Transcriptional Profiling of Macrophages Derived From
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Analysis of Gene Expression Data for Gene Ontology
ANALYSIS OF GENE EXPRESSION DATA FOR GENE ONTOLOGY BASED PROTEIN FUNCTION PREDICTION A Thesis Presented to The Graduate Faculty of The University of Akron In Partial Fulfillment of the Requirements for the Degree Master of Science Robert Daniel Macholan May 2011 ANALYSIS OF GENE EXPRESSION DATA FOR GENE ONTOLOGY BASED PROTEIN FUNCTION PREDICTION Robert Daniel Macholan Thesis Approved: Accepted: _______________________________ _______________________________ Advisor Department Chair Dr. Zhong-Hui Duan Dr. Chien-Chung Chan _______________________________ _______________________________ Committee Member Dean of the College Dr. Chien-Chung Chan Dr. Chand K. Midha _______________________________ _______________________________ Committee Member Dean of the Graduate School Dr. Yingcai Xiao Dr. George R. Newkome _______________________________ Date ii ABSTRACT A tremendous increase in genomic data has encouraged biologists to turn to bioinformatics in order to assist in its interpretation and processing. One of the present challenges that need to be overcome in order to understand this data more completely is the development of a reliable method to accurately predict the function of a protein from its genomic information. This study focuses on developing an effective algorithm for protein function prediction. The algorithm is based on proteins that have similar expression patterns. The similarity of the expression data is determined using a novel measure, the slope matrix. The slope matrix introduces a normalized method for the comparison of expression levels throughout a proteome. The algorithm is tested using real microarray gene expression data. Their functions are characterized using gene ontology annotations. The results of the case study indicate the protein function prediction algorithm developed is comparable to the prediction algorithms that are based on the annotations of homologous proteins. -
Chuanxiong Rhizoma Compound on HIF-VEGF Pathway and Cerebral Ischemia-Reperfusion Injury’S Biological Network Based on Systematic Pharmacology
ORIGINAL RESEARCH published: 25 June 2021 doi: 10.3389/fphar.2021.601846 Exploring the Regulatory Mechanism of Hedysarum Multijugum Maxim.-Chuanxiong Rhizoma Compound on HIF-VEGF Pathway and Cerebral Ischemia-Reperfusion Injury’s Biological Network Based on Systematic Pharmacology Kailin Yang 1†, Liuting Zeng 1†, Anqi Ge 2†, Yi Chen 1†, Shanshan Wang 1†, Xiaofei Zhu 1,3† and Jinwen Ge 1,4* Edited by: 1 Takashi Sato, Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of 2 Tokyo University of Pharmacy and Life Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha, China, Galactophore Department, The First 3 Sciences, Japan Hospital of Hunan University of Chinese Medicine, Changsha, China, School of Graduate, Central South University, Changsha, China, 4Shaoyang University, Shaoyang, China Reviewed by: Hui Zhao, Capital Medical University, China Background: Clinical research found that Hedysarum Multijugum Maxim.-Chuanxiong Maria Luisa Del Moral, fi University of Jaén, Spain Rhizoma Compound (HCC) has de nite curative effect on cerebral ischemic diseases, *Correspondence: such as ischemic stroke and cerebral ischemia-reperfusion injury (CIR). However, its Jinwen Ge mechanism for treating cerebral ischemia is still not fully explained. [email protected] †These authors share first authorship Methods: The traditional Chinese medicine related database were utilized to obtain the components of HCC. The Pharmmapper were used to predict HCC’s potential targets. Specialty section: The CIR genes were obtained from Genecards and OMIM and the protein-protein This article was submitted to interaction (PPI) data of HCC’s targets and IS genes were obtained from String Ethnopharmacology, a section of the journal database. -
Aneuploidy: Using Genetic Instability to Preserve a Haploid Genome?
Health Science Campus FINAL APPROVAL OF DISSERTATION Doctor of Philosophy in Biomedical Science (Cancer Biology) Aneuploidy: Using genetic instability to preserve a haploid genome? Submitted by: Ramona Ramdath In partial fulfillment of the requirements for the degree of Doctor of Philosophy in Biomedical Science Examination Committee Signature/Date Major Advisor: David Allison, M.D., Ph.D. Academic James Trempe, Ph.D. Advisory Committee: David Giovanucci, Ph.D. Randall Ruch, Ph.D. Ronald Mellgren, Ph.D. Senior Associate Dean College of Graduate Studies Michael S. Bisesi, Ph.D. Date of Defense: April 10, 2009 Aneuploidy: Using genetic instability to preserve a haploid genome? Ramona Ramdath University of Toledo, Health Science Campus 2009 Dedication I dedicate this dissertation to my grandfather who died of lung cancer two years ago, but who always instilled in us the value and importance of education. And to my mom and sister, both of whom have been pillars of support and stimulating conversations. To my sister, Rehanna, especially- I hope this inspires you to achieve all that you want to in life, academically and otherwise. ii Acknowledgements As we go through these academic journeys, there are so many along the way that make an impact not only on our work, but on our lives as well, and I would like to say a heartfelt thank you to all of those people: My Committee members- Dr. James Trempe, Dr. David Giovanucchi, Dr. Ronald Mellgren and Dr. Randall Ruch for their guidance, suggestions, support and confidence in me. My major advisor- Dr. David Allison, for his constructive criticism and positive reinforcement. -
OSBPL9 (NM 148907) Human Tagged ORF Clone Lentiviral Particle Product Data
OriGene Technologies, Inc. 9620 Medical Center Drive, Ste 200 Rockville, MD 20850, US Phone: +1-888-267-4436 [email protected] EU: [email protected] CN: [email protected] Product datasheet for RC221526L4V OSBPL9 (NM_148907) Human Tagged ORF Clone Lentiviral Particle Product data: Product Type: Lentiviral Particles Product Name: OSBPL9 (NM_148907) Human Tagged ORF Clone Lentiviral Particle Symbol: OSBPL9 Synonyms: ORP-9; ORP9 Vector: pLenti-C-mGFP-P2A-Puro (PS100093) ACCN: NM_148907 ORF Size: 1878 bp ORF Nucleotide The ORF insert of this clone is exactly the same as(RC221526). Sequence: OTI Disclaimer: The molecular sequence of this clone aligns with the gene accession number as a point of reference only. However, individual transcript sequences of the same gene can differ through naturally occurring variations (e.g. polymorphisms), each with its own valid existence. This clone is substantially in agreement with the reference, but a complete review of all prevailing variants is recommended prior to use. More info OTI Annotation: This clone was engineered to express the complete ORF with an expression tag. Expression varies depending on the nature of the gene. RefSeq: NM_148907.1 RefSeq Size: 2694 bp RefSeq ORF: 1881 bp Locus ID: 114883 UniProt ID: Q96SU4 MW: 70.1 kDa This product is to be used for laboratory only. Not for diagnostic or therapeutic use. View online » ©2021 OriGene Technologies, Inc., 9620 Medical Center Drive, Ste 200, Rockville, MD 20850, US 1 / 2 OSBPL9 (NM_148907) Human Tagged ORF Clone Lentiviral Particle – RC221526L4V Gene Summary: This gene encodes a member of the oxysterol-binding protein (OSBP) family, a group of intracellular lipid receptors. -
OSBPL9 (NM 148906) Human Tagged ORF Clone – RC221011L3
OriGene Technologies, Inc. 9620 Medical Center Drive, Ste 200 Rockville, MD 20850, US Phone: +1-888-267-4436 [email protected] EU: [email protected] CN: [email protected] Product datasheet for RC221011L3 OSBPL9 (NM_148906) Human Tagged ORF Clone Product data: Product Type: Expression Plasmids Product Name: OSBPL9 (NM_148906) Human Tagged ORF Clone Tag: Myc-DDK Symbol: OSBPL9 Synonyms: ORP-9; ORP9 Vector: pLenti-C-Myc-DDK-P2A-Puro (PS100092) E. coli Selection: Chloramphenicol (34 ug/mL) Cell Selection: Puromycin ORF Nucleotide The ORF insert of this clone is exactly the same as(RC221011). Sequence: Restriction Sites: SgfI-MluI Cloning Scheme: ACCN: NM_148906 ORF Size: 1713 bp This product is to be used for laboratory only. Not for diagnostic or therapeutic use. View online » ©2021 OriGene Technologies, Inc., 9620 Medical Center Drive, Ste 200, Rockville, MD 20850, US 1 / 2 OSBPL9 (NM_148906) Human Tagged ORF Clone – RC221011L3 OTI Disclaimer: The molecular sequence of this clone aligns with the gene accession number as a point of reference only. However, individual transcript sequences of the same gene can differ through naturally occurring variations (e.g. polymorphisms), each with its own valid existence. This clone is substantially in agreement with the reference, but a complete review of all prevailing variants is recommended prior to use. More info OTI Annotation: This clone was engineered to express the complete ORF with an expression tag. Expression varies depending on the nature of the gene. RefSeq: NM_148906.1, NP_683704.1 RefSeq Size: 2840 bp RefSeq ORF: 2160 bp Locus ID: 114883 UniProt ID: Q96SU4 MW: 63.7 kDa Gene Summary: This gene encodes a member of the oxysterol-binding protein (OSBP) family, a group of intracellular lipid receptors. -
A Systems-Genetics Analyses of Complex Phenotypes
A systems-genetics analyses of complex phenotypes A thesis submitted to the University of Manchester for the degree of Doctor of Philosophy in the Faculty of Life Sciences 2015 David Ashbrook Table of contents Table of contents Table of contents ............................................................................................... 1 Tables and figures ........................................................................................... 10 General abstract ............................................................................................... 14 Declaration ....................................................................................................... 15 Copyright statement ........................................................................................ 15 Acknowledgements.......................................................................................... 16 Chapter 1: General introduction ...................................................................... 17 1.1 Overview................................................................................................... 18 1.2 Linkage, association and gene annotations .............................................. 20 1.3 ‘Big data’ and ‘omics’ ................................................................................ 22 1.4 Systems-genetics ..................................................................................... 24 1.5 Recombinant inbred (RI) lines and the BXD .............................................. 25 Figure 1.1: -
Adverse Childhood Experiences, Epigenetic Measures, and Obesity in Youth
ORIGINAL www.jpeds.com • THE JOURNAL OF PEDIATRICS ARTICLES Adverse Childhood Experiences, Epigenetic Measures, and Obesity in Youth Joan Kaufman, PhD1,2,3, Janitza L. Montalvo-Ortiz, PhD3, Hannah Holbrook,BA4, Kerry O'Loughlin,BA4, Catherine Orr, PhD4, Catherine Kearney,MA1, Bao-Zhu Yang, PhD3, Tao Wang, PhD5,6, Hongyu Zhao, PhD5, Robert Althoff, MD, PhD4, Hugh Garavan, PhD4, Joel Gelernter,MD3,7, and James Hudziak,MD4 Objective To determine if measures of adverse childhood experiences and DNA methylation relate to indices of obesity in youth. Study design Participants were derived from a cohort of 321 8 to 15-year-old children recruited for an investi- gation examining risk and resilience and psychiatric outcomes in maltreated children. Assessments of obesity were collected as an add-on for a subset of 234 participants (56% female; 52% maltreated). Illumina arrays were used to examine whole genome epigenetic predictors of obesity in saliva DNA. For analytic purposes, the cohort ana- lyzed in the first batch comprised the discovery sample (n = 160), and the cohort analyzed in the second batch the replication sample (n = 74). Results After controlling for race, sex, age, cell heterogeneity, 3 principal components, and whole genome testing, 10 methylation sites were found to interact with adverse childhood experiences to predict cross-sectional mea- sures of body mass index, and an additional 6 sites were found to exert a main effect in predicting body mass index (P < 5.0 × 10−7, all comparisons). Eight of the methylation sites were in genes previously associated with obesity risk (eg, PCK2, CxCl10, BCAT1, HID1, PRDM16, MADD, PXDN, GALE), with several of the findings from the dis- covery data set replicated in the second cohort. -
Genetic Evidence Implicates the Immune System and Cholesterol Metabolism in the Aetiology of Alzheimer's Disease Alison M
Washington University School of Medicine Digital Commons@Becker Open Access Publications 2010 Genetic evidence implicates the immune system and cholesterol metabolism in the aetiology of Alzheimer's disease Alison M. Goate Washington University School of Medicine in St. Louis Carlos Cruchaga Washington University School of Medicine in St. Louis Petra Nowotny Washington University School of Medicine in St. Louis John C. Morris Washington University School of Medicine in St. Louis Kevin Mayo Washington University School of Medicine in St. Louis See next page for additional authors Follow this and additional works at: https://digitalcommons.wustl.edu/open_access_pubs Part of the Medicine and Health Sciences Commons Recommended Citation Goate, Alison M.; Cruchaga, Carlos; Nowotny, Petra; Morris, John C.; Mayo, Kevin; and et al., ,"Genetic evidence implicates the immune system and cholesterol metabolism in the aetiology of Alzheimer's disease." PLoS One.,. e13950. (2010). https://digitalcommons.wustl.edu/open_access_pubs/1093 This Open Access Publication is brought to you for free and open access by Digital Commons@Becker. It has been accepted for inclusion in Open Access Publications by an authorized administrator of Digital Commons@Becker. For more information, please contact [email protected]. Authors Alison M. Goate, Carlos Cruchaga, Petra Nowotny, John C. Morris, Kevin Mayo, and et al. This open access publication is available at Digital Commons@Becker: https://digitalcommons.wustl.edu/open_access_pubs/1093 Genetic Evidence Implicates the Immune System and Cholesterol Metabolism in the Aetiology of Alzheimer’s Disease Lesley Jones1., Peter A. Holmans1., Marian L. Hamshere1, Denise Harold1, Valentina Moskvina1, Dobril Ivanov1, Andrew Pocklington1, Richard Abraham1, Paul Hollingworth1, Rebecca Sims1, Amy Gerrish1, Jaspreet Singh Pahwa1, Nicola Jones1, Alexandra Stretton1, Angharad R. -
Agricultural University of Athens
ΓΕΩΠΟΝΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΩΝ ΖΩΩΝ ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΖΩΙΚΗΣ ΠΑΡΑΓΩΓΗΣ ΕΡΓΑΣΤΗΡΙΟ ΓΕΝΙΚΗΣ ΚΑΙ ΕΙΔΙΚΗΣ ΖΩΟΤΕΧΝΙΑΣ ΔΙΔΑΚΤΟΡΙΚΗ ΔΙΑΤΡΙΒΗ Εντοπισμός γονιδιωματικών περιοχών και δικτύων γονιδίων που επηρεάζουν παραγωγικές και αναπαραγωγικές ιδιότητες σε πληθυσμούς κρεοπαραγωγικών ορνιθίων ΕΙΡΗΝΗ Κ. ΤΑΡΣΑΝΗ ΕΠΙΒΛΕΠΩΝ ΚΑΘΗΓΗΤΗΣ: ΑΝΤΩΝΙΟΣ ΚΟΜΙΝΑΚΗΣ ΑΘΗΝΑ 2020 ΔΙΔΑΚΤΟΡΙΚΗ ΔΙΑΤΡΙΒΗ Εντοπισμός γονιδιωματικών περιοχών και δικτύων γονιδίων που επηρεάζουν παραγωγικές και αναπαραγωγικές ιδιότητες σε πληθυσμούς κρεοπαραγωγικών ορνιθίων Genome-wide association analysis and gene network analysis for (re)production traits in commercial broilers ΕΙΡΗΝΗ Κ. ΤΑΡΣΑΝΗ ΕΠΙΒΛΕΠΩΝ ΚΑΘΗΓΗΤΗΣ: ΑΝΤΩΝΙΟΣ ΚΟΜΙΝΑΚΗΣ Τριμελής Επιτροπή: Aντώνιος Κομινάκης (Αν. Καθ. ΓΠΑ) Ανδρέας Κράνης (Eρευν. B, Παν. Εδιμβούργου) Αριάδνη Χάγερ (Επ. Καθ. ΓΠΑ) Επταμελής εξεταστική επιτροπή: Aντώνιος Κομινάκης (Αν. Καθ. ΓΠΑ) Ανδρέας Κράνης (Eρευν. B, Παν. Εδιμβούργου) Αριάδνη Χάγερ (Επ. Καθ. ΓΠΑ) Πηνελόπη Μπεμπέλη (Καθ. ΓΠΑ) Δημήτριος Βλαχάκης (Επ. Καθ. ΓΠΑ) Ευάγγελος Ζωίδης (Επ.Καθ. ΓΠΑ) Γεώργιος Θεοδώρου (Επ.Καθ. ΓΠΑ) 2 Εντοπισμός γονιδιωματικών περιοχών και δικτύων γονιδίων που επηρεάζουν παραγωγικές και αναπαραγωγικές ιδιότητες σε πληθυσμούς κρεοπαραγωγικών ορνιθίων Περίληψη Σκοπός της παρούσας διδακτορικής διατριβής ήταν ο εντοπισμός γενετικών δεικτών και υποψηφίων γονιδίων που εμπλέκονται στο γενετικό έλεγχο δύο τυπικών πολυγονιδιακών ιδιοτήτων σε κρεοπαραγωγικά ορνίθια. Μία ιδιότητα σχετίζεται με την ανάπτυξη (σωματικό βάρος στις 35 ημέρες, ΣΒ) και η άλλη με την αναπαραγωγική -
Meta-Analysis of Prostate Cancer Gene Expression Data Identifies a Novel Discriminatory Signature Enriched for Glycosylating
Barfeld et al. BMC Medical Genomics (2014) 7:513 DOI 10.1186/s12920-014-0074-9 RESEARCH ARTICLE Open Access Meta-analysis of prostate cancer gene expression data identifies a novel discriminatory signature enriched for glycosylating enzymes Stefan J Barfeld2*, Philip East1, Verena Zuber2 and Ian G Mills2,3* Abstract Background: Tumorigenesis is characterised by changes in transcriptional control. Extensive transcript expression data have been acquired over the last decade and used to classify prostate cancers. Prostate cancer is, however, a heterogeneous multifocal cancer and this poses challenges in identifying robust transcript biomarkers. Methods: In this study, we have undertaken a meta-analysis of publicly available transcriptomic data spanning datasets and technologies from the last decade and encompassing laser capture microdissected and macrodissected sample sets. Results: We identified a 33 gene signature that can discriminate between benign tissue controls and localised prostate cancers irrespective of detection platform or dissection status. These genes were significantly overexpressed in localised prostate cancer versus benign tissue in at least three datasets within the Oncomine Compendium of Expression Array Data. In addition, they were also overexpressed in a recent exon-array dataset as well a prostate cancer RNA-seq dataset generated as part of the The Cancer Genomics Atlas (TCGA) initiative. Biologically, glycosylation was the single enriched process associated with this 33 gene signature, encompassing four glycosylating enzymes. We went on to evaluate the performance of this signature against three individual markers of prostate cancer, v-ets avian erythroblastosis virus E26 oncogene homolog (ERG) expression, prostate specific antigen (PSA) expression and androgen receptor (AR) expression in an additional independent dataset. -
Program in Human Neutrophils Fails To
Downloaded from http://www.jimmunol.org/ by guest on September 25, 2021 is online at: average * The Journal of Immunology Anaplasma phagocytophilum , 20 of which you can access for free at: 2005; 174:6364-6372; ; from submission to initial decision 4 weeks from acceptance to publication J Immunol doi: 10.4049/jimmunol.174.10.6364 http://www.jimmunol.org/content/174/10/6364 Insights into Pathogen Immune Evasion Mechanisms: Fails to Induce an Apoptosis Differentiation Program in Human Neutrophils Dori L. Borjesson, Scott D. Kobayashi, Adeline R. Whitney, Jovanka M. Voyich, Cynthia M. Argue and Frank R. DeLeo cites 28 articles Submit online. Every submission reviewed by practicing scientists ? is published twice each month by Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts http://jimmunol.org/subscription Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html http://www.jimmunol.org/content/suppl/2005/05/03/174.10.6364.DC1 This article http://www.jimmunol.org/content/174/10/6364.full#ref-list-1 Information about subscribing to The JI No Triage! Fast Publication! Rapid Reviews! 30 days* • Why • • Material References Permissions Email Alerts Subscription Supplementary The Journal of Immunology The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2005 by The American Association of Immunologists All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. This information is current as of September 25, 2021. The Journal of Immunology Insights into Pathogen Immune Evasion Mechanisms: Anaplasma phagocytophilum Fails to Induce an Apoptosis Differentiation Program in Human Neutrophils1 Dori L. -
Different Gene Response to Mechanical Loading During Early and Late Phases of Rat Achilles Tendon Healing Malin Hammerman, Parmis Blomgran, Arie Dansac, Pernilla T
Different gene response to mechanical loading during early and late phases of rat Achilles tendon healing Malin Hammerman, Parmis Blomgran, Arie Dansac, Pernilla T. Eliasson and Per Aspenberg The self-archived postprint version of this journal article is available at Linköping University Institutional Repository (DiVA): http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-143094 N.B.: When citing this work, cite the original publication. Hammerman, M., Blomgran, P., Dansac, A., Eliasson, P. T., Aspenberg, P., (2017), Different gene response to mechanical loading during early and late phases of rat Achilles tendon healing, Journal of applied physiology, 123(4), 800-815. https://doi.org/10.1152/japplphysiol.00323.2017 Original publication available at: https://doi.org/10.1152/japplphysiol.00323.2017 Copyright: American Physiological Society http://www.the-aps.org/ Title: Different gene response to mechanical loading during early and late phases of rat Achilles tendon healing Running head: Gene response after loading in healing tendons Authors: M. Hammerman, P. Blomgran, A. Dansac, P. Eliasson, and P. Aspenberg Affiliation: Orthopedics, Department of Clinical and Experimental Medicine, Faculty of Health Science, Linkoping University, Sweden Corresponding author: Malin Hammerman [email protected] Phone: +46 10 10 34 116 Address: Linköpings universitet Ortopedi, IKE, KEF, plan 9, US 581 85 Linköping Author contributions: Conceived and designed the experiments: M.H., P.E. and P.A. Performed the experiments: M.H., P.B., and A.R. Analyzed the data: M.H. and A.R. Drafted the manuscript: M.H. Edited and revised the manuscript: M.H., P.B., P.E., A.R., and P.A.