Collagens of Poriferan Origin

Total Page:16

File Type:pdf, Size:1020Kb

Collagens of Poriferan Origin marine drugs Review Collagens of Poriferan Origin Hermann Ehrlich 1,*, Marcin Wysokowski 2, Sonia Z˙ ółtowska-Aksamitowska 2, Iaroslav Petrenko 1 and Teofil Jesionowski 2 1 Institute of Experimental Physics, TU Bergakademie Freiberg, Leipziger str. 23, 09599 Freiberg, Germany; [email protected] 2 Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, 61131 Poznan, Poland; [email protected] (M.W.); [email protected] (S.Z.-A.);˙ teofi[email protected] (T.J.) * Correspondence: [email protected]; Tel.: +49-3731-39-2867 Received: 30 December 2017; Accepted: 28 February 2018; Published: 3 March 2018 Abstract: The biosynthesis, structural diversity, and functionality of collagens of sponge origin are still paradigms and causes of scientific controversy. This review has the ambitious goal of providing thorough and comprehensive coverage of poriferan collagens as a multifaceted topic with intriguing hypotheses and numerous challenging open questions. The structural diversity, chemistry, and biochemistry of collagens in sponges are analyzed and discussed here. Special attention is paid to spongins, collagen IV-related proteins, fibrillar collagens from demosponges, and collagens from glass sponge skeletal structures. The review also focuses on prospects and trends in applications of sponge collagens for technology, materials science and biomedicine. Keywords: collagen; spongin; collagen-related proteins; sponges; scaffolds; biomaterials 1. Introduction Collagens constitute a superfamily of long-lived extracellular matrix structural proteins of fundamental evolutionary significance, found in both invertebrate and vertebrate taxa. They are among the most studied proteins due to their important functions in mammals, including humans. In addition to their structural function in cartilage and skin formation [1,2], as well as in the biomineralization of hard tissues [3] including bone [4] and dentine [5], collagens are involved in the regulation of diverse cellular functions and processes. During the last 60 years, research into collagens has evolved from the discovery of the structure of collagen [6,7], through studies on its chemistry and biochemistry [8–10], to present-day applications in cell therapy [11], biomedicine [12–14], cosmetics [15], and the food industry [16]. A rod-like triple-helical domain is the typical structural element in all collagens. However, they differ in their size, dislocations of the globular domains and imperfections within the triple helix, self-assembly behavior, and functional roles. The classification of collagens is based on structural and functional features of vertebrate collagens. For example, 28 collagen types have so far been identified and characterized at the molecular level in mammals (see for review [1,17]). Collagens are also divided into subfamilies based on their supramolecular assemblies: fibrils, beaded filaments, anchoring fibrils, and networks [11]. Usually, the amino acid sequences in collagens are responsible for the corresponding functional properties: energy storage capacity, stiffness, or elasticity [18]. Even the type of amino acid motif within the tropocollagen molecule of a collagen can significantly affect its mechanical properties. Consequently, it can be hypothesized that the diversity of collagen polyforms determines their future functions, even within the same organism. Marine vertebrate collagens have attracted scientific attention, mostly as products of fisheries [19]. In particular, fish-sourced collagens from skins and scales [20–22] have been studied and used as alternative collagen sources to avoid the potential risks associated with mammalian collagen due to bovine spongiform encephalopathy and the swine influenza crisis [23]. Mar. Drugs 2018, 16, 79; doi:10.3390/md16030079 www.mdpi.com/journal/marinedrugs Mar. Drugs 2018, 16, 79 2 of 21 In contrast to marine vertebrate collagens, similar structural proteins found in marine invertebrates represent one of the most ancient protein families within Metazoa. Marine invertebrate collagens arose earlier than their vertebrate analogs, and possess diverse unique structural features, including very special structure–function interrelations. Collagens from poriferans, coelenterates, annelids, mollusks, echinoderms, and crustaceans have been discussed in detail in several review papers (e.g., [24–32]) and books (e.g., [33,34]). The limiting factors that have hindered progress in this field of research are the difficulty of purifying marine invertebrate collagens and their relative species-dependent complexity. However, there are more than enough examples in practically every order of marine invertebrates to inspire experts in materials science and biomedicine, especially because the similarities in structure and biosynthesis between vertebrate and invertebrate collagens appear to be more impressive than the differences [24]. Sponges (Porifera) are the most simple and ancient multicellular organisms on our planet, and mostly live attached to a suitable substratum (rock, sandy sediments) on the seabed. Poriferans diverged from other Metazoans earlier in evolutionary history than any other known animal phylum, extant or extinct [35], with the first fossilized sponge remnants found in 1.8 billion-year-old sediments [36–41]. The phylum Porifera is divided into four classes: Hexactinellida, Demospongiae, and Homoscleromorpha, with silica-based skeletons; and Calcarea, with a skeletal network made of calcium carbonates [42]. According to Exposito et al. [27], before the divergence of the sponge and eumetazoan lineages took place, the genes which were responsible for the synthesis of some kind of ancestral fibrillar collagen arose at the dawn of the Metazoa. The duplication events leading to the formation of the A, B, and C clades of the fibrillar collagens occurred before the eumetazoan radiation. Interestingly, the similarity in the modular structure of sponges and humans is preserved only in the B clade of fibrillar collagens. This phenomenon correlates well with the hypothesis of the primordial function of type V/XI fibrillar collagens in initiating the formation of collagen fibrils [27]. Different systems of terminology relating to poriferan collagens are found in the literature, as sponges also display considerable polymorphism with respect to their collagenous structures. The insolubility of most poriferan collagens has been the main obstacle to carrying out any detailed biochemical analysis. Studies on the morphology and nanotopography of the collagenous fibrils have shown that they are dispersed throughout the intracellular matrix within the skeletons of sponges. Cuticular structures have been found in some sponges, but their molecular composition has not been determined [43]. It was accepted very early that collagen fibers in sponges can possess quite different morphological features [44]. Gross et al. isolated two distinct forms of collagen from Spongia graminea, which they called spongin A and spongin B [29]. The first corresponds to fine intercellular collagen fibrils, visible only by electron microscopy. The second, spongin B, forms macroscopically-visible rigid fibers which are characteristic of keratosan demosponges [43]. This was probably the moment when the terminological divergence arose with regard to the term spongin, which was initially proposed by Städeler [45] to denote the skeletal fibrous matter of bath sponges, and was also used for spongins A and B defined by Gross et al. [29]. Up to the present, the authors of numerous publications—especially those on applications of spongin-based scaffolds in tissue engineering [31,46–51]—have used the term collagen for spongin, or even defined spongin as “collagenic skeleton” [52]. Very recently, Tziveleka et al. [53] studied collagen from the marine demosponges Axinella cannabina and Suberites carnosus, and proposed three different terms: insoluble collagen (InSC), intercellular collagen (ICC), and spongin-like collagen (SlC). It is worth noting that the isolation of each form of collagen from demosponges is based on the selectivity of the method used. Data on collagen extraction methods from diverse mineralized sponges (Hexactinellida, Demospongiae) and sponges which lack mineralized skeletons (the subclass Keratosa)—including yields of the extracted collagens—may be found in the relevant papers. In this review, we focus on the structural diversity of collagens and collagen-like proteins in selected sponges, with particular focus on their origin, structural features, and applications in Mar. Drugs 2018, 16, 79 3 of 21 biomedicine and technology, including materials science and biomimetics. The review has the ambitious goal of providing thorough and comprehensive coverage of poriferan collagens (Figure1) as a multifacetedMar. Drugs topic 2018, with16, x controversial hypotheses and numerous open questions.3 We of 21 begin with a brief descriptionbiomedicine of spongins and technology, and their including practical materials applications. science and Next, biomimetics we examine. The review the collagenhas the IV-related proteins in diverseambitious representatives goal of providing thorough of Porifera. and comprehensive Special attention coverage is of paid poriferan to Chondrosia collagens (Figuresp. 1) collagens and as a multifaceted topic with controversial hypotheses and numerous open questions. We begin with their applicationsa brief
Recommended publications
  • Taxonomy and Diversity of the Sponge Fauna from Walters Shoal, a Shallow Seamount in the Western Indian Ocean Region
    Taxonomy and diversity of the sponge fauna from Walters Shoal, a shallow seamount in the Western Indian Ocean region By Robyn Pauline Payne A thesis submitted in partial fulfilment of the requirements for the degree of Magister Scientiae in the Department of Biodiversity and Conservation Biology, University of the Western Cape. Supervisors: Dr Toufiek Samaai Prof. Mark J. Gibbons Dr Wayne K. Florence The financial assistance of the National Research Foundation (NRF) towards this research is hereby acknowledged. Opinions expressed and conclusions arrived at, are those of the author and are not necessarily to be attributed to the NRF. December 2015 Taxonomy and diversity of the sponge fauna from Walters Shoal, a shallow seamount in the Western Indian Ocean region Robyn Pauline Payne Keywords Indian Ocean Seamount Walters Shoal Sponges Taxonomy Systematics Diversity Biogeography ii Abstract Taxonomy and diversity of the sponge fauna from Walters Shoal, a shallow seamount in the Western Indian Ocean region R. P. Payne MSc Thesis, Department of Biodiversity and Conservation Biology, University of the Western Cape. Seamounts are poorly understood ubiquitous undersea features, with less than 4% sampled for scientific purposes globally. Consequently, the fauna associated with seamounts in the Indian Ocean remains largely unknown, with less than 300 species recorded. One such feature within this region is Walters Shoal, a shallow seamount located on the South Madagascar Ridge, which is situated approximately 400 nautical miles south of Madagascar and 600 nautical miles east of South Africa. Even though it penetrates the euphotic zone (summit is 15 m below the sea surface) and is protected by the Southern Indian Ocean Deep- Sea Fishers Association, there is a paucity of biodiversity and oceanographic data.
    [Show full text]
  • (1104L) Animal Kingdom Part I
    (1104L) Animal Kingdom Part I By: Jeffrey Mahr (1104L) Animal Kingdom Part I By: Jeffrey Mahr Online: < http://cnx.org/content/col12086/1.1/ > OpenStax-CNX This selection and arrangement of content as a collection is copyrighted by Jerey Mahr. It is licensed under the Creative Commons Attribution License 4.0 (http://creativecommons.org/licenses/by/4.0/). Collection structure revised: October 17, 2016 PDF generated: October 17, 2016 For copyright and attribution information for the modules contained in this collection, see p. 58. Table of Contents 1 (1104L) Animals introduction ....................................................................1 2 (1104L) Characteristics of Animals ..............................................................3 3 (1104L)The Evolutionary History of the Animal Kingdom ..................................11 4 (1104L) Phylum Porifera ........................................................................23 5 (1104L) Phylum Cnidaria .......................................................................31 6 (1104L) Phylum Rotifera & Phylum Platyhelminthes ........................................45 Glossary .............................................................................................53 Index ................................................................................................56 Attributions .........................................................................................58 iv Available for free at Connexions <http://cnx.org/content/col12086/1.1> Chapter 1 (1104L) Animals introduction1
    [Show full text]
  • Review of the Mineralogy of Calcifying Sponges
    Dickinson College Dickinson Scholar Faculty and Staff Publications By Year Faculty and Staff Publications 12-2013 Not All Sponges Will Thrive in a High-CO2 Ocean: Review of the Mineralogy of Calcifying Sponges Abigail M. Smith Jade Berman Marcus M. Key, Jr. Dickinson College David J. Winter Follow this and additional works at: https://scholar.dickinson.edu/faculty_publications Part of the Paleontology Commons Recommended Citation Smith, Abigail M.; Berman, Jade; Key,, Marcus M. Jr.; and Winter, David J., "Not All Sponges Will Thrive in a High-CO2 Ocean: Review of the Mineralogy of Calcifying Sponges" (2013). Dickinson College Faculty Publications. Paper 338. https://scholar.dickinson.edu/faculty_publications/338 This article is brought to you for free and open access by Dickinson Scholar. It has been accepted for inclusion by an authorized administrator. For more information, please contact [email protected]. © 2013. Licensed under the Creative Commons http://creativecommons.org/licenses/by- nc-nd/4.0/ Elsevier Editorial System(tm) for Palaeogeography, Palaeoclimatology, Palaeoecology Manuscript Draft Manuscript Number: PALAEO7348R1 Title: Not all sponges will thrive in a high-CO2 ocean: Review of the mineralogy of calcifying sponges Article Type: Research Paper Keywords: sponges; Porifera; ocean acidification; calcite; aragonite; skeletal biomineralogy Corresponding Author: Dr. Abigail M Smith, PhD Corresponding Author's Institution: University of Otago First Author: Abigail M Smith, PhD Order of Authors: Abigail M Smith, PhD; Jade Berman, PhD; Marcus M Key Jr, PhD; David J Winter, PhD Abstract: Most marine sponges precipitate silicate skeletal elements, and it has been predicted that they would be among the few "winners" in an acidifying, high-CO2 ocean.
    [Show full text]
  • Repair, Regeneration, and Fibrosis Gregory C
    91731_ch03 12/8/06 7:33 PM Page 71 3 Repair, Regeneration, and Fibrosis Gregory C. Sephel Stephen C. Woodward The Basic Processes of Healing Regeneration Migration of Cells Stem cells Extracellular Matrix Cell Proliferation Remodeling Conditions That Modify Repair Cell Proliferation Local Factors Repair Repair Patterns Repair and Regeneration Suboptimal Wound Repair Wound Healing bservations regarding the repair of wounds (i.e., wound architecture are unaltered. Thus, wounds that do not heal may re- healing) date to physicians in ancient Egypt and battle flect excess proteinase activity, decreased matrix accumulation, Osurgeons in classic Greece. The liver’s ability to regenerate or altered matrix assembly. Conversely, fibrosis and scarring forms the basis of the Greek myth involving Prometheus. The may result from reduced proteinase activity or increased matrix clotting of blood to prevent exsanguination was recognized as accumulation. Whereas the formation of new collagen during the first necessary event in wound healing. At the time of the repair is required for increased strength of the healing site, American Civil War, the development of “laudable pus” in chronic fibrosis is a major component of diseases that involve wounds was thought to be necessary, and its emergence was not chronic injury. appreciated as a symptom of infection but considered a positive sign in the healing process. Later studies of wound infection led The Basic Processes of Healing to the discovery that inflammatory cells are primary actors in the repair process. Although scurvy (see Chapter 8) was described in Many of the basic cellular and molecular mechanisms necessary the 16th century by the British navy, it was not until the 20th for wound healing are found in other processes involving dynamic century that vitamin C (ascorbic acid) was found to be necessary tissue changes, such as development and tumor growth.
    [Show full text]
  • The Lower Bathyal and Abyssal Seafloor Fauna of Eastern Australia T
    O’Hara et al. Marine Biodiversity Records (2020) 13:11 https://doi.org/10.1186/s41200-020-00194-1 RESEARCH Open Access The lower bathyal and abyssal seafloor fauna of eastern Australia T. D. O’Hara1* , A. Williams2, S. T. Ahyong3, P. Alderslade2, T. Alvestad4, D. Bray1, I. Burghardt3, N. Budaeva4, F. Criscione3, A. L. Crowther5, M. Ekins6, M. Eléaume7, C. A. Farrelly1, J. K. Finn1, M. N. Georgieva8, A. Graham9, M. Gomon1, K. Gowlett-Holmes2, L. M. Gunton3, A. Hallan3, A. M. Hosie10, P. Hutchings3,11, H. Kise12, F. Köhler3, J. A. Konsgrud4, E. Kupriyanova3,11,C.C.Lu1, M. Mackenzie1, C. Mah13, H. MacIntosh1, K. L. Merrin1, A. Miskelly3, M. L. Mitchell1, K. Moore14, A. Murray3,P.M.O’Loughlin1, H. Paxton3,11, J. J. Pogonoski9, D. Staples1, J. E. Watson1, R. S. Wilson1, J. Zhang3,15 and N. J. Bax2,16 Abstract Background: Our knowledge of the benthic fauna at lower bathyal to abyssal (LBA, > 2000 m) depths off Eastern Australia was very limited with only a few samples having been collected from these habitats over the last 150 years. In May–June 2017, the IN2017_V03 expedition of the RV Investigator sampled LBA benthic communities along the lower slope and abyss of Australia’s eastern margin from off mid-Tasmania (42°S) to the Coral Sea (23°S), with particular emphasis on describing and analysing patterns of biodiversity that occur within a newly declared network of offshore marine parks. Methods: The study design was to deploy a 4 m (metal) beam trawl and Brenke sled to collect samples on soft sediment substrata at the target seafloor depths of 2500 and 4000 m at every 1.5 degrees of latitude along the western boundary of the Tasman Sea from 42° to 23°S, traversing seven Australian Marine Parks.
    [Show full text]
  • The Unique Skeleton of Siliceous Sponges (Porifera; Hexactinellida and Demospongiae) That Evolved first from the Urmetazoa During the Proterozoic: a Review” by W
    Biogeosciences Discuss., 4, S262–S276, 2007 Biogeosciences www.biogeosciences-discuss.net/4/S262/2007/ BGD Discussions c Author(s) 2007. This work is licensed 4, S262–S276, 2007 under a Creative Commons License. Interactive Comment Interactive comment on “The unique skeleton of siliceous sponges (Porifera; Hexactinellida and Demospongiae) that evolved first from the Urmetazoa during the Proterozoic: a review” by W. E. G. Müller et al. W. E. G. Müller et al. Received and published: 3 April 2007 3rd April 2007 Full Screen / Esc From : Prof. Dr. W.E.G. Müller, Institut für Physiologische Chemie, Abteilung Ange- wandte Molekularbiologie, Universität, Duesbergweg 6, 55099 Mainz; GERMANY. tel.: Printer-friendly Version +49-6131-392-5910; fax.: +49-6131-392-5243; E-mail: [email protected] To the Editorial Board Interactive Discussion MS-NR: bgd-2006-0069 Discussion Paper S262 EGU Dear colleagues: BGD Thank you for your email from April 2nd informing me that our manuscript entitled: 4, S262–S276, 2007 The unique skeleton of siliceous sponges (Porifera; Hexactinellida and Demospongiae) that evolved first from the Urmetazoa during the Proterozoic: a review by: Werner E.G. Müller, Jinhe Li, Heinz C. Schröder, Li Qiao and Xiaohong Wang Interactive Comment which we submit for the Journal Biogeosciences must be revised. In the following we discuss point for point the arguments raised by the referees/reader. In detail: Interactive comment on “The unique skeleton of siliceous sponges (Porifera; Hex- actinellida and Demospongiae) that evolved first from the Urmetazoa during the Pro- terozoic: a review” by W. E. G. Müller et al. By: M.
    [Show full text]
  • Influence of Elastin-Derived Peptides on Metalloprotease Production in Endothelial Cells
    EXPERIMENTAL AND THERAPEUTIC MeDICINE 1: 1057-1060, 2010 Influence of elastin-derived peptides on metalloprotease production in endothelial cells KRZYSZTOF SIEMIANOWICZ, JAN GMINSKI, MALGORZATA GOSS, ToMASZ FRANCUZ, WIRGINIA LIKUS, TERESA JURCZAK and WOJCIECH GARCZORZ Department of Biochemistry, Silesian Medical University, 40-752 Katowice, Poland Received August 19, 2010; Accepted September 27, 2010 ReceiveDOI: 10.3892/etm.2010.157 Abstract. Matrix metalloproteases (MMPs) are a family of of the extracellular matrix (ECM). The timely breakdown of zinc-dependent endopeptidases that degrade extracellular ECM is essential for a variety of processes, including embry- matrix proteins. MMP-1 and MMP-2 are produced by endothe- onic development, morphogenesis, angiogenesis, reproduction, lial cells and are involved in specific vascular pathologies, osteogenesis, tissue resorption and vascular remodeling. including atherosclerosis and aortal aneurysm. One of the most MMP-1 (collagenase 1) hydrolyzes collagen types I, II, III, important differences between these two metalloproteases is VII, VIII, X and XI, as well as gelatin, fibronectin, vitronectin, the possibility of hydrolysis of elastin and collagen type IV laminin, tenascin and aggrecan, and links protein, myelin basic by MMP-2, but not by MMP-1. Elastin-derived peptides are protein and versican. MMP-2 (gellatinase) degrades collagen generated as a result of the degradation of elastin fibers. The types I, II, III, IV, V, VII, X and XI, gelatin, elastin, fibronectin, aim of our study was to compare the production of MMP-1 and vitronectin, laminin, entactin, tenascin, SPARC and aggrecan, MMP-2 in cultured human arterial endothelial cells derived and links protein, galectin-3, versican, decanin and myelin from vascular pathologies localized at three different sites, basic protein (1,2).
    [Show full text]
  • Comparing Dynamic Connective Tissue in Echinoderms and Sponges: Morphological and Mechanical Aspects and Environmental Sensitivity
    Marine Environmental Research 93 (2014) 123e132 Contents lists available at ScienceDirect Marine Environmental Research journal homepage: www.elsevier.com/locate/marenvrev Comparing dynamic connective tissue in echinoderms and sponges: Morphological and mechanical aspects and environmental sensitivity Michela Sugni a, Dario Fassini a, Alice Barbaglio a,*, Anna Biressi a, Cristiano Di Benedetto a, Serena Tricarico a, Francesco Bonasoro a, Iain C. Wilkie b, Maria Daniela Candia Carnevali a a Department of Biosciences, University of Milan, Via Celoria 26, 20133 Milan, Italy b Department of Life Sciences, Glasgow Caledonian University, Cowcaddens Rd, Glasgow G4 0BA, UK article info abstract Article history: Echinoderms and sponges share a unique feature that helps them face predators and other environ- Received 9 July 2013 mental pressures. They both possess collagenous tissues with adaptable viscoelastic properties. In terms Accepted 31 July 2013 of morphology these structures are typical connective tissues containing collagen fibrils, fibroblast- and fibroclast-like cells, as well as unusual components such as, in echinoderms, neurosecretory-like cells Keywords: that receive motor innervation. The mechanisms underpinning the adaptability of these tissues are not Echinoderms completely understood. Biomechanical changes can lead to an abrupt increase in stiffness (increasing Sponges protection against predation) or to the detachment of body parts (in response to a predator or to adverse Collagen Mutable collagenous tissues environmental conditions) that are regenerated. Apart from these advantages, the responsiveness of Temperature echinoderm and sponge collagenous tissues to ionic composition and temperature makes them poten- Ionic strength tially vulnerable to global environmental changes. Ó 2013 Elsevier Ltd. All rights reserved. 1. Introduction functional needs (Wilkie, 2005).
    [Show full text]
  • Thermal Behavior of Fowl Feather Keratin
    Biosci. Biotechnol. Biochem., 68 (9), 1875–1881, 2004 Thermal Behavior of Fowl Feather Keratin y Koji TAKAHASHI,1; Hirosaburo YAMAMOTO,1 Yoshiko YOKOTE,2 and Makoto HATTORI1 1Department of Applied Biological Science, Faculty of Agriculture, Tokyo University of Agriculture and Technology, Tokyo 183-8509, Japan 2Department of Chemistry, Faculty of Science, Josai University, Saitama 350-0248, Japan Received March 19, 2004; Accepted June 22, 2004 Differential scanning calorimetry (DSC) was applied secondary structure of the sequence from fowl keratin to elucidate the thermal behavior of fowl feather by the methods of Lewis et al.3) and Chou and keratins (barbs, rachis, and calamus) with different Fasman4,5) indicated that the -sheet content of this morphological features. The DSC curves exhibited a region was about 30%, and that such other structures as clear and relatively large endothermic peak at about turn and coil covered the remaining parts.2) Tsuboi et al. 110–160 C in the wet condition. A considerable de- have reported from the results of infrared and Raman crease in transition temperature with urea and its microscopy that the anti-parallel pleated sheet and helical structure content estimated by Fourier trans- unordered structural contents were respectively about form infrared spectroscopy (FT-IR), and the disappear- 50%,6) although the details of the structures have not yet ance of one of the diffraction peaks with heating at been elucidated. Two types of physical models for 160 C for 30 min, indicated that DSC could be used to feather keratin have been proposed to accommodate evaluate the thermal behavior of keratin.
    [Show full text]
  • The Unique Skeleton of Siliceous Sponges (Porifera; Hexactinellida and Demospongiae) That Evolved first from the Urmetazoa During the Proterozoic: a Review
    Biogeosciences, 4, 219–232, 2007 www.biogeosciences.net/4/219/2007/ Biogeosciences © Author(s) 2007. This work is licensed under a Creative Commons License. The unique skeleton of siliceous sponges (Porifera; Hexactinellida and Demospongiae) that evolved first from the Urmetazoa during the Proterozoic: a review W. E. G. Muller¨ 1, Jinhe Li2, H. C. Schroder¨ 1, Li Qiao3, and Xiaohong Wang4 1Institut fur¨ Physiologische Chemie, Abteilung Angewandte Molekularbiologie, Duesbergweg 6, 55099 Mainz, Germany 2Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, 266071 Qingdao, P. R. China 3Department of Materials Science and Technology, Tsinghua University, 100084 Beijing, P. R. China 4National Research Center for Geoanalysis, 26 Baiwanzhuang Dajie, 100037 Beijing, P. R. China Received: 8 January 2007 – Published in Biogeosciences Discuss.: 6 February 2007 Revised: 10 April 2007 – Accepted: 20 April 2007 – Published: 3 May 2007 Abstract. Sponges (phylum Porifera) had been considered an axial filament which harbors the silicatein. After intracel- as an enigmatic phylum, prior to the analysis of their genetic lular formation of the first lamella around the channel and repertoire/tool kit. Already with the isolation of the first ad- the subsequent extracellular apposition of further lamellae hesion molecule, galectin, it became clear that the sequences the spicules are completed in a net formed of collagen fibers. of sponge cell surface receptors and of molecules forming the The data summarized here substantiate that with the find- intracellular signal transduction pathways triggered by them, ing of silicatein a new aera in the field of bio/inorganic chem- share high similarity with those identified in other metazoan istry started.
    [Show full text]
  • The Inorganic Constituents of Marine Invertebrates
    DEPARTMENT OF THE INTERIOR FRANKLIN K. LANE, Secretary UNITED STATES GEOLOGICAL SURVEY GEORGE OTIS SMITH, Director PROFESSIONAL PAPER 102 THE INORGANIC CONSTITUENTS OF MARINE INVERTEBRATES BY FRANK WIGGLESWORTH CLARKE AND WALTER CALHOUN WHEELER WASHINGTON GOVERNMENT PRINTING OFFICE 1917 DEPARTMENT OF THE INTERIOR FRANKLIN K. LANE, Secretary UNITED STATES GEOLOGICAL SURVEY GEORGE OTIS SMITQ, Director Professional Paper 102 THE INORGANIC CONSTITUENTS OF MARINE INVERTEBRATES BY FRANK WIGGLESWORTH CLARKE AND WALTER CALHOUN WHEELER WASHINGTON GOVERNMENT PRINTING OFFICE 1917 ADDITIONAL COPIES OF THIS PUBLICATION MAY BE PROCURED FROM THE SUPERINTENDENT OF DOCUMENTS GOVERNMENT PRINTING OFFICE WASHINGTON, D. C. AT 10 CENTS PER COPY CONTENTS. Introduction............................................................................................ 5 Foraminifera............................................................................................. 6 Sponges.................................................................................................. 7 Madreporian corals...................................................................................... 9 Alcyonarian corals....................................................................................... 12 Hydroids................................................................................................. 17 Annelids................................................................................................ 18 Echinoderms............................................................................................
    [Show full text]
  • A METHOD of INCREASING the PURITY of SOLUBLE ELASTIN OBTAINED by PARTIAL HYDROLYSIS from AORTIC TISSUE of VARIOUS SPECIES (Received 6 June, 1991)
    Marmara Medical Journal Volume 5 No: 1 January 1992 A METHOD OF INCREASING THE PURITY OF SOLUBLE ELASTIN OBTAINED BY PARTIAL HYDROLYSIS FROM AORTIC TISSUE OF VARIOUS SPECIES (Received 6 June, 1991) G. Bilgin, Ph.D.** / G. Güner, Ph.D.* / M. Djavani, Ph. D.*** * Associate Professor, Department o f Biochemistry, Faculty o f Medicine, Dokuz Eylül University, İzmir, Turkey. * * Instructor, Department of Biochemistry, Faculty of Medicine. Dokuz Eylül University. İzmir, Turkey. * * * Research Assistant. Department o f Biochemistry, Faculty o f Medicine. Dokuz Eylül University, İzmir. Turkey. SUMMARY properties as close to tropoelastin as possible. One of Elastin, a scleroprotein of the connective tissue, is the most common methods used for this purpose is insoluble in water, saline or all non-hydrolytic solvents. Partridge's method (3), where 0.25M oxalic acid is used One method of obtaining soluble derivatives is partial as hydrolytic solvent. Here, elastin is boiled in this hydrolysis with oxalic acid. Elastins obtained from the solvent 4 times, each lasting for 60 minutes. The soluble aortic tissue of various species were hydrolyzed 5 times fraction is essentially composed of two groups of and 75 minutes as a modification of Partridge's method peptides : a - elastin with molecular mass of 60,000 - of partial hydrolysis, where 60-minute boiling with 0.25 84,000 daltons and P - elastin, of 5,500 daltons. M oxalic acid at 100 °C is repeated 4 times. Cellulose Tropoelastin, the soluble precursor of elastin, has a acetate, SDS-polyacrylamide gel electrophoresis and molecular mass of 72,000 daltons (4); therefore, a - high performance liquid chromatography were used to elastin is frequently used for biochemical studies.
    [Show full text]