Jump-Diffusion Stochastic Processes with Maple

Total Page:16

File Type:pdf, Size:1020Kb

Jump-Diffusion Stochastic Processes with Maple Jump-diffusion stochastic processes with Maple Igor Hlivka - Senior Quantitative Analyst MUSI, London Jump diffusion is an extension to the theory of stochastic processes where the underlying parameters exhibit shocks and "jump" to their new values. Stochasticity with jumps is well recognized in several scientific branches including physics, chemistry, but also economics and finance. This application is primarily focused on the last-mentioned field where the theory of jump-diffusion has been particularly actively researched and applied. We will discuss various jump processes in finance, their applications to option pricing and risk. For this we will rely heavily on Finance package which contains essential ingredients for creation of efficient stochastic routines and together with other Maple's tools provide powerful platform for the study, analysis and application of stochastic processes to economic or scientific problems. Introduction Jump-diffusion in financial literature is associated primarily with Merton who was the first to introduce the jump-diffusion into stock option pricing. From the pure theoretical perspective, jumps are not trivial. Why? Because the martingale theory - the heart of arbitrage-free option pricing - is not fully preserved. When underlying process (for stock price, FX rate or interest rate) jumps, the market turns incomplete due to the presence of two stochastic factors (underlying + jumps), but only one tradeable asset (underlying). Merton back in 70s argued that since both processes are uncorrelated and independent, jumps can be hedged away through portfolio diversification. Why do we need jumps? Two main arguments: (i) reflection of reality and (ii) extension of traditional log-normal processes in finance where financial returns are not exactly normally distributed. Jump would serve here as "correction" to the limitation of traditional theory. Definitions of jumps: Usually defined as Poisson independent of one another Jumps are drawn from Poisson probability density => The mean waiting time for jumps = When jump occurs, the underlying value changes to where J is the magnitude of jump. This quantity is usually independent from the jump intensity and can be made stochastic, i.e. drawn from pre-defined probability distribution. We will review several jump types. Jump-diffusion stochastic differential equation: If solves the standard SDE then it naturally solves its extension with jumps: where denotes the number of jumps that occurred \with magnitude . Stochastic schemes for jump-diffusion process Here we review several stochastic routines applicable to jump-diffusion SDEs. We will call Maple's stochastic routines defined in the Finance package and demonstrate that Maple has almost unlimited potential to define various types of jump-diffusions with constant, probabilistic jumps (and intensities) and also stochastic Poisson processes. Normal mean-reverting process _X (2.1.1) Normal jump magnitude => jump sizes are drawn from normal distribution (2.1.2) We can visualize the process paths by assigning numerical values. Assume, the object of our interest is an interest rate, so the corresponding jumps are small. We simulate the 1 year evolution of an interest rate with initial value 2.5% The jumps are clearly visible on the above graph. We generate the sample values to obtain the statistics for the process. (2.1.3) (2.1.4) Let's compare this result with the non-jump process. In our case, this is just the process (2.1.5) (2.1.5) The two samples are now clearly different: Sample A (jump-diffusion) has different (i) mean,(ii) volatility, (iii) skewness, (iv) kurtosis and (v) max value. The non-zero skewness and kurtosis > 3 indicate that the distribution is not any longer normal Sample B (O-U process) behaves as normal => see the skewness and kurtosis Let's compare the two distributions: Log-normal process with Logistic jumps In this example we define the geometric Brownian motion with Logistic jumps (2.1.5) (2.2.1) (2.1.5) (2.2.2) Similarly to the mean-reverting normal process, GBM with jumps is not long-normal as it has different moments and longer tail. Square-root process with Laplace jumps The square-root process us characterized by the following SDE: (2.1.5) (2.3.1) (2.1.5) (2.3.2) Stochastic routines with double Poisson process We can further relax the definition of Poisson process and allow the intensity itself being unknown and stochastic. This will allow us to create the jump-diffusion where both (i) intensity (2.1.5) and (ii) jumps magnitude are functions of independent processes. We will demonstrate this with Geometric Brownian Motion with stochastic volatility (following square-root diffusion) Gamma jumps Gumbel intensity (2.4.1) (2.1.5) (2.4.2) (2.1.5) Again, as the RHS tail shows, the stochastic jump makes the distribution non-log-normal with fatter tail. Stochastic routines with stochastic jump process This is the special case foe the Poisson process where the jump itself is a defined stochastic process, independent from the underlying. We select the underlying process equal to the CEV process Assume the Poisson process itself is driven by another stochastic process which we assume is O-U process The underlying process SDE: The jump generator: (2.1.5) (2.5.1) Table 1: Stochastic processes visualisation Double stochastic jump-diffusion process Jump stochastic Normal process (2.1.5) (2.5.3) Stochastic jump process with stochastic volatility with jumps Here we design a more complicated example: Define the stochastic volatility process with jumps Use that process as subordinate part of the underlying process with added jumps This will result in stochastic jumped vol process with jumps Volatility process - square-root diffusion (2.1.5) Volatility jumps - exponential intensity with normal jump sizes Underlying process - normal (Brownian motion) Underlying jumps - log-normal intensity with normal jumps sizes (2.6.1) Table 2: Double stochastic processes visualisation (2.1.5) Table 2: Double stochastic processes visualisation Normal stochastic process with CIR stochastic CIR stochastic volatility with jumps volatility with double jump impacts (2.6.2) (2.1.5) The reader may have noticed that when the underlying process is being modelled with stochastic volatility, the jump effects gets less pronounced. This is due to the fact that the volatility which itself is a stochastic process has larger impact on the distribution effects than additive jumps. This is also confirmed in practice - users typically resort to either (i) stochastic volatility process or (ii) jump diffusion. Handling both or even in the "double fashion" as the last example demonstrates requires a lot of parameters estimation which itself may be quite cumbersome. Probability density of the jump-diffusion process Jump-diffusion processes can lead to quite complex distributional patterns with multiple levels of randomness. Whilst explicit form for such densities may not always exist, we may obtain the estimates of such distribution using pattern matching. Moment matching can be particularly useful in this context. Here we use the lastly generated sample and try to fit it to the known statistical distributions. (2.1.5) Sample fit to Gumbel distribution We will try to fit the jump-diffusion data to Gumbel density: (3.1.1) We compute the fist two moments of the density, do the same for the sample data and solve for density parameters (3.1.2) (3.1.3) (3.1.4) (2.1.5) We can see that the fit is close, but not exact, especially on the LH tail and on the skewness. We can see that the two moments match is not enough to fit the double jump-diffusion process. Sample fit to higher-moments density We will build a new distribution (Normal mixture) with higher number of parameters: (3.2.1) (3.2.2) (3.2.3) We again calculate the density moments and solve for four parameters (2.1.5) (3.2.5) We select the solution that meets the parameters criteria (3.2.6) Substitute parameters into the PDF (2.1.5) (3.2.7) Generate plots and compare the densities Although not totally exact, the fit to the Normal mixture is now better. Solution via Fourier transform When the jump-diffusion process contains constant parameters, we can obtain the probability density by trying to solve the forward Kolmogorov equation - the PDE that returns the evolution (2.1.5) (3.2.7) of transitional density over time. We use the integral transform (Fourier in particular) to find the solution. The probability density for jump-diffusion is similar to the "standard" PDE. The only unknown quantity is the identification of jumps. Jump definition in the PDE where the expectation is taken over probability of jumps this means: We define the forward Kolmogorov equation for jump-diffusion as follows: (3.3.1) Apply alias for display (3.3.2) Take the Fourier transform of the PDE with parameter (3.3.3) Change the function to (3.3.4) Solve the ODE with initial condition (3.3.5) Take the inverse of the Fourier and get the desired density (3.3.6) (2.1.5) (3.2.7) (3.3.7) (3.3.8) Application in Finance Jump-diffusion processes with respective densities are highly relevant to finance where users look for alternatives to "traditional" approaches to explore "fat tails" - heavier tail distributions than Normal or LogNormal processes. Jump processes serve these needs well. Option pricing Freedom in defining various jump-diffusions in Maple enables user to price and value a number of options with various payoffs (4.1.1) Provide process parameters and compute Monte-Carlo expectation - call and put option prices with option maturity T and strike price K (4.1.2) We can compare these prices to non-jump stochastic process (2.1.5) (3.2.7) (3.3.7) (4.1.3) Call option price for jump-diffusioon is higher than the non-jump equivalent.
Recommended publications
  • Numerical Solution of Jump-Diffusion LIBOR Market Models
    Finance Stochast. 7, 1–27 (2003) c Springer-Verlag 2003 Numerical solution of jump-diffusion LIBOR market models Paul Glasserman1, Nicolas Merener2 1 403 Uris Hall, Graduate School of Business, Columbia University, New York, NY 10027, USA (e-mail: [email protected]) 2 Department of Applied Physics and Applied Mathematics, Columbia University, New York, NY 10027, USA (e-mail: [email protected]) Abstract. This paper develops, analyzes, and tests computational procedures for the numerical solution of LIBOR market models with jumps. We consider, in par- ticular, a class of models in which jumps are driven by marked point processes with intensities that depend on the LIBOR rates themselves. While this formulation of- fers some attractive modeling features, it presents a challenge for computational work. As a first step, we therefore show how to reformulate a term structure model driven by marked point processes with suitably bounded state-dependent intensities into one driven by a Poisson random measure. This facilitates the development of discretization schemes because the Poisson random measure can be simulated with- out discretization error. Jumps in LIBOR rates are then thinned from the Poisson random measure using state-dependent thinning probabilities. Because of discon- tinuities inherent to the thinning process, this procedure falls outside the scope of existing convergence results; we provide some theoretical support for our method through a result establishing first and second order convergence of schemes that accommodates thinning but imposes stronger conditions on other problem data. The bias and computational efficiency of various schemes are compared through numerical experiments. Key words: Interest rate models, Monte Carlo simulation, market models, marked point processes JEL Classification: G13, E43 Mathematics Subject Classification (1991): 60G55, 60J75, 65C05, 90A09 The authors thank Professor Steve Kou for helpful comments and discussions.
    [Show full text]
  • Superprocesses and Mckean-Vlasov Equations with Creation of Mass
    Sup erpro cesses and McKean-Vlasov equations with creation of mass L. Overb eck Department of Statistics, University of California, Berkeley, 367, Evans Hall Berkeley, CA 94720, y U.S.A. Abstract Weak solutions of McKean-Vlasov equations with creation of mass are given in terms of sup erpro cesses. The solutions can b e approxi- mated by a sequence of non-interacting sup erpro cesses or by the mean- eld of multityp e sup erpro cesses with mean- eld interaction. The lat- ter approximation is asso ciated with a propagation of chaos statement for weakly interacting multityp e sup erpro cesses. Running title: Sup erpro cesses and McKean-Vlasov equations . 1 Intro duction Sup erpro cesses are useful in solving nonlinear partial di erential equation of 1+ the typ e f = f , 2 0; 1], cf. [Dy]. Wenowchange the p oint of view and showhowtheyprovide sto chastic solutions of nonlinear partial di erential Supp orted byanFellowship of the Deutsche Forschungsgemeinschaft. y On leave from the Universitat Bonn, Institut fur Angewandte Mathematik, Wegelerstr. 6, 53115 Bonn, Germany. 1 equation of McKean-Vlasovtyp e, i.e. wewant to nd weak solutions of d d 2 X X @ @ @ + d x; + bx; : 1.1 = a x; t i t t t t t ij t @t @x @x @x i j i i=1 i;j =1 d Aweak solution = 2 C [0;T];MIR satis es s Z 2 t X X @ @ a f = f + f + d f + b f ds: s ij s t 0 i s s @x @x @x 0 i j i Equation 1.1 generalizes McKean-Vlasov equations of twodi erenttyp es.
    [Show full text]
  • A Switching Self-Exciting Jump Diffusion Process for Stock Prices Donatien Hainaut, Franck Moraux
    A switching self-exciting jump diffusion process for stock prices Donatien Hainaut, Franck Moraux To cite this version: Donatien Hainaut, Franck Moraux. A switching self-exciting jump diffusion process for stock prices. Annals of Finance, Springer Verlag, 2019, 15 (2), pp.267-306. 10.1007/s10436-018-0340-5. halshs- 01909772 HAL Id: halshs-01909772 https://halshs.archives-ouvertes.fr/halshs-01909772 Submitted on 31 Oct 2018 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. A switching self-exciting jump diusion process for stock prices Donatien Hainaut∗ ISBA, Université Catholique de Louvain, Belgium Franck Morauxy Univ. Rennes 1 and CREM May 25, 2018 Abstract This study proposes a new Markov switching process with clustering eects. In this approach, a hidden Markov chain with a nite number of states modulates the parameters of a self-excited jump process combined to a geometric Brownian motion. Each regime corresponds to a particular economic cycle determining the expected return, the diusion coecient and the long-run frequency of clustered jumps. We study rst the theoretical properties of this process and we propose a sequential Monte-Carlo method to lter the hidden state variables.
    [Show full text]
  • Particle Filtering-Based Maximum Likelihood Estimation for Financial Parameter Estimation
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Spiral - Imperial College Digital Repository Particle Filtering-based Maximum Likelihood Estimation for Financial Parameter Estimation Jinzhe Yang Binghuan Lin Wayne Luk Terence Nahar Imperial College & SWIP Techila Technologies Ltd Imperial College SWIP London & Edinburgh, UK Tampere University of Technology London, UK London, UK [email protected] Tampere, Finland [email protected] [email protected] [email protected] Abstract—This paper presents a novel method for estimating result, which cannot meet runtime requirement in practice. In parameters of financial models with jump diffusions. It is a addition, high performance computing (HPC) technologies are Particle Filter based Maximum Likelihood Estimation process, still new to the finance industry. We provide a PF based MLE which uses particle streams to enable efficient evaluation of con- straints and weights. We also provide a CPU-FPGA collaborative solution to estimate parameters of jump diffusion models, and design for parameter estimation of Stochastic Volatility with we utilise HPC technology to speedup the estimation scheme Correlated and Contemporaneous Jumps model as a case study. so that it would be acceptable for practical use. The result is evaluated by comparing with a CPU and a cloud This paper presents the algorithm development, as well computing platform. We show 14 times speed up for the FPGA as the pipeline design solution in FPGA technology, of PF design compared with the CPU, and similar speedup but better convergence compared with an alternative parallelisation scheme based MLE for parameter estimation of Stochastic Volatility using Techila Middleware on a multi-CPU environment.
    [Show full text]
  • An Infinite Hidden Markov Model with Similarity-Biased Transitions
    An Infinite Hidden Markov Model With Similarity-Biased Transitions Colin Reimer Dawson 1 Chaofan Huang 1 Clayton T. Morrison 2 Abstract ing a “stick” off of the remaining weight according to a Beta (1; γ) distribution. The parameter γ > 0 is known We describe a generalization of the Hierarchical as the concentration parameter and governs how quickly Dirichlet Process Hidden Markov Model (HDP- the weights tend to decay, with large γ corresponding to HMM) which is able to encode prior informa- slow decay, and hence more weights needed before a given tion that state transitions are more likely be- cumulative weight is reached. This stick-breaking process tween “nearby” states. This is accomplished is denoted by GEM (Ewens, 1990; Sethuraman, 1994) for by defining a similarity function on the state Griffiths, Engen and McCloskey. We thus have a discrete space and scaling transition probabilities by pair- probability measure, G , with weights β at locations θ , wise similarities, thereby inducing correlations 0 j j j = 1; 2;::: , defined by among the transition distributions. We present an augmented data representation of the model i.i.d. θj ∼ H β ∼ GEM(γ): (1) as a Markov Jump Process in which: (1) some jump attempts fail, and (2) the probability of suc- G0 drawn in this way is a Dirichlet Process (DP) random cess is proportional to the similarity between the measure with concentration γ and base measure H. source and destination states. This augmenta- The actual transition distribution, πj, from state j, is drawn tion restores conditional conjugacy and admits a from another DP with concentration α and base measure simple Gibbs sampler.
    [Show full text]
  • Final Report (PDF)
    Foundation of Stochastic Analysis Krzysztof Burdzy (University of Washington) Zhen-Qing Chen (University of Washington) Takashi Kumagai (Kyoto University) September 18-23, 2011 1 Scientific agenda of the conference Over the years, the foundations of stochastic analysis included various specific topics, such as the general theory of Markov processes, the general theory of stochastic integration, the theory of martingales, Malli- avin calculus, the martingale-problem approach to Markov processes, and the Dirichlet form approach to Markov processes. To create some focus for the very broad topic of the conference, we chose a few areas of concentration, including • Dirichlet forms • Analysis on fractals and percolation clusters • Jump type processes • Stochastic partial differential equations and measure-valued processes Dirichlet form theory provides a powerful tool that connects the probabilistic potential theory and ana- lytic potential theory. Recently Dirichlet forms found its use in effective study of fine properties of Markov processes on spaces with minimal smoothness, such as reflecting Brownian motion on non-smooth domains, Brownian motion and jump type processes on Euclidean spaces and fractals, and Markov processes on trees and graphs. It has been shown that Dirichlet form theory is an important tool in study of various invariance principles, such as the invariance principle for reflected Brownian motion on domains with non necessarily smooth boundaries and the invariance principle for Metropolis algorithm. Dirichlet form theory can also be used to study a certain type of SPDEs. Fractals are used as an approximation of disordered media. The analysis on fractals is motivated by the desire to understand properties of natural phenomena such as polymers, and growth of molds and crystals.
    [Show full text]
  • Poisson Processes and Jump Diffusion Model
    Mälardalen University MT 1410 Analytical Finance I Teacher: Jan Röman, IMA Seminar 2005-10-05 Poisson Processes and Jump Diffusion Model Authors: Ying Ni, Cecilia Isaksson 13/11/2005 Abstract Besides the Wiener process (Brownian motion), there’s an another stochastic process that is very useful in finance, the Poisson process. In a Jump diffusion model, the asset price has jumps superimposed upon the familiar geometric Brownian motion. The occurring of those jumps are modelled using a Poisson process. This paper introduces the definition and properties of Poisson process and thereafter the Jump diffusion process which consists two stochastic components, the “white noise” created by Wiener process and the jumps generated by Poisson processes. MT1410 Seminar Group: Cecilia Isaksson; Ying Ni - 1 - 13/11/2005 Table of contents 1. Introduction …..………………………………………………………………….3 2. Poisson Processes ……………………………………………………………….4 2.1 Lévy Processes, Wiener Processes & Poisson Processes ……………………….4 2.2 The Markov Property of Poisson Processes ……………………………………..6 2.2 Applications of Poisson Processes in Finance……………………………………..8 3. The Jump Diffusion Model …………………………………………………….9 3.1 The model…………………………………………………………………………..9 3.2 Practical problem………………………………………………………………….10 4. Conclusion ………………………………………………………………………11 5. References ………………………………………………………………………..12 MT1410 Seminar Group: Cecilia Isaksson; Ying Ni - 2 - 13/11/2005 1. Introduction In option pricing theory, the geometric Brownian Motion is the most frequently used model for the price dynamic of an underlying asset. However, it is argued that this model fails to capture properly the unexpected price changes, called jumps. Price jumps are important because they do exist in the market. A more realistic model should therefore also take jumps into account. Price jumps are in general infrequent events and therefore the number of those jumps can be modelled by a Poisson processes.
    [Show full text]
  • STRONGLY VERTEX-REINFORCED JUMP PROCESS on a COMPLETE GRAPH Olivier Raimond, Tuan-Minh Nguyen
    STRONGLY VERTEX-REINFORCED JUMP PROCESS ON A COMPLETE GRAPH Olivier Raimond, Tuan-Minh Nguyen To cite this version: Olivier Raimond, Tuan-Minh Nguyen. STRONGLY VERTEX-REINFORCED JUMP PROCESS ON A COMPLETE GRAPH. 2018. hal-01894369 HAL Id: hal-01894369 https://hal.archives-ouvertes.fr/hal-01894369 Preprint submitted on 12 Oct 2018 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. STRONGLY VERTEX-REINFORCED JUMP PROCESS ON A COMPLETE GRAPH OLIVIER RAIMOND AND TUAN-MINH NGUYEN Abstract. The aim of our work is to study vertex-reinforced jump processes with super-linear weight function w(t) = tα, for some α > 1. On any complete graph G = (V, E), we prove that there is one vertex v ∈ V such that the total time spent at v almost surely tends to infinity while the total time spent at the remaining vertices is bounded. Contents 1. Introduction 1 2. Preliminary notations and remarks 3 3. Dynamics of the occupation measure process 4 4. Convergence to equilibria 10 5. Non convergence to unstable equilibria 14 5.1. Attraction towards the unstable manifold. 14 5.2. Avoiding repulsive traps 16 5.3.
    [Show full text]
  • Arxiv:1802.06520V2 [Q-Fin.PR] 15 Sep 2018 [ ] Value of Spectral Domain and Exclude the Information Outside the Value
    Pricing Options with Exponential Lévy Neural Network a, Jeonggyu Huh ∗ aSchool of Computational Sciences, Korea Institute for Advanced Study, Seoul 02455, Republic of Korea Abstract In this paper, we propose the exponential Lévy neural network (ELNN) for option pricing, which is a new non- parametric exponential Lévy model using artificial neural networks (ANN). The ELNN fully integrates the ANNs with the exponential Lévy model, a conventional pricing model. So, the ELNN can improve ANN-based models to avoid several essential issues such as unacceptable outcomes and inconsistent pricing of over-the-counter prod- ucts. Moreover, the ELNN is the first applicable non-parametric exponential Lévy model by virtue of outstanding researches on optimization in the field of ANN. The existing non-parametric models are rather not robust for application in practice. The empirical tests with S&P 500 option prices show that the ELNN outperforms two parametric models, the Merton and Kou models, in terms of fitting performance and stability of estimates. Keywords: exponential Lévy model; artificial neural network; non-parametric model; option pricing JEL classification: C45, G13 1. Introduction A Lévy process is a stochastic process with independent and stationary increments, roughly speaking, which is a jump-diffusion process generalized so that its sample paths allow an infinite number of jumps on a finite time interval. For a long time, it has been widely employed for option pricing to overcome limitations of the Black-Scholes model [7], which is inconsistent with several well-known facts such as volatility skews, heavy tails of return distributions and so on (cf. Hull and Basu [17]).
    [Show full text]
  • Likelihood Evaluation of Jump-Diffusion Models Using
    Likelihood Evaluation of Jump-Diffusion Models Using Deterministic Nonlinear Filters∗ Jean-François Béginy;1 and Mathieu Boudreault2 1Simon Fraser University 2Université du Québec à Montréal This version: July 2, 2019 First draft: May 22, 2019 Abstract In this study, we develop a deterministic nonlinear filtering algorithm based on a high- dimensional version of Kitagawa (1987) to evaluate the likelihood function of models that allow for stochastic volatility and jumps whose arrival intensity is also stochastic. We show numerically that the deterministic filtering method is precise and much faster than the particle filter, in addition to yielding a smooth function over the parameter space. We then find the maximum likelihood estimates of various models that include stochastic volatility, jumps in the returns and variance, and also stochastic jump arrival intensity with the S&P 500 daily returns. During the Great Recession, the jump arrival intensity increases significantly and contributes to the clustering of volatility and negative returns. Keywords: Discrete nonlinear filtering; Particle filter; Sequential importance resampling; Stochastic volatility; Maximum likelihood estimation. arXiv:1906.04322v2 [q-fin.ST] 29 Jun 2019 ∗For their useful comments, the authors would like to thank Maciej Augustyniak, Geneviève Gauthier, Jonathan Grégoire, Frédéric Godin, as well as the seminar participants at the 2019 Quantact Workshop on Financial Mathemat- ics and the 23rd International Congress on Insurance: Mathematics and Economics. Bégin wishes to acknowledge the financial support of the National Science and Engineering Research Council of Canada (NSERC), Simon Fraser University and the NVIDIA Corporation. Boudreault would like to thank the financial support of NSERC. yCorresponding author. 1 Introduction and Motivation Over the last thirty years, jump-diffusion models (with stochastic volatility) have become in- creasingly popular for their ability to replicate important stylized facts such as heavy tails, no autocorrelation in the returns, volatility clustering, etc.
    [Show full text]
  • An Essay on the General Theory of Stochastic Processes
    Probability Surveys Vol. 3 (2006) 345–412 ISSN: 1549-5787 DOI: 10.1214/154957806000000104 An essay on the general theory of stochastic processes∗ Ashkan Nikeghbali ETHZ Departement Mathematik, R¨amistrasse 101, HG G16 Z¨urich 8092, Switzerland e-mail: [email protected] Abstract: This text is a survey of the general theory of stochastic pro- cesses, with a view towards random times and enlargements of filtrations. The first five chapters present standard materials, which were developed by the French probability school and which are usually written in French. The material presented in the last three chapters is less standard and takes into account some recent developments. AMS 2000 subject classifications: Primary 05C38, 15A15; secondary 05A15, 15A18. Keywords and phrases: General theory of stochastic processes, Enlarge- ments of filtrations, Random times, Submartingales, Stopping times, Hon- est times, Pseudo-stopping times. Received August 2005. Contents 1 Introduction................................. 346 Acknowledgements .. .. .. .. .. .. .. .. .. .. .. .. .. 347 2 Basicnotionsofthegeneraltheory . 347 2.1 Stoppingtimes ............................ 347 2.2 Progressive, Optional and Predictable σ-fields. 348 2.3 Classificationofstoppingtimes . 351 2.4 D´ebuttheorems. .. .. .. .. .. .. .. .. .. .. .. 353 3 Sectiontheorems .............................. 355 4 Projectiontheorems . .. .. .. .. .. .. .. .. .. .. .. 357 4.1 The optional and predictable projections . 357 4.2 Increasingprocessesandprojections . 360 4.3 Random measures on
    [Show full text]
  • Convergence of Jump Processes with Stochastic Intensity to Brownian Motion with Inert Drift
    Submitted to Bernoulli Convergence of jump processes with stochastic intensity to Brownian motion with inert drift CLAYTON BARNES1 1E-mail: [email protected] Consider a random walker on the nonnegative lattice, moving in continuous time, whose positive transition in- tensity is proportional to the time the walker spends at the origin. In this way, the walker is a jump process with a stochastic and adapted jump intensity. We show that, upon Brownian scaling, the sequence of such processes converges to Brownian motion with inert drift (BMID). BMID was introduced by Frank Knight in 2001 and generalized by White in 2007. This confirms a conjecture of Burdzy and White in 2008 in the one-dimensional setting. Keywords: Brownian motion; Discrete Approximation; Random Walk; Local Time 1. Introduction Brownian motion with inert drift (BMID) is a process X that satisfies the SDE dX = dB + dL + KLdt; (1) where K ≥ 0 is a constant and L is the local time of X at zero. This process behaves as a Brownian motion away from the origin but has a drift proportional to its local time at zero. Note that such a process is not Markovian because its drift depends on the past history. See Figure1 for sample path comparisons between reflected Brownian motion and BMID. BMID can be constructed path-by-path from a standard Brownian motion via the employment of a Skorohod map. This is discussed in more −n detail in Section2. We consider continuous time processes (Xn;Vn) on 2 N×R such that for K ≥ 0, n (i) Vn(t) := K2 · Leb(0 < s < t : Xn(s) = 0) is the scaled time Xn spends at the origin.
    [Show full text]