Bidirectional Synaptic Plasticity in the Cerebellum-Like Mammalian Dorsal Cochlear Nucleus

Total Page:16

File Type:pdf, Size:1020Kb

Bidirectional Synaptic Plasticity in the Cerebellum-Like Mammalian Dorsal Cochlear Nucleus Bidirectional synaptic plasticity in the cerebellum-like mammalian dorsal cochlear nucleus Kiyohiro Fujino* and Donata Oertel† Department of Physiology, University of Wisconsin, 1300 University Avenue, Madison, WI 53706 Edited by A. James Hudspeth, The Rockefeller University, New York, NY, and approved November 13, 2002 (received for review September 3, 2002) The dorsal cochlear nucleus integrates acoustic with multimodal depending on the solutions. Series resistance was compensated to sensory inputs from widespread areas of the brain. Multimodal Ͼ95%. Stimulus generation, data acquisition, and analyses were inputs are brought to spiny dendrites of fusiform and cartwheel performed with PCLAMP software (Axon Instruments). Cells were cells in the molecular layer by parallel fibers through synapses that held at Ϫ80 mV. Shocks (5- to 100-V amplitude, 100-␮s duration) are subject to long-term potentiation and long-term depression. were generated by a stimulator (Master-8, AMPI, Jerusalem) and Acoustic cues are brought to smooth dendrites of fusiform cells in delivered through a saline-filled glass pipette (3–5 ␮m in diameter) the deep layer by auditory nerve fibers through synapses that do to the molecular or deep layer between 100 and 200 ␮m from the not show plasticity. Plasticity requires Ca2؉-induced Ca2؉ release; recording site. Stimulus strength was set to evoke the largest its sensitivity to antagonists of N-methyl-D-aspartate and metabo- possible excitatory postsynaptic current (EPSC). EPSCs were mon- tropic glutamate receptors differs in fusiform and cartwheel cells. itored at 0.1 Hz. Cells’ input resistances were monitored by Ϫ10-mV voltage steps. Potentiation and depression were quantified uditory nerve fibers bring acoustic information to the as the ratio of the mean amplitude of EPSCs over a 5-min period Acochlear nucleus and feed it into several parallel pathways between 25 and 30 min or 55 and 60 min, referred to as 30 or 60 min that ascend through the brainstem. Pathways through the dorsal after the conditioning stimulus, respectively, and the mean ampli- cochlear nucleus (DCN) are thought to detect spectral cues for tude before the conditioning stimuli. Cells were excluded from Ͼ localizing sounds monaurally (1). Those through the ventral analysis if there was 20% change of input resistance or if the mean amplitudes of EPSCs for every minute during the control period cochlear nucleus (VCN) encode spectral and temporal charac- NEUROSCIENCE Ͼ teristics that allow sounds to be localized in the horizontal plane, varied by 10% from the overall mean amplitude during the through binaural circuits, and recognized. control period. In plots from individual cells (ordinates in pA), each Ϯ The DCN resembles the cerebellum, cartwheel cells being point represents the mean SE for six consecutive responses over homologues of cerebellar Purkinje cells (2). Fusiform cells 1 min. Plots of normalized responses (ordinate is %EPSC) show Ϯ project to the inferior colliculus. Granule cells in the vicinity of mean SE of responses from different cells. Numerical data are Ϯ the cochlear nuclei are innervated by diverse regions of the presented as mean SD with number of cells tested. brain, including the dorsal column nuclei (1), vestibular periph- In most experiments, the pipettes contained (in mM) 113 ery (3), and auditory nuclei (4, 5). Their unmyelinated axons, K-gluconate, 4.5 MgCl2, 14 Tris2-phosphocreatine, 9 Hepes, 0.1 parallel fibers, contact spiny dendrites of fusiform and cartwheel EGTA, 4 Na2-ATP, and 0.3 Tris-GTP (pH adjusted to 7.25 with cells. Myelinated auditory nerve fibers contact smooth basal KOH). In some experiments, 0.1% biocytin was added to the dendrites of fusiform cells. The DCN resembles the electrosen- pipette. In experiments in which the intracellular calcium con- sory lobes in fishes even more closely (6, 7). centration was strongly buffered, pipettes contained (in mM) 108 In cerebellar circuits, the gain of one of two converging K-gluconate, 4.5 MgCl2, 14 Tris2-phosphocreatine, 9 Hepes, 9 systems of inputs varies as a function of activity. Long-term EGTA, 4 Na2-ATP, and 0.3 Tris-GTP (pH 7.25). Recordings in depression (LTD) at parallel fiber synapses in cerebellar Pur- Fig. 1 A–C were made with pipettes filled with a CsCl-based ͞ ͞ ͞ ͞ ͞ kinje cells evoked by coincident excitation through parallel fiber solution (in mM): 140 CsCl 1 KCl 1 NaCl 3 MgCl2 9 Hepes 10 ͞ ͞ and climbing fiber synapses plays a role in coordination and EGTA 2 QX-314 0.1% biocytin; pH was adjusted to 7.25 with motor learning (8). Long-term potentiation (LTP) and LTD at CsOH. Ryanodine and thapsigargin (Calbiochem) were dis- parallel fiber synapses are evoked in electric fishes by convergent solved in DMSO, resulting in a 0.1% concentration of DMSO in excitation by parallel fibers and sensory afferents to compensate the pipette. Ten millimolar caffeine replaced 5 mM K-gluconate for an animal’s own signals in localizing external sources (9). We in the pipette solution. show that principal cells of the DCN combine multimodal inputs The normal external saline contained (in mM): 130 NaCl, 3 KCl, through parallel fibers whose strength is modulated by activity 1.2 KH2PO4, 2.4 CaCl2, 1.3 MgSO4, 20 NaHCO3, 3 Hepes, and 10 ͞ with invariant acoustic input through auditory nerve fibers. glucose; saturated with 95% O2 5% CO2; pH adjusted to 7.4 with NaOH. To prevent precipitation, LY341495 (Tocris) was added to ͞ ͞ ͞ Methods a Hepes-buffered saline (in mM): 138 NaCl 4.2 KCl 2.4 CaCl2 1.3 ͞ ͞ Coronal slices (200 ␮m) containing the DCN were prepared MgCl2 10 Hepes 10 glucose; saturated with 100% O2;pH7.4. from ICR mice (Harlan–Sprague–Dawley) between 18 and 20 Glycinergic and GABAAergic inhibitory inputs were routinely ␮ ␮ days old with an oscillating tissue slicer (VT1000S, Leica Mi- blocked by 1 M strychnine and 50 M picrotoxin. DNQX crosystems, Nussloch, Germany). Slices were held in a 300-␮l (6,7-dinitroquinoxaline-2,3-dione), APV (2-amino-5-phosphono- chamber that was superfused at 3–5 ml͞min with oxygenated valeric acid), transACPD (t-ACPD, Tocris, Ellisville, MO), and saline at Ϸ33°C. Experiments were done in accordance with the protocols and guidelines of the Animal Care and Use Committee at the University of Wisconsin, Madison. This paper was submitted directly (Track II) to the PNAS office. Whole-cell patch-clamp recordings were generally made with 3- Abbreviations: APV, 2-amino-5-phosphonovaleric acid; DCN, dorsal cochlear nucleus; ⍀ DNQX, 6,7-dinitroquinoxaline-2,3-dione; EPSC, excitatory postsynaptic current; LTD, long- to 5-M pipettes filled with a K-gluconate-based solution. Voltages term depression; LTP, long-term potentiation; mGluR, metabotropic glutamate receptor; and currents were measured through an Axopatch 200B amplifier, NMDA, N-methyl-D-aspartate. low-pass filtered at 5 kHz and digitized at 16.7–25 kHz through a *Present address: Department of Otolaryngology–Head and Neck Surgery, Graduate Digidata 1200 interface (Axon Instruments, Foster City, CA). School of Medicine, Kyoto University, Kyoto 606-8507, Japan. Voltages were corrected for junction potentials, Ϫ5toϪ12 mV †To whom correspondence should be addressed. E-mail: [email protected]. www.pnas.org͞cgi͞doi͞10.1073͞pnas.0135345100 PNAS ͉ January 7, 2003 ͉ vol. 100 ͉ no. 1 ͉ 265–270 Downloaded by guest on September 30, 2021 tification of cells was based on electrophysiological criteria developed previously (10–12). Depolarizing current evoked trains of uniform action potentials in fusiform and complex action potentials in cartwheel cells. The resting potentials were Ϫ58.6 Ϯ 4.1 mV in fusiform cells (n ϭ 195) and Ϫ64.6 Ϯ 11.1 mV in cartwheel cells (n ϭ 181). Three excitatory synaptic responses were compared: (i) par- allel fiber inputs to apical dendrites of fusiform cells, (ii) auditory nerve inputs to basal dendrites of fusiform cells, and (iii) parallel fiber inputs to cartwheel cells. The deep layer contains axons from two possible sources of excitation, auditory nerve fibers and T stellate cells (13). For simplicity, we will attribute all responses to stimulation in the deep layer to auditory nerve fibers because no heterogeneity was detected. EPSCs were mediated through N-methyl-D-aspartate (NMDA) and AMPA receptors. Fifty-micromolar APV, an antagonist of NMDA receptors, decreased the amplitude and duration of synaptic currents measured at depolarized potentials. The APV- insensitive currents were blocked by 20 ␮M DNQX, indicating that they are mediated through AMPA receptors (Fig. 1 A–C). TransACPD (t-ACPD), an agonist for group 1 and 2 metabo- tropic glutamate receptors (mGluRs) (14), and L-AP4, an agonist for group 3 mGluRs (15), were used to test for the contribution of mGluRs to synaptic transmission between par- allel fibers and their fusiform and cartwheel cell targets (14, 16, 17). Applications were made while the holding current and the amplitude of EPSCs evoked by stimulation of parallel fibers were monitored. Dose–response relationships for t-ACPD were sig- moid, saturating at Ϸ100 ␮M. At 200 ␮M, t-ACPD shifted the holding current inwardly in fusiform (70.3 Ϯ 20.1 pA, n ϭ 10; Fig. Fig. 1. Glutamatergic receptors of the AMPA, NMDA, and mGluR subtypes 1D) and cartwheel cells (67.5 Ϯ 20.9 pA, n ϭ 8; Fig. 1F). In contribute to synaptic responses in fusiform and cartwheel cells. (A)Ina cartwheel cells, t-ACPD also decreased the amplitude of the fusiform cell, EPSCs were evoked by stimulating the molecular layer while the Ϯ ϭ Ϫ ϩ EPSCs (32.1 6.1% decrease, n 8; Fig. 1F). The actions of holding potential of the cell was varied between 80 and 40 mV in 20-mV ␮ steps. A slow component that was prominent at depolarizing holding poten- t-ACPD had an EC50, when fit with a Hill function, near 25 M tials was blocked by 50 ␮M APV, indicating that it was mediated through for all these effects (fusiform holding current 28.3 ␮M; cartwheel NMDA receptors.
Recommended publications
  • Ultrastructural Study of the Granule Cell Domain of the Cochlear Nucleus in Rats: Mossy Fiber Endings and Their Targets
    THE JOURNAL OF COMPARATIVE NEUROLOGY 369~345-360 ( 1996) Ultrastructural Study of the Granule Cell Domain of the Cochlear Nucleus in Rats: Mossy Fiber Endings and Their Targets DIANA L. WEEDMAN, TAN PONGSTAPORN, AND DAVID K. RYUGO Center for Hearing Sciences, Departments of Otolaryngoloby-Head and Neck Surgery and Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland 2 1205 ABSTRACT The principal projection neurons of the cochlear nucleus receive the bulk of their input from the auditory nerve. These projection neurons reside in the core of the nucleus and are surrounded by an external shell, which is called the granule cell domain. Interneurons of the cochlear granule cell domain are the target for nonprimary auditory inputs, including projections from the superior olivary complex, inferior colliculus, and auditory cortex. The granule cell domain also receives projections from the cuneate and trigeminal nuclei, which are first-order nuclei of the somatosensory system. The cellular targets of the nonprimary projections are mostly unknown due to a lack of information regarding postsynaptic profiles in the granule cell areas. In the present paper, we examined the synaptic relationships between a heterogeneous class of large synaptic terminals called mossy fibers and their targets within subdivisions of the granule cell domain known as the lamina and superficial layer. By using light and electron microscopic methods in these subdivisions, we provide evidence for three different neuron classes that receive input from the mossy fibers: granule cells, unipolar brush cells, and a previously undescribed class called chestnut cells. The distinct synaptic relations between mossy fibers and members of each neuron class further imply fundamentally separate roles for processing acoustic signals.
    [Show full text]
  • SYNAPTIC REGULATION of TWO INTERNEURON MICROCIRCUITS in CEREBELLUM-LIKE STRUCTURES by Hsin-Wei Lu a DISSERTA
    PRE- AND POST- SYNAPTIC REGULATION OF TWO INTERNEURON MICROCIRCUITS IN CEREBELLUM-LIKE STRUCTURES By Hsin-Wei Lu A DISSERTATION Presented to the NeurosCience Graduate Program and the Oregon Health & ScienCe University School of MediCine in partial fulfillment of the requirements for the degree of DoCtor of Philosophy June 2016 TABLE OF CONTENTS ACKNOWLEDGEMENTS…………………………………………………………………………………………………iii ABSTRACT…………………………………………………………………………………………………………………… iv LIST OF FIGURES ………………………………………………………………………………………………………… vi LIST OF TABLES…………………………………………………………………………………………………………... vii INTRODUCTION…………………………………………………………………………………………………………… 1 CHAPTER 1. SPONTANEOUS SPIKIG DEFINES CONVERGENT RATIOS IN AN INHIBITORY CIRCUIT……………………………………………………………………………………………………………………… 14 AbstraCt …………………………………………………………………………………………………………… 15 Significance Statement …………………………………………………………………………………….. 16 IntroduCtion …………………………………………………………………………………………………….. 16 Methods …………………………………………………………………………………………………………... 18 Results …………………………………………………………………………………………………………….. 24 Rapid short-term depression at cartwheel cell synapse …………………………................. 24 Single-pool vesicle deletion model is unable to explain synaptic depression……….....25 Two-pool vesicle depletion model accounts for synaptic depression …………………... 26 Ca2+-dependent recovery dose not mediate transmission during depression ............. 30 Low-Pr pool dominates release during spontaneous activity……………………………… 31 Small convergence ratio in the cartwheel-fusiform circuit ………………………………… 32 Size of effective convergence
    [Show full text]
  • Essential Role of Somatic Kv2 Channels in High-Frequency Firing in Cartwheel Cells of the Dorsal Cochlear Nucleus
    Research Article: New Research | Neuronal Excitability Essential Role of Somatic Kv2 Channels in High-Frequency Firing in Cartwheel Cells of the Dorsal Cochlear Nucleus https://doi.org/10.1523/ENEURO.0515-20.2021 Cite as: eNeuro 2021; 10.1523/ENEURO.0515-20.2021 Received: 30 November 2020 Revised: 23 March 2021 Accepted: 24 March 2021 This Early Release article has been peer-reviewed and accepted, but has not been through the composition and copyediting processes. The final version may differ slightly in style or formatting and will contain links to any extended data. Alerts: Sign up at www.eneuro.org/alerts to receive customized email alerts when the fully formatted version of this article is published. Copyright © 2021 Irie This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license, which permits unrestricted use, distribution and reproduction in any medium provided that the original work is properly attributed. 1 1. Manuscript Title 2 Essential Role of Somatic Kv2 Channels in High-Frequency Firing in Cartwheel Cells of the Dorsal 3 Cochlear Nucleus. 4 2. Abbreviated Title 5 Somatic Kv2-mediated Regulation of Excitability in DCN 6 7 3. Authors 8 Tomohiko Irie 9 10 Affiliation 11 Division of Pharmacology, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, 12 Kawasaki City, Kanagawa, 210-9501, Japan. 13 14 4. Author Contributions 15 TI Designed Research; TI Performed Research; TI Wrote the paper 16 17 5. Correspondence should be addressed to Tomohiko Irie, Tel.: +81 44 270 6600, E-mail: 18 [email protected] 19 20 6.
    [Show full text]
  • Glycine Immunoreactivity of Multipolar Neurons in the Ventral Cochlear Nucleus Which Project to the Dorsal Cochlear Nucleus
    THE JOURNAL OF COMPARATIVE NEUROLOGY 408:515–531 (1999) Glycine Immunoreactivity of Multipolar Neurons in the Ventral Cochlear Nucleus Which Project to the Dorsal Cochlear Nucleus JOHN R. DOUCET,* ADAM T. ROSS, M. BOYD GILLESPIE, AND DAVID K. RYUGO Center for Hearing Sciences, Departments of Otolaryngology-Head and Neck Surgery and Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205 ABSTRACT Certain distinct populations of neurons in the dorsal cochlear nucleus are inhibited by a neural source that is responsive to a wide range of acoustic frequencies. In this study, we examined the glycine immunoreactivity of two types of ventral cochlear nucleus neurons (planar and radiate) in the rat which project to the dorsal cochlear nucleus (DCN) and thus, might be responsible for this inhibition. Previously, we proposed that planar neurons provided a tonotopic and narrowly tuned input to the DCN, whereas radiate neurons provided a broadly tuned input and thus, were strong candidates as the source of broadband inhibition (Doucet and Ryugo [1997] J. Comp. Neurol. 385:245–264). We tested this idea by combining retrograde labeling and glycine immunohistochemical protocols. Planar and radiate neurons were first retrogradely labeled by injecting biotinylated dextran amine into a restricted region of the dorsal cochlear nucleus. The labeled cells were visualized using streptavidin conjugated to indocarbocyanine (Cy3), a fluorescent marker. Sections that contained planar or radiate neurons were then processed for glycine immunocytochemistry using diaminobenzidine as the chromogen. Immunostaining of planar neurons was light, comparable to that of excitatory neurons (pyramidal neurons in the DCN), whereas immunostaining of radiate neurons was dark, comparable to that of glycinergic neurons (cartwheel cells in the dorsal cochlear nucleus and principal cells in the medial nucleus of the trapezoid body).
    [Show full text]
  • The Neuropeptide Cerebellin Is a Marker for Two Similar Neuronal
    Proc. Natl. Acad. Sci. USA Vol. 84, pp. 8692-8696, December 1987 Neurobiology The neuropeptide cerebellin is a marker for two similar neuronal circuits in rat brain (cartwheel neurons/cochlear nuclei/immunocytochemistry/radioimmunoassay/Purkinje cells) ENRICO MUGNAINI* AND JAMES 1. MORGANt *Laboratory of Neuromorphology, Box U-154, The University of Connecticut, Storrs, CT 06268; and tDepartment of Neuroscience, Roche Institute of Molecular Biology, Roche Research Center, Nutley, NJ 07110 Communicated by Sanford L. Palay, August 7, 1987 (received for review October 9, 1986) ABSTRACT We report here that the neuropeptide To extend the study of these two structures, we have cerebellin, a known marker of cerebellar Purkinje cells, has examined and compared the expression and the localization only one substantial extracerebellar location, the dorsal of the recently discovered neuropeptide cerebellin (17) in the cochlear nucleus (DCoN). By reverse-phase high-performance DCoN and the cerebellum by radioimmunoassay (RIA) liquid chromatography and radioimmunoassay, cerebellum combined with reverse-phase high-performance liquid chro- and DCoN in rat were found to contain similar concentrations matography (HPLC) and immunocytochemistry. Cerebellin ofthis hexadecapeptide. Immunocytochemistry with our rabbit has been demonstrated previously to be a marker of cere- antiserum C1, raised against synthetic cerebellin, revealed that bellar Purkinje cells (17, 18), although its mode ofdistribution cerebellin-like immunoreactivity in the cerebellum is localized throughout the cerebellum was not explored. exclusively to Purkinje cells, while in the DCoN, it is found primarily in cartwheel cells and in the basal dendrites of MATERIALS AND METHODS pyramidal neurons. Some displaced Purkinje cells were also stained. Although cerebellum and DCoN receive their inputs Biochemistry.
    [Show full text]
  • Bidirectional Synaptic Plasticity in the Cerebellum-Like Mammalian Dorsal Cochlear Nucleus
    Bidirectional synaptic plasticity in the cerebellum-like mammalian dorsal cochlear nucleus Kiyohiro Fujino* and Donata Oertel† Department of Physiology, University of Wisconsin, 1300 University Avenue, Madison, WI 53706 Edited by A. James Hudspeth, The Rockefeller University, New York, NY, and approved November 13, 2002 (received for review September 3, 2002) The dorsal cochlear nucleus integrates acoustic with multimodal depending on the solutions. Series resistance was compensated to sensory inputs from widespread areas of the brain. Multimodal Ͼ95%. Stimulus generation, data acquisition, and analyses were inputs are brought to spiny dendrites of fusiform and cartwheel performed with PCLAMP software (Axon Instruments). Cells were cells in the molecular layer by parallel fibers through synapses that held at Ϫ80 mV. Shocks (5- to 100-V amplitude, 100-␮s duration) are subject to long-term potentiation and long-term depression. were generated by a stimulator (Master-8, AMPI, Jerusalem) and Acoustic cues are brought to smooth dendrites of fusiform cells in delivered through a saline-filled glass pipette (3–5 ␮m in diameter) the deep layer by auditory nerve fibers through synapses that do to the molecular or deep layer between 100 and 200 ␮m from the not show plasticity. Plasticity requires Ca2؉-induced Ca2؉ release; recording site. Stimulus strength was set to evoke the largest its sensitivity to antagonists of N-methyl-D-aspartate and metabo- possible excitatory postsynaptic current (EPSC). EPSCs were mon- tropic glutamate receptors differs in fusiform and cartwheel cells. itored at 0.1 Hz. Cells’ input resistances were monitored by Ϫ10-mV voltage steps. Potentiation and depression were quantified uditory nerve fibers bring acoustic information to the as the ratio of the mean amplitude of EPSCs over a 5-min period Acochlear nucleus and feed it into several parallel pathways between 25 and 30 min or 55 and 60 min, referred to as 30 or 60 min that ascend through the brainstem.
    [Show full text]
  • Examination of Tinnitus: Study of Synapses on Fusiform Cells in the Dorsal Cochlear Nucleus Stephanie Bouanak John Carroll University, [email protected]
    John Carroll University Carroll Collected Senior Honors Projects Theses, Essays, and Senior Honors Projects Fall 2014 Examination of Tinnitus: Study of Synapses on Fusiform Cells in the Dorsal Cochlear Nucleus Stephanie BouAnak John Carroll University, [email protected] Follow this and additional works at: http://collected.jcu.edu/honorspapers Recommended Citation BouAnak, Stephanie, "Examination of Tinnitus: Study of Synapses on Fusiform Cells in the Dorsal Cochlear Nucleus" (2014). Senior Honors Projects. 58. http://collected.jcu.edu/honorspapers/58 This Honors Paper/Project is brought to you for free and open access by the Theses, Essays, and Senior Honors Projects at Carroll Collected. It has been accepted for inclusion in Senior Honors Projects by an authorized administrator of Carroll Collected. For more information, please contact [email protected]. 1 Examination of Tinnitus: Study of Synapses on Fusiform Cells in the Dorsal Cochlear Nucleus Stephanie Bou-Anak and Dr. James Kaltenbach John Carroll University- Cleveland Clinic PS497N Fall 2014 2 Abstract The dorsal cochlear nucleus (DCN) is a multimodal processing station found at the junction of the auditory nerve and brainstem medulla. Tinnitus-induced neuronal hyperactivity has been observed in the DCN and, thus, suggested to be the lowest region of the auditory nerve with such hyperactivity. The main integrative units of the DCN are the fusiform cells, receiving and processing inputs from auditory sources before transmitting information to higher auditory pathways. Neural hyperactivity is induced in fusiform cells of the DCN following intense sound exposure. Researchers suggest that fusiform cells may be implicated as major generators of noise-induced tinnitus. Despite previous research in describing fusiform cells and pharmacological identity of their synaptic inputs, information on their three-dimensional organization and ultrastructure is incomplete.
    [Show full text]
  • Intracellular Response Properties of Units in the Dorsal Cochlear Nucleus of Unanesthetized Decerebrate Gerbil
    Intracellular Response Properties of Units in the Dorsal Cochlear Nucleus of Unanesthetized Decerebrate Gerbil JIANG DING 1 AND HERBERT F. VOIGT 1,2 1Department of Biomedical Engineering, 2Department of Otolaryngology, and Hearing Research Center, Boston University, Boston Massachusetts 02215-2407 Ding, Jiang and Herbert F. Voigt. Intracellular response properties cochlea and conveyed by the auditory nerve. The CN is of units in the dorsal cochlear nucleus of unanesthetized decerebrate subdivided into dorsal (DCN), anteroventral, and postero- gerbil. J. Neurophysiol. 77: 2549±2572, 1997. Intracellular recording ventral subnuclei on the basis of anatomic and cytoarchitec- experiments on the dorsal cochlear nuclei of unanesthetized decere- tural differences (Lorente de No 1981; Osen 1969; RamoÂny brate gerbils were conducted. Acceptable recordings were those in which resting potentials were 050 mV or less and action potentials Cajal 1909). Each subnucleus receives similar tonotopically (APs) were ¢40 mV. Responses to short-duration tones and noise, arranged auditory nerve input (Brown and Ledwith 1990; and to current pulses delivered via recording electrodes, were ac- Osen 1969; Rose et al. 1960) and projects to higher auditory quired. Units were classi®ed according to the response map scheme centers via different pathways (Adams 1979; Adams and (types I±IV). Ninety-two acceptable recordings were made. Most Warr 1976; Cant and Gaston 1982; Osen 1972; Ryugo and units had simple APs (simple-spiking units); nine units had both Willard 1985). simple and complex APs, which are bursts of spikes embedded on The DCN is distinguished from other cochlear subnuclei slow, transient depolarizations (complex-spiking units). Of 83 simple- by its layered structure, variety of morphologically different spiking units, 46 were classi®ed as follows: type I/III (9 units), type neurons, intrinsic neural circuitry, and diverse physiology.
    [Show full text]
  • VILNIUS UNIVERSITY Dalius Krunglevičius STDP LEARNING of SPATIAL and SPATIOTEMPORAL PATTERNS Doctoral Dissertation Physical
    VILNIUS UNIVERSITY Dalius Krunglevičius STDP LEARNING OF SPATIAL AND SPATIOTEMPORAL PATTERNS Doctoral Dissertation Physical Sciences, Informatics (09P) Vilnius, 2016 Dissertation work was carried out at the Faculty of Mathematics and Informatics of Vilnius University from 2011 to 2015. Scientific Supervisor Prof. Dr. habil. Šarūnas Raudys (Vilnius University, Physical Sciences, Informatics - 09P) VILNIAUS UNIVERSITETAS Dalius Krunglevičius STDP MOKYMO TAIKYMAS ERDVINĖMS BEI ERDVINĖMS- LAIKINĖMS STRUKTŪROMS ATPAŽINTI Daktaro disertacija Fiziniai mokslai, informatika (09P) Vilnius, 2016 Disertacija rengta 2011-2015 metais Vilniaus universiteto Matematikos ir informatikos fakultete. Mokslinis vadovas prof. habil. dr. Šarūnas Raudys (Vilniaus universitetas, fiziniai mokslai, informatika - 09P) Acknowledgements I’m sincerely grateful to professor Šarunas Raudys for his support, help and belief in the significance of my work. I would like to thank professor Adam Czajka for providing me with data-sets for my experiments and Geoff Vasil for helping with the editing. And my deepest gratitude goes to my wife, Gražina, without whose patience and support this dissertation would have never been written. 5 Table of Contents Notation .............................................................................................................. 9 Introduction ....................................................................................................... 10 Motivation and the Field of Research ..........................................................
    [Show full text]
  • Spike Timing in Pyramidal Cells of the Dorsal Cochlear Nucleus
    Spike Timing in Pyramidal Cells of the Dorsal Cochlear Nucleus Sarah Elizabeth Street A dissertation submitted to the faculty of the University of North Carolina at Chapel Hill in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Department of Cell and Molecular Physiology Chapel Hill 2007 Approved by: Paul B. Manis Robert Sealock Robert Rosenberg Paul Tiesinga Benjamin Philpot Abstract Sarah Street: Spike Timing in Pyramidal Cells of the Dorsal Cochlear Nucleus (Under the direction of Paul B. Manis) The cochlear nucleus is the termination point for all axons of the auditory nerve. In addition to input from the auditory nerve, the dorsal cochlear nucleus (DCN) receives input from other sensory systems. The principal neurons of the DCN, the pyramidal cells, process information from both the auditory and non-auditory inputs and relay this information to the inferior colliculus. While it is known that pyramidal cells can use spike timing to encode some auditory information such as frequency modulation, these neurons are usually described in terms of average rate. This study examines the spike timing characteristics of DCN pyramidal cells. We first investigated the spike timing characteristics of pyramidal cells by presenting the cells with Gaussian distributed white noise currents. In response to such stimuli, pyramidal cells fired trains of action potentials with precisely timed spikes. In addition, when an inhibitory event, such as an IPSP was added at the midpoint of the stimulus, the spike times became more precise after the IPSP than they were without the inhibitory event. Intrinsic conductances can shape the output of neurons.
    [Show full text]
  • Bell Et Al Annual
    ANRV346-NE31-01 ARI 14 May 2008 6:50 Cerebellum-Like Structures and Their Implications for Cerebellar Function Curtis C. Bell,1 Victor Han,2 and Nathaniel B. Sawtell1 1Neurological Sciences Institute, Oregon Health and Science University, Beaverton, Oregon 97006; email: [email protected], [email protected] 2Oregon Regional Primate Center, Oregon Health and Science University, Beaverton, Oregon 97006; email: [email protected] Annu. Rev. Neurosci. 2008. 31:1–24 Key Words First published online as a Review in Advance on by University of Utah - Marriot Library on 08/20/08. For personal use only. forward model, synaptic plasticity, electric fish, cerebellum February 14, 2008 Annu. Rev. Neurosci. 2008.31:1-24. Downloaded from arjournals.annualreviews.org The Annual Review of Neuroscience is online at Abstract neuro.annualreviews.org The nervous systems of most vertebrates include both the cerebellum This article’s doi: and structures that are architecturally similar to the cerebellum. 10.1146/annurev.neuro.30.051606.094225 The cerebellum-like structures are sensory structures that receive Copyright c 2008 by Annual Reviews. input from the periphery in their deep layers and parallel fiber input All rights reserved in their molecular layers. This review describes these cerebellum- 0147-006X/08/0721-0001$20.00 like structures and compares them with the cerebellum itself. The cerebellum-like structures in three groups of fish act as adaptive sensory processors in which the signals conveyed by parallel fibers in the molecular layer predict the patterns of sensory input to the deep layers through a process of associative synaptic plasticity. Similarities between the cerebellum-like structures and the cerebellum suggest that the cerebellum may also generate predictions about expected sensory inputs or states of the system, as suggested also by clinical, experimental, and theoretical studies of the cerebellum.
    [Show full text]
  • Circuitry and Function of the Dorsal Cochlear Nucleus
    Circuitry and Function of the Dorsal Cochlear Nucleus Eric D. Young and Kevin A. Davis Department of Biomedical Engineering and Center for Hearing Sciences Johns Hopkins University, Baltimore, MD 21205 Running title: Circuitry and Function of the DCN To be published in Oertel, D., Popper, A.N., and Fay, R.R. (eds) Integrative Functions in The Mammalian Auditory Pathway New York: Springer-Verlag, 2001. Send Correspondence to: Eric D. Young, Ph.D. Department of Biomedical Engineering Johns Hopkins University 720 Rutland Avenue/505 Traylor Research Building Baltimore, MD 21205 (410) 955-3162 (work) (410) 955-1299 (FAX) [email protected] 1. Introduction In Chapter 2 of this volume, Smith and Spirou describe the wonderful complexity of the brainstem auditory system. This system forms a collection of parallel pathways which diverge at the first auditory synapse in the brainstem, in the cochlear nucleus (CN), and then converge again, at least in a gross anatomical sense, in the inferior colliculus. The CN is a well-studied collection of neural circuits that are diverse both in anatomical and physiological terms (reviewed by Cant 1992; Rhode and Greenberg 1992; Young 1998). These vary from the simplest system, the bushy cells of the ventral cochlear nucleus (VCN; see Yin, Chapter 4), to the most complex, in the dorsal cochlear nucleus (DCN). The DCN differs from other parts of the CN by having an extensive internal neuropil formed by groups of interneurons (Lorente de Nó 1981; Osen et al. 1990). As a result, the DCN makes significant changes in the auditory representation from its inputs to its outputs.
    [Show full text]