of PGM1 in the liver PGM1 activity are also more developmentally buffered, as liver rise to indicated by less fluctuating asymmetry of five bilateral meristic gives important differences in several phenotypic traits. The more rapidly developing individuals begin exogenous characteristics of adaptive significance (developmental rate, de- feeding earlier and achieve a size advantage that is maintained velopmental stability, body size, and age at first maturity).
    [Show full text]
  • Lecture 8 - Glycogen Metabolism
    Lecture 8 - Glycogen Metabolism Chem 454: Regulatory Mechanisms in Biochemistry University of Wisconsin-Eau Claire Introduction Glycogen Text A storage form of glucose 2 Introduction Glycogen is stored primarily in the liver and Text skeletal muscles. Liver - used for maintaining blood glucose levels Muscles - used to meet energy needs of the muscles 3 Introduction Glycogen Text degradation occurs in three steps 4 Introduction Glycogen Text synthesis uses activated precursor UDP–glucose 5 Introduction Regulation of glycogen metabolism is Text complex. Allosteric regulation to meet the needs of the cell Hormonal regulation to meet the needs of the organsim 6 1. Glycogen Breakdown Requires three enzymes and produces Text glucose 6–phosphate Glycogen Phosphorylase Debranching Enzyme Phosphoglucomutase In the liver, an additional enzyme produces free glucose Glucose 6–phosphatase 7 1.1 Phosphorylase Cleavage uses orthophosphate in Text phosphorolysis reactions glycogen + Pi glucose 1-phosphate + glycogen n residues n-1 residues 8 1.2 Debranching Enzyme Two enzymes Text activities are needed to deal with the α–1,6 branch points 9 1.3 Phosphoglucomutase Mechanism is like that of phosphoglycerate Text mutase 10 1.4 Glucose 6-phosphatase Enzyme is found primarily in the liver and is Text used to release glucose into the bloodstream glucose 6-phosphate + H2O glucose + Pi 11 1.5 Mechanism for Phosphorolysis Text 12 1.5 Mechanism for Phosphorolysis Pyridoxyl phosphate Text coenzyme 13 1.5 Mechanism for Phosphorolysis Text 14 2. Regulation of Phosphorylase Phosphorylase is regulated by several Text allosteric effectors that signal the energy state of the cell It is also regulated by reversible phosphorylation in response to the hormones insulin, epinephrine, and glucagon 15 2.1 Muscle Phosphorylase Text 16 2.1 Muscle Phosphorylase Text 17 2.1 Muscle Phosphorylase Text 18 2.2 Liver Phosphorylase Text 19 2.3 Phosphorylase Kinase Text 20 3.
    [Show full text]
  • Regulation of Muscle Glycogen Metabolism During Exercise: Implications for Endurance Performance and Training Adaptations
    nutrients Review Regulation of Muscle Glycogen Metabolism during Exercise: Implications for Endurance Performance and Training Adaptations Mark A. Hearris, Kelly M. Hammond, J. Marc Fell and James P. Morton * Research Institute for Sport & Exercise Sciences, Liverpool John Moores University, Liverpool L3 3AF, UK; [email protected] (M.A.H.); [email protected] (K.M.H.); [email protected] (J.M.F.) * Correspondence: [email protected]; Tel.: +44-151-904-6233 Received: 9 January 2018; Accepted: 27 February 2018; Published: 2 March 2018 Abstract: Since the introduction of the muscle biopsy technique in the late 1960s, our understanding of the regulation of muscle glycogen storage and metabolism has advanced considerably. Muscle glycogenolysis and rates of carbohydrate (CHO) oxidation are affected by factors such as exercise intensity, duration, training status and substrate availability. Such changes to the global exercise stimulus exert regulatory effects on key enzymes and transport proteins via both hormonal control and local allosteric regulation. Given the well-documented effects of high CHO availability on promoting exercise performance, elite endurance athletes are typically advised to ensure high CHO availability before, during and after high-intensity training sessions or competition. Nonetheless, in recognition that the glycogen granule is more than a simple fuel store, it is now also accepted that glycogen is a potent regulator of the molecular cell signaling pathways that regulate the oxidative phenotype. Accordingly, the concept of deliberately training with low CHO availability has now gained increased popularity amongst athletic circles. In this review, we present an overview of the regulatory control of CHO metabolism during exercise (with a specific emphasis on muscle glycogen utilization) in order to discuss the effects of both high and low CHO availability on modulating exercise performance and training adaptations, respectively.
    [Show full text]
  • Chem331 Glycogen Metabolism
    Glycogen metabolism Glycogen review - 1,4 and 1,6 α-glycosidic links ~ every 10 sugars are branched - open helix with many non-reducing ends. Effective storage of glucose Glucose storage Liver glycogen 4.0% 72 g Muscle glycogen 0.7% 245 g Blood Glucose 0.1% 10 g Large amount of water associated with glycogen - 0.5% of total weight Glycogen stored in granules in cytosol w/proteins for synthesis, degradation and control There are very different means of control of glycogen metabolism between liver and muscle Glycogen biosynthetic and degradative cycle Two different pathways - which do not share enzymes like glycolysis and gluconeogenesis glucose -> glycogen glycogenesis - biosynthetic glycogen -> glucose 1-P glycogenolysis - breakdown Evidence for two paths - Patients lacking phosphorylase can still synthesize glycogen - hormonal regulation of both directions Glycogenolysis (glycogen breakdown)- Glycogen Phosphorylase glycogen (n) + Pi -> glucose 1-p + glycogen (n-1) • Enzyme binds and cleaves glycogen into monomers at the end of the polymer (reducing ends of glycogen) • Dimmer interacting at the N-terminus. • rate limiting - controlled step in glycogen breakdown • glycogen phosphorylase - cleavage of 1,4 α glycosidic bond by Pi NOT H2O • Energy of phosphorolysis vs. hydrolysis -low standard state free energy change -transfer potential -driven by Pi concentration -Hydrolysis would require additional step s/ cost of ATP - Think of the difference between adding a phosphate group with hydrolysis • phosphorylation locks glucose in cell (imp. for muscle) • Phosphorylase binds glycogen at storage site and the catalytic site is 4 to 5 glucose residues away from the catalytic site. • Phosphorylase removes 1 residue at a time from glycogen until 4 glucose residues away on either side of 1,6 branch point – stericaly hindered by glycogen storage site • Cleaves without releasing at storage site • general acid/base catalysts • Inorganic phosphate attacks the terminal glucose residue passing through an oxonium ion intermediate.
    [Show full text]
  • Effects of Free Fatty Acids Per Se on Glucose Production, Gluconeogenesis, and Glycogenolysis Peter Staehr,1 Ole Hother-Nielsen,1 Bernard R
    Effects of Free Fatty Acids Per Se on Glucose Production, Gluconeogenesis, and Glycogenolysis Peter Staehr,1 Ole Hother-Nielsen,1 Bernard R. Landau,2 Visvanathan Chandramouli,2 Jens Juul Holst,3 and Henning Beck-Nielsen1 Insulin-independent effects of a physiological increase thermore, in clamp studies of type 2 diabetic patients, in free fatty acid (FFA) levels on fasting glucose pro- impaired suppression of glucose production by insulin duction, gluconeogenesis, and glycogenolysis were appears related to impaired suppression of plasma FFA 2 assessed by administering [6,6- H2]-glucose and deuteri- levels (6). However, in vivo effects of FFA on glucose 2 ated water ( H2O) in 12 type 1 diabetic patients, during production, gluconeogenesis, and glycogenolysis in the 6-h infusions of either saline or a lipid emulsion. Insulin fasted state are less clear. ؍ was either fully replaced (euglycemic group, n 6), or The in vivo studies are complicated by the fact that During .(6 ؍ underreplaced (hyperglycemic group, n saline infusions, plasma FFA levels remained un- FFAs are potent insulin secretagogues (1). Since glycogen- changed. Glucose concentrations decreased from 6.7 ؎ olysis, in particular, is very sensitive to insulin (7,8), even to 5.3 ؎ 0.4 mmol/l and 11.9 ؎ 1.0 to 10.5 ؎ 1.0 small changes in its levels may bias studies on the effects 0.4 mmol/l in the euglycemic and hyperglycemic group, re- of FFAs. To assess the direct effects of FFA per se on these spectively. Accordingly, glucose production declined pathways, endogenous insulin secretion has therefore ؊ ؊ from 84 ؎ 5to63؎ 5mg⅐ m 2 ⅐ min 1 and from 84 ؎ 5 been inhibited in a number of studies by administering ؊2 ؊1 to 68 ؎ 4mg⅐ m ⅐ min , due to declining rates of somatostatin (SRIF) (9–14), but conclusions still differ glycogenolysis but unaltered rates of gluconeogenesis.
    [Show full text]
  • Supplementary Information
    Supplementary information (a) (b) Figure S1. Resistant (a) and sensitive (b) gene scores plotted against subsystems involved in cell regulation. The small circles represent the individual hits and the large circles represent the mean of each subsystem. Each individual score signifies the mean of 12 trials – three biological and four technical. The p-value was calculated as a two-tailed t-test and significance was determined using the Benjamini-Hochberg procedure; false discovery rate was selected to be 0.1. Plots constructed using Pathway Tools, Omics Dashboard. Figure S2. Connectivity map displaying the predicted functional associations between the silver-resistant gene hits; disconnected gene hits not shown. The thicknesses of the lines indicate the degree of confidence prediction for the given interaction, based on fusion, co-occurrence, experimental and co-expression data. Figure produced using STRING (version 10.5) and a medium confidence score (approximate probability) of 0.4. Figure S3. Connectivity map displaying the predicted functional associations between the silver-sensitive gene hits; disconnected gene hits not shown. The thicknesses of the lines indicate the degree of confidence prediction for the given interaction, based on fusion, co-occurrence, experimental and co-expression data. Figure produced using STRING (version 10.5) and a medium confidence score (approximate probability) of 0.4. Figure S4. Metabolic overview of the pathways in Escherichia coli. The pathways involved in silver-resistance are coloured according to respective normalized score. Each individual score represents the mean of 12 trials – three biological and four technical. Amino acid – upward pointing triangle, carbohydrate – square, proteins – diamond, purines – vertical ellipse, cofactor – downward pointing triangle, tRNA – tee, and other – circle.
    [Show full text]