Brno University of Technology Attractive

Total Page:16

File Type:pdf, Size:1020Kb

Brno University of Technology Attractive BRNO UNIVERSITY OF TECHNOLOGY VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FACULTY OF INFORMATION TECHNOLOGY FAKULTA INFORMAČNÍCH TECHNOLOGIÍ DEPARTMENT OF COMPUTER GRAPHICS AND MULTIMEDIA ÚSTAV POČÍTAČOVÉ GRAFIKY A MULTIMÉDIÍ ATTRACTIVE EFFECTS FOR VIDEO PROCESSING LÍBIVÉ EFEKTY PRO ZPRACOVÁNÍ VIDEA BACHELOR’S THESIS BAKALÁŘSKÁ PRÁCE AUTHOR MARTIN IVANČO AUTOR PRÁCE SUPERVISOR PRof. Ing. ADAM HEROUT, PhD. VEDOUCÍ PRÁCE BRNO 2018 Abstract The goal of this work was to create a server solution capable of applying visually pleasing effects to live video streams. The processed video shall then be displayed in awebuser interface allowing the user to adjust the applied effects. This goal is achieved by creating a video processing application connected to a web server using a RPC framework. The video generated by this application is streamed using HLS protocol enabling it to be displayed in the web user interface. The user interface is connected to the web server via WebSocket protocol. This enables the web server to connect the user interface with the video processing application. The created solution is accessible via a web user interface, which allows the user to submit video stream URL, which then gets displayed. The time required to load the stream is usually around 10 seconds, which could be much shorter if the solution ran on a more powerful machine. The user interface also enables the user to adjust the settings in a separate mode. In this mode, only a single frame from the stream is displayed, but the adjustments made by the user are displayed almost instantly. Abstrakt Cieľom tejto práce bolo vytvoriť serverové riešenie schopné aplikovať vizuálne atraktív- ne efekty na živé video streamy. Spracované video by sa malo zobrazovať vo webovom užívateľskom rozhraní, ktoré by malo taktiež umožniť užívateľovi aplikované efekty zmeniť. Tento cieľ bol dosiahnutý vytvorením aplikácie na spracovanie videa, ktorá je pripo- jená k webovému serveru prostredníctvom RPC frameworku. Video vygenerované touto aplikáciou sa streamuje pomocou HLS protokolu, čo umožňuje jeho zobrazenie vo webovom užívateľskom rozhraní. Užívateľské rozhranie je pripojené k webovému serveru cez Web- Socket protokol. To umožňuje webovému serveru spojiť užívateľské rozhranie s aplikáciou na spracovanie videa. Vytvorené riešenie je prístupné cez webové užívateľské rozhranie, ktoré užívateľovi umož- ňuje zadať URL adresu video streamu, ktorý sa následne zobrazí. Čas potrebný na načítanie streamu je zvyčajne okolo 10 sekúnd, čo by však mohlo trvať o veľa kratšie ak by riešenie bolo spustené na silnejšom stroji. Užívateľské rozhranie tiež umožňuje užívateľovi zmeniť nastavenia v oddelenom móde. V tomto móde sa zobrazuje iba jedna snímka zo streamu, no úpravy ktoré užívateľ spraví sa zobrazia skoro okamžite. Keywords Real-time video processing, Video stream enhancement, Colorful filter application, Attrac- tive video effects Kľúčové slová Spracovanie videa v reálnom čase, Vylepšenie video streamov, Aplikácia farebných filtrov, Atraktívne video efekty Reference IVANČO, Martin. Attractive effects for video processing. Brno, 2018. Bachelor’s thesis. Brno University of Technology, Faculty of Information Technology. Supervisor prof. Ing. Adam Herout, PhD. Rozšírený abstrakt Cieľom tejto práce je vytvoriť riešenie problému vizuálne neatraktívneho videa streamova- ného množstvom IP kamier z celého sveta, vďaka ktorému môžu potenciálny návštevníci skontrolovať aktuálne počasie a atraktivitu daného miesta. Jadrom problému je schopnosť upraviť video v reálnom čase a následne ho streamovať ďalej aby mohlo byť doručené klien- tovi. Video stream môže meškať niekoľko sekúnd oproti reálnemu času, keďže aplikácia cieli na živé prenosy výhľadov na mestá a krajinu. Na druhej strane, riešenie musí byť schopné poskytnúť užívateľvi okamžitú spätnú väzbu pri kofigurácii efektov aplikovaných na video stream. Ideálne by riešenie malo byť dostupné cez webové užívateľské rozhranie schopné zobraziť spracovaný video stream ako aj poskytnúť užívateľovi možnosť nakonfigurovať nas- tavenia použité na spracovanie video streamu, aby užívateľ nemusel inštalovať žiaden ďalší softvér. Navrhované riešenie pozostáva z troch hlavných častí – server na spracovanie videa, webový server a webové užívateľské rozhranie, pričom každá z nich vykonáva rôzne úlohy. Server na spracovanie videa vstupný video stream nie len spracúva ale aj opätovne strea- muje. Na spracovanie videa používa niektoré metódy odvodené od spracovania obrazu, ktoré sú čo najviac optimalizované pre spracovávanie veľkého množstva obrazov – snímkov videa v reálnom čase. Spracované video následne segmentuje a vytvára HLS stream ktorého doručenie už však má na starosti webový server. Ten je centrom komunikácie celého riešenia – zabezpečuje predávanie informácií medzi webovým užívateľským rozhraním a serverom na spracovanie videa a tiež doručuje samotné webové užívateľské rozhranie ako aj spracovaný video stream užívateľovi. Doručovania streamu je natívne schopný vďaka protokolu HLS ktorý využíva bežné HTTP requesty na postupné doručovanie segmentov video streamu. Na komunikáciu s webovým rozhraním využíva protokol WebSocket ktorý umožňuje obojsmernú komunikáciu medzi webovým serverom a užívateľským rozhraním bez nutnosti vykonávať HTTP requesty. Komunikáciu so serverom na spracovanie videa udržuje pomocou RPC protokolu ktorý umožňuje priamo volať metódy serveru na spracovanie videa z webového serveru a tým pádom kedykoľvek meniť nastavenia aplikovaných efektov podľa požiadaviek užívateľa. Poslednou súčasťou je webové užívateľské rozhranie ktoré všetku funkcionalitu serveru na spracovanie videa sprístupňuje užívateľovi vo webovom prehliadači. Navrhnuté rieše- nie bolo následne potrebné implementovať. Implementácia bola značne náročná, keďže bolo potrebné použiť viaceré knižnice, ktorých vzájomná kompatibilita bola minimálna. K náročnosti prispela aj skutočnosť, že dokumentácia k niektorým z týchto knižníc bola neúplná alebo neexistujúca. Nakoniec bol server na spracovanie videa vytvorený pomocou knižnice OpenCV, ktorá bola použitá pri spracovaní videa a nástroja FFmpeg, ktorý zabezpečuje vytvárnie HLS streamu. Pre implementáciu komunikácie medzi webovým serverom a serverom na spracovanie videa sa použil framework gRPC, zatiaľ čo komuniká- cia medzi webovým serverom a webovým užívateľským rozhraním funguje pomocou knižnice Socket.IO. Webové užívateľské rozhranie bolo implementované bežnými webovými tech- nológiami s pomocou knižnice Bootstrap na vizuálne prvky rozhrania a knižnice hls.js na načítanie HLS streamu. Výsledná aplikácia je schopná načítať video stream zadaný užívateľom prostredníctvom webového užívateľského rozhrania, aplikovať na neho rozličné efekty a spracovaný video stream zobraziť v užívateľskom rozhraní. Takisto poskytuje možnosť aplikované efekty zmeniť a nastaviť. V súčasnej dobe je výsledná aplikácia schopná obsluhovať len jednoho klienta zároveň, avšak toto obmedzenie je možné v budúcnosti odstrániť. Načítanie video streamu v užívateľskom rozhraní trvá približne 10 sekúnd, záležiac od výkonnosti počítača na ktorom server beží. Pri nastavovaní efektov sa zmeny prejavia ihneď vďaka aplikácii efektov iba na statickú snímku. Užívateľ tiež môže zdieľať spracovaný video stream pomocou permanentného linku. Aj keď aplikácia v súčasnom stave nie je pripravená na použitie v profesionálnej sfére, pri zachovaní určitých podmienok je plne funkčná a je preto validným riešením danej úlohy. Attractive effects for video processing Declaration Hereby I declare that this bachelor’s thesis was prepared as an original author’s work under the supervision of Mr. Adam Herout. All the relevant information sources, which were used during preparation of this thesis, are properly cited and included in the list of references. ....................... Martin Ivančo May 16, 2018 Acknowledgements I would like to thank my supervisor prof. Ing. Adam Herout, PhD. for his help. Contents 1 Introduction 2 2 Video Processing Methods 3 2.1 Principles of Video Processing . .3 2.2 Tone Curve . .4 2.3 Look Up Tables . .6 2.4 Unsharp Mask . .7 2.5 Vignetting . .9 3 Streaming and Communication 10 3.1 Video Streaming Protocols . 10 3.2 Remote Procedure Call Protocols . 13 3.3 WebSocket Protocol . 14 4 Proposed Solution 15 4.1 Image Processing Server . 15 4.2 Web Server . 16 4.3 Web User Interface . 17 5 Implementation and Results 19 5.1 Utilized Libraries for Video Processing . 19 5.2 Implementation of Communication . 22 5.3 Implementation of Web UI . 24 5.4 Final Application . 24 6 Conclusion 28 Bibliography 30 1 Chapter 1 Introduction This work addresses the problem of visually unpleasant images streamed by many IP cam- eras around the world used to show potential visitors the current weather conditions as well as the available view at a given location. The core of the problem is the ability to adjust the video stream in real time, and then stream it forth so that it can be shown to a client. The video stream can be a few seconds delayed when compared to real world view, as the targeted application scenarios are dealing with landscapes and cityscapes. On the other hand, the solution must be able to give the user instant feedback in the process of configuring the effects applied on the stream. Ideally, the solution should be accessible via a web user interface capable of displaying the processed stream as well as giving the user an option to configure the settings used to process the stream, so that there is noneedfor the user to install additional software. While there are solutions
Recommended publications
  • Sharpening Scanned Images
    Sharpening scanned images Shortly after the launch of Photoshop CS3, Adobe released a Camera Raw 4.1 update which greatly enhanced the capture sharpening capabilities in Camera Raw. In my view, this new feature changed the Photoshop workflow completely, such that everything I had written in my CS3 book about sharpening was immediately out-of-date. As you will have read in the book, I now advocate using Camera Raw to capture sharpen all your raw images and there is also no reason why you can’t also use Camera Raw capture sharpening to sharpen (as yet unsharpened) scanned TIFF images. Having said that, I do realize that some people may prefer to carry out everything in Photoshop. For those readers I have made the Photoshop capture sharpening method instructions still available in this PDF. Image sharpening It is an unavoidable fact that image detail will progressively become lost at critical stages of the digital image making process. Without corrective sharpening, a printed image will appear softer than expected. This is by no means a new phenomenon or one that is unique to digital imaging. The problems begin as soon as you focus the subject in your viewfinder and press the shutter release. The first variable is the camera lens. Most photographers are all too aware that cheaper inferior lenses will produce less sharp pictures, but the film emulsion can also influence the sharpness, as can the quality of the digital sensor and the number of photosites on the sensor chip. If you are shooting film, then you will have to scan a chrome transparency, negative or photographic print made with a darkroom enlarger (which involves yet another optical step).
    [Show full text]
  • Generalized Unsharp Masking Algorithm for Contrast and Sharpness
    International Refereed Journal of Engineering and Science (IRJES) ISSN (Online) 2319-183X, (Print) 2319-1821 Volume 2, Issue 9 (September 2013), PP. 73-90 Generalized Unsharp Masking Algorithm for Contrast And Sharpness Bharathi1,N Santosh2,A Sonthosh3 1,2,3 ECE Dept, Sree Dattha Institute of Engineering & Science ABSTRACT: In the applications like medical radiography enhancing movie features and observing the planets it is necessary to enhance the contrast and sharpness of an image. The model propose a generalized unsharp masking algorithm using the exploratory data model as a unified framework. The proposed algorithm is designed as to solve simultaneously enhancing contrast and sharpness by means of individual treatment of the model component and the residual, reducing the halo effect by means of an edge-preserving filter, solving the out of range problem by means of log ratio and tangent operations. Here is a new system called the tangent system which is based upon a specific bargeman divergence. Experimental results show that the proposed algorithm is able to significantly improve the contrast and sharpness of an image. Using this algorithm user can adjust the two parameters the contrast and sharpness to have desired output Index Terms: Bregman divergence, exploratory data model, generalized linear system, image enhancement, unsharp masking. I. INTRODUCTION A digital gray image is a simple two dimensional matrix of numbers ranging from 0 to 255. These numbers represents different shades of gray. The number „0‟ represents pure black color and number „255‟ represents pure white color. 1.1 Image Enhancement The aim of image enhancement is to improve the interpretability or perception of information in images for human viewers, or to provide `better' input for other automated image processing techniques.
    [Show full text]
  • An Unsharp Masking Algorithm Embedded with Bilateral Filter System for Enhancement of Aerial Photographs
    International Journal of Recent Technology and Engineering (IJRTE) ISSN: 2277-3878, Volume-8 Issue-4, November 2019 An Unsharp Masking Algorithm Embedded With Bilateral Filter System for Enhancement of Aerial Photographs D. Regan, C. Padmavathi Abstract: Human visual system is more sensitive to edges and It is essential to retain he pixels’ value while removing noise ridges in the images which composed of high spatial frequency in the image. Generally, image filtering makes blurring of components. Digital images having more spatial variations may abrupt intensity pixels’ value into blurred which will be contain informative content than their counterparts. Remote sensing images are one of those categories covering different significant loss of information. It is necessary to have edge aspects of land surface variations, aerial photographs are preserving ability algorithm to process the noise affected obtained on board image sensors on flying platform. Aerial pixels to be edge retained after denoising step. Bilateral photographs represent the land surfaces consists of textural and filter is a kind of non-linear edge preserving filter used structural objects make more presence of edges. Interpolating widely for image denoising with edges preserved [6]. information of aerial photographs become clumsy when the Contrast of the image will be not improved during denoising pixels are corrupted with noises at different density of levels. The kind of aerialphotographsare acquired in various way such as process, as all image denoising filtering algorithms do only multi/hyper spectral sensors on board of satellites or the planes, noise removal process. To have improved contrast of the by synthetic aperture radar (SAR) in remote sensing.
    [Show full text]
  • In Vivo Confocal Microscopy in Turbid Media
    In Vivo Confocal Microscopy In Turbid Media Daniel S. Gareau B.S., Electrical Engineering, University of Vermont, Burlington, Vermont (1999) M.S., Electrical Engineering, Oregon Graduate Institute of Science & Technology, Beaverton, Oregon (2001) A thesis presented jointly to faculty of the OGI School of Science & Engineering at Oregon Health & Science University in partial fulfillment of the requirements for the degree Doctor of Philosophy in Biomedical Engineering. December 2006 © 2006 Dan Gareau ii The dissertation “Confocal Microscopy in Turbid Media and mice” by Daniel Gareau has been examined and approved by the following Examination Committee: Steven L. Jacques Professor Thesis Research Advisor Scott A. Prahl Assistant Professor Sean J. Kirkpatrick Associate Professor Molly Kulesz-Martin Professor iii Acknowledgments Sometimes, when I see how awesomely beautiful and insanely robust nature is I just want to give up. Who are we humans (victims of seeing only what we want to see) to even attempt to understand the natural world and ourselves? Then I remember that it’s already inside us and quite literally composes every fiber of our being. The time for “otherization” is over. The outward quest for the universe is only matched by the inward quest for the essence of our being. This quest requires tools like microscopes. Observation of the intense microscopic complexity of living tissue with optical microscopes requires building blocks such as knowing how light acts and interacts. This bottom-up approach, which starts with known properties of the building blocks and works toward microscope synthesis, is complemented by the top-down approach of biology which starts with the organism and work toward the properties of the building blocks.
    [Show full text]
  • Effects of Image Filters on Video Similarity Search
    Effects of Image Filters on Video Similarity Search Ruochen Liu Department of Computer Science Columbia University [email protected] Directed Research Report - Fall 2020 Advisor: Prof. John Kender January 3, 2021 Abstract Videos with approximate topics can contain similar frames at different timestamps. To ease frame alignment, one idea is to improve frame quality using image enhancement techniques such as denoising and sharpening. Through experiments, Gaussian blur shows improvements in the similarity search. 1 Introduction Video similarity search is a computer vision task that aligns similar frames among different videos. This task can help compare video preferences of differing affinity groups over the identical topics. To improve the search task, this paper studies the effects of three image enhancement techniques on different videos: Gaussian blur, unsharp masking, and grayscale. Intuitively, Gaussian blur removes noises or "incorrect information" while unsharp masking emphasizes edges or "correct information". Grayscale removes colors as "noise". The goal is to see whether or not these filters make similar frames more similar and distinct frames more distinct. This paper will discuss the experiment procedures and results. The source code is available here. 2 Methods 2.1 Data Selection YouTube is the primary video source and the video type is limited to news. Eight videos are selected and categorized into four groups: • Noisy: on-scene footage with high level of noise • Still: interviews with still backgrounds • Dynamic: on-scene footage involving several movements • Dark: dark backgrounds, high foreground-background contrast 1 Videos are then separated into frames using ffmpeg with one frame per second: ffmpeg -i <input_video> -r1/1 <output_directory>/%03d.png Some frames are arbitrarily removed due to lack of information.
    [Show full text]
  • Falcon Extra - Release Notes / News
    Lohenstr. 16, 82166 Gräfelfing-Lochham, Germany Tel.: +49 89 85 10 88, Fax +49 89 85 10 27 e-Mail: [email protected], www.falcon.de FalCon eXtra - Release Notes / News Version 8 User Interface New Features analog to MS Office 2010: Main toolbar now in window title. Backstage View for a clear access to all functions, which have been spread under "File", "About" and "License". File types are shown with big icons during "Open" or "Last Used". Start via big round button with red X. Tab line for all open documents in the bottom of the main window (switch on/off via program settings). Dialog themes partially refreshed. Note: Under Windows 7 the corresponding Dll for opening help texts might be not installed. Follow the link in the shown message box to install the correct language and version dependent Microsoft Dll. Common Setup files signed with certificate. New: New picture from clipboard. Open dialog: Even after several changes of the file type the last used directory of the selected type will be preset. The directory is only kept, if the user has changed/set it actively. Program Settings: Multiple program start can be checked. Change of registered file types (see Program Settings): restrictions under Windows 7 possible depending on the current user rights. Main toolbar: New button "R" for reset of several window layouts as well as reset of picture optimization parameters and file type registrations. QuickView New: Insert logo: button for "white = transparent or opaque". Insert logo "Adaptive": now for any angle and zoom as well any logo size valid; changes of the values via spin-buttons: +- 1 pixel, 0.5 deg or 0.5 % or while pressing Ctrl key * factor 10.
    [Show full text]
  • Improving the Sharpness of Digital Image Using an Amended Unsharp Mask Filter
    I.J. Image, Graphics and Signal Processing, 2019, 3, 1-9 Published Online March 2019 in MECS (http://www.mecs-press.org/) DOI: 10.5815/ijigsp.2019.03.01 Improving the Sharpness of Digital Image Using an Amended Unsharp Mask Filter Zohair Al-Ameen, Alaa Muttar and Ghofran Al-Badrani Department of Computer Science, College of Computer Science and Mathematics, University of Mosul, Mosul, Nineveh, Iraq Emails: [email protected], [email protected], [email protected] Received: 30 November 2018; Accepted: 18 December 2018; Published: 08 March 2019 Abstract—Many of the existing imaging systems produce photographic and printing industries for improving the images with blurry appearance due to various existing apparent sharpness (acutance) in digital images [4]. In limitations. Thus, a proper sharpening technique is general, many reasons exist to increase the sharpness of usually used to increase the acutance of the obtained an image, including overcoming the blur effect images. The unsharp mask filter is a well-known introduced by the camera equipment, drawing attention to sharpening technique that is used to recover acceptable specific image regions and improving the legibility. To quality results from their blurry counterparts. However, achieve the sharpening procedure, different techniques this filter often introduces an overshoot effect, which is exist, in which their complexities vary depending on their an undesirable effect that makes the recovered edges concept. Thus, a review of the literature regarding such appear with visible white shades around them. In this techniques is delivered in Section II of this article. article, an amended unsharp mask filter is developed to Among the existing techniques, the unsharp mask filter sharpen different digital images without introducing the has received significant attention from researchers in the overshoot effect.
    [Show full text]
  • Blurriness‑Guided Unsharp Masking
    This document is downloaded from DR‑NTU (https://dr.ntu.edu.sg) Nanyang Technological University, Singapore. Blurriness‑guided unsharp masking Ye, Wei; Ma, Kai‑Kuang 2018 Ye, W., & Ma, K.‑K. (2018). Blurriness‑guided unsharp masking. IEEE Transactions on Image Processing, 27(9), 4465‑4477. doi:10.1109/TIP.2018.2838660 https://hdl.handle.net/10356/103581 https://doi.org/10.1109/TIP.2018.2838660 © 2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works. The published version is available at: https://doi.org/10.1109/TIP.2018.2838660. Downloaded on 28 Sep 2021 22:35:33 SGT Blurriness-Guided Unsharp Masking Wei Ye and Kai-Kuang Ma , Fellow, IEEE Abstract— In this paper, a highly-adaptive unsharp the input image. Alternatively, a linear shift-invariant high- masking (UM) method is proposed and called the blurriness- pass filter (e.g., the Laplacian filter) can be exploited to guided UM, or BUM, in short. The proposed BUM exploits the extract the detail layer first, followed by subtracting it from estimated local blurriness as the guidance information to perform pixel-wise enhancement. The consideration of local blurriness is the input image to generate the base layer. In the second stage, motivated by the fact that enhancing a highly-sharp or a highly- the obtained detail layer from either of the above-mentioned blurred image region is undesirable, since this could easily yield approaches is amplified by multiplying a scaling factor and unpleasant image artifacts due to over-enhancement or noise then added back to the base layer to generate the enhanced enhancement, respectively.
    [Show full text]
  • An Analysis of Available Unsharp Masking Techniques Used with Mid-Range PMT/Drum Scanners Eric Neumann
    Rochester Institute of Technology RIT Scholar Works Theses Thesis/Dissertation Collections 5-1-1998 An Analysis of available unsharp masking techniques used with mid-range PMT/drum scanners Eric Neumann Follow this and additional works at: http://scholarworks.rit.edu/theses Recommended Citation Neumann, Eric, "An Analysis of available unsharp masking techniques used with mid-range PMT/drum scanners" (1998). Thesis. Rochester Institute of Technology. Accessed from This Thesis is brought to you for free and open access by the Thesis/Dissertation Collections at RIT Scholar Works. It has been accepted for inclusion in Theses by an authorized administrator of RIT Scholar Works. For more information, please contact [email protected]. An Analysis of Available UnSharp Masking Techniques Used With Mid-Range PMT/Drum Scanners by Eric Louis Neumann A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science in the School of Printing Management and Sciences in the College of Imaging Arts and Sciences at the Rochester Institute of Technology May 1998 Thesis Advisor: Professor Joseph L. Noga School of Printing Management and Sciences Rochester Institute of Technology Rochester, New York Master's Thesis Certificate of Approval This is to certify that the Master's Thesis of Eric Louis Neumann With a major in Graphic Arts Publishing has been approved by the Thesis Committee as satisfactory for the thesis requirement for the Master of Science degree at the convocation of May 1998 Thesis Committee: Joseph L. Noga Thesis Advisor Marie Freckleton Graduate Program Coordinator C. Harold Goffin Director or Designate An Analysis of Available UnSharp Masking Techniques Used With Mid-Range PMT/Drum Scanners I, Eric Louis Neumann, prefer to be contacted each time a request for reproduction is made.
    [Show full text]
  • Quantification of the Unsharp Masking Technique of Image Enhancement
    Rochester Institute of Technology RIT Scholar Works Theses 6-19-1981 Quantification of the unsharp masking technique of image enhancement Larry A. Scarff Follow this and additional works at: https://scholarworks.rit.edu/theses Recommended Citation Scarff, Larry A., "Quantification of the unsharp masking technique of image enhancement" (1981). Thesis. Rochester Institute of Technology. Accessed from This Thesis is brought to you for free and open access by RIT Scholar Works. It has been accepted for inclusion in Theses by an authorized administrator of RIT Scholar Works. For more information, please contact [email protected]. QUANTIFICATION OF THE UNSHARP MASKING TECHNIQUE OF IMAGE ENHANCEMENT by Larry A. Scarff QUANTIFICATION OF THE UNSHARP MASKING TECHNIQUE OF IMAGE ENHANCEMENT by Larry A. Scarff B.S. Rochester Institute of Technology (1981) A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science in the School of Photographic Arts and Sciences in the College of Graphic Arts and Photography of the Rochester Institute of Technology June, 1981 Larry A. Scarff Signature of the Author ••••.•••..••••••••••••.•••••••.•.•••• Photographic Science and Instrumentation Ronald Francis Accepted by .....•........................................... Coordinator, Graduate Program School of Photographic Arts and Sciences Rochester Institute of Technology Rochester, New York CERTIFICATE OF APPROVAL MASTER'S THESIS The Master's Thesis of Larry A. Scarff has been examined and approved by the thesis committee as satisfactory for the thesis requirement for the Master of Science degree · ......................................Edward Granger . Dr. Edward M. Granger, Thesis Advisor John F. Carson • ••••••••••••••••••••• j ••••••••••••••••• Professor John F. Carson · ......................................John Schott . Dr. John Schott ·.... ·. ~D~f~ r· ·. !.t l:!.
    [Show full text]
  • Unsharp Masking
    Unsharp Masking Contrast control and increased sharpness in B&W by Ralph W. Lambrecht An unsharp mask is a faint positive, made by contact printing a negative. The unsharp mask and the nega- tive are printed together after they have been precisely registered to a sandwich. There are two reasons to do this, the first being contrast control and the second being an increase in apparent sharpness. Unsharp masks have been used for some time to control the contrast in prints made from slide film. They can also be used for B&W prints when the nega- tive has an excessively high contrast due to overdevel- opment. The mask has typically no density in the high- lights, but has some density and detail in the shadows. Fig.9 shows how the sums of the densities result in a lower overall contrast when the mask is sandwiched with the negative. However, this chapter is not about using an unsharp mask to rescue an overdeveloped negative, but rather to utilize this technique to increase the apparent sharpness of the print. A word of warning may be appropriate at this point. This is not for every negative, but more importantly, it is not for every photogra- pher. It is a labor-intensive task to prepare a mask, and some printers may not be willing to spend the time involved to create one. The technique is very similar to a feature called ‘Unsharp Mask’ in the popular image software Adobe Photoshop, but usually takes several hours to execute in the darkroom. The masks need to be carefully planned and exposed with the enlarger light, then de- veloped and dried.
    [Show full text]
  • Implementation of Generalized Unsharp Masking Algorithm for Digital Image IMPLEMENTATION of GENERALIZED UNSHARP MASKING ALGORITHM for DIGITAL IMAGE
    Implementation Of Generalized Unsharp Masking Algorithm For Digital Image IMPLEMENTATION OF GENERALIZED UNSHARP MASKING ALGORITHM FOR DIGITAL IMAGE 1GANESH A. YELPALE, 2K.R.DESAI B.V.C.E,Kolhapur. Kolhapur, India. Abstract— Enhancement of contrast and sharpness of an imageis required in many applications. Unsharp masking is a classical tool for sharpness enhancement. We propose a generalized unsharp masking algorithm using the exploratory data model as a unified framework. The proposed algorithm is designed to address three issues: 1) simultaneously enhancing contrast and sharpness by means of individual treatment of the model component and the residual, 2) reducing the halo effect by means of an edge-preserving filter, and 3) solving the outof- range problem by means of log-ratio and tangent operations. We also present a study of the properties of the log-ratio operations and reveal a new connection between the Bregman divergence and the generalized linear systems. This connection not only provides a novel insight into the geometrical property of such systems, but also opens a new pathway for system development. We present a new system called the tangent system which is based upon a specific Bregman divergence. The proposed algorithm is able to significantly improve the contrast and sharpness of an image. In the proposed algorithm, the user can adjust the two parameters controlling the contrast and sharpness to produce the desired results. This makes the proposed algorithm practically useful. Keywords- Bregman divergence, generalized linear system, image enhancement, unsharp masking. I. INTRODUCTION algorithm is based upon the imaging model in which the observed image is formed by the product of scene Enhancement the sharpness and contrast of images reflectance and luminance.
    [Show full text]