Partial Functions and Recursion in Univalent Type Theory By
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Epistemological Consequences of the Incompleteness Theorems
Epistemological Consequences of the Incompleteness Theorems Giuseppe Raguní UCAM - Universidad Católica de Murcia, Avenida Jerónimos 135, Guadalupe 30107, Murcia, Spain - [email protected] After highlighting the cases in which the semantics of a language cannot be mechanically reproduced (in which case it is called inherent), the main episte- mological consequences of the first incompleteness Theorem for the two funda- mental arithmetical theories are shown: the non-mechanizability for the truths of the first-order arithmetic and the peculiarities for the model of the second- order arithmetic. Finally, the common epistemological interpretation of the second incompleteness Theorem is corrected, proposing the new Metatheorem of undemonstrability of internal consistency. KEYWORDS: semantics, languages, epistemology, paradoxes, arithmetic, in- completeness, first-order, second-order, consistency. 1 Semantics in the Languages Consider an arbitrary language that, as normally, makes use of a countable1 number of characters. Combining these characters in certain ways, are formed some fundamental strings that we call terms of the language: those collected in a dictionary. When the terms are semantically interpreted, i. e. a certain meaning is assigned to them, we have their distinction in adjectives, nouns, verbs, etc. Then, a proper grammar establishes the rules arXiv:1602.03390v1 [math.GM] 13 Jan 2016 of formation of sentences. While the terms are finite, the combinations of grammatically allowed terms form an infinite-countable amount of possible sentences. In a non-trivial language, the meaning associated to each term, and thus to each ex- pression that contains it, is not always unique. The same sentence can enunciate different things, so representing different propositions. -
John P. Burgess Department of Philosophy Princeton University Princeton, NJ 08544-1006, USA [email protected]
John P. Burgess Department of Philosophy Princeton University Princeton, NJ 08544-1006, USA [email protected] LOGIC & PHILOSOPHICAL METHODOLOGY Introduction For present purposes “logic” will be understood to mean the subject whose development is described in Kneale & Kneale [1961] and of which a concise history is given in Scholz [1961]. As the terminological discussion at the beginning of the latter reference makes clear, this subject has at different times been known by different names, “analytics” and “organon” and “dialectic”, while inversely the name “logic” has at different times been applied much more broadly and loosely than it will be here. At certain times and in certain places — perhaps especially in Germany from the days of Kant through the days of Hegel — the label has come to be used so very broadly and loosely as to threaten to take in nearly the whole of metaphysics and epistemology. Logic in our sense has often been distinguished from “logic” in other, sometimes unmanageably broad and loose, senses by adding the adjectives “formal” or “deductive”. The scope of the art and science of logic, once one gets beyond elementary logic of the kind covered in introductory textbooks, is indicated by two other standard references, the Handbooks of mathematical and philosophical logic, Barwise [1977] and Gabbay & Guenthner [1983-89], though the latter includes also parts that are identified as applications of logic rather than logic proper. The term “philosophical logic” as currently used, for instance, in the Journal of Philosophical Logic, is a near-synonym for “nonclassical logic”. There is an older use of the term as a near-synonym for “philosophy of language”. -
Sprinkles of Extensionality for Your Vanilla Type Theory
Sprinkles of extensionality for your vanilla type theory Jesper Cockx1 and Andreas Abel2 1 DistriNet { KU Leuven 2 Department of Computer Science and Engineering { Gothenburg University Dependent types can make your developments (be they programs or proofs) dramatically safer by allowing you to prove that you implemented what you intended. Unfortunately, they can also make your developments dramatically more boring by requiring you to elaborate those proofs in often painstaking detail. For this reason, dependently typed languages typically allow you to cheat by postulating some facts as axioms. However, type theory is not just about which types are inhabited; it's about how things compute. Computationally, an axiom is a stuck term, so it prevents you from evaluating your programs. What if you could postulate not just axioms, but also arbitrary evaluation rules? 1. A typical frustration for people new to proof assistants like Agda or Coq is that 0 + x evaluates to x for arbitrary x, but x + 0 doesn't. Of course, a lemma for x + 0 = x is easy to prove, but having to appeal to this lemma explicitly in all subsequent uses is bothersome. By adding an evaluation rule x + 0 −! x, you can get the automatic application of this lemma. Similarly, you can add a rule x + suc y −! suc (x + y), or (x + y) + z −! x + (y + z). 2. Allais, McBride, and Boutillier[2013] present a series of evaluation rules of this type (which they call ν-rules) for functions on pairs and lists. For example, they have a rule for concatenating with an empty list (l ++ [] −! l), but also rules for simplifying expressions involving map and fold (e.g. -
Equivalents to the Axiom of Choice and Their Uses A
EQUIVALENTS TO THE AXIOM OF CHOICE AND THEIR USES A Thesis Presented to The Faculty of the Department of Mathematics California State University, Los Angeles In Partial Fulfillment of the Requirements for the Degree Master of Science in Mathematics By James Szufu Yang c 2015 James Szufu Yang ALL RIGHTS RESERVED ii The thesis of James Szufu Yang is approved. Mike Krebs, Ph.D. Kristin Webster, Ph.D. Michael Hoffman, Ph.D., Committee Chair Grant Fraser, Ph.D., Department Chair California State University, Los Angeles June 2015 iii ABSTRACT Equivalents to the Axiom of Choice and Their Uses By James Szufu Yang In set theory, the Axiom of Choice (AC) was formulated in 1904 by Ernst Zermelo. It is an addition to the older Zermelo-Fraenkel (ZF) set theory. We call it Zermelo-Fraenkel set theory with the Axiom of Choice and abbreviate it as ZFC. This paper starts with an introduction to the foundations of ZFC set the- ory, which includes the Zermelo-Fraenkel axioms, partially ordered sets (posets), the Cartesian product, the Axiom of Choice, and their related proofs. It then intro- duces several equivalent forms of the Axiom of Choice and proves that they are all equivalent. In the end, equivalents to the Axiom of Choice are used to prove a few fundamental theorems in set theory, linear analysis, and abstract algebra. This paper is concluded by a brief review of the work in it, followed by a few points of interest for further study in mathematics and/or set theory. iv ACKNOWLEDGMENTS Between the two department requirements to complete a master's degree in mathematics − the comprehensive exams and a thesis, I really wanted to experience doing a research and writing a serious academic paper. -
The Strength of Mac Lane Set Theory
The Strength of Mac Lane Set Theory A. R. D. MATHIAS D´epartement de Math´ematiques et Informatique Universit´e de la R´eunion To Saunders Mac Lane on his ninetieth birthday Abstract AUNDERS MAC LANE has drawn attention many times, particularly in his book Mathematics: Form and S Function, to the system ZBQC of set theory of which the axioms are Extensionality, Null Set, Pairing, Union, Infinity, Power Set, Restricted Separation, Foundation, and Choice, to which system, afforced by the principle, TCo, of Transitive Containment, we shall refer as MAC. His system is naturally related to systems derived from topos-theoretic notions concerning the category of sets, and is, as Mac Lane emphasizes, one that is adequate for much of mathematics. In this paper we show that the consistency strength of Mac Lane's system is not increased by adding the axioms of Kripke{Platek set theory and even the Axiom of Constructibility to Mac Lane's axioms; our method requires a close study of Axiom H, which was proposed by Mitchell; we digress to apply these methods to subsystems of Zermelo set theory Z, and obtain an apparently new proof that Z is not finitely axiomatisable; we study Friedman's strengthening KPP + AC of KP + MAC, and the Forster{Kaye subsystem KF of MAC, and use forcing over ill-founded models and forcing to establish independence results concerning MAC and KPP ; we show, again using ill-founded models, that KPP + V = L proves the consistency of KPP ; turning to systems that are type-theoretic in spirit or in fact, we show by arguments of Coret -
A Rewrite System for Elimination of the Functional Extensionality and Univalence Axioms
A Rewrite System for Elimination of the Functional Extensionality and Univalence Axioms Raphaël Cauderlier Abstract We explore the adaptation of the ideas that we developed for automatic elimination of classical axioms [5] to extensionality axioms in Type Theory. Extensionality axioms are added to Type Theory when we lack a way to prove equality between two indistinguishable objects. These indistinguishable objects might be logically-equivalent propo- sitions, pointwise equal functions, pointwise equivalent predicates, or equivalent (isomorphic) types leading to the various following extensionality axioms: Propositional extensionality: PE :ΠP; Q : Prop: (P , Q) ! P =Prop Q Non-dependent functional extensionality: NFE :ΠA; B : U: Πf; g :(A ! B): (Πa : A: f a =B g a) ! f =A!B g Dependent functional extensionality: DF E :ΠA : U: ΠB :(A ! U): Πf; g : (Πa : A ! B(a)): (Πa : A: f a =B(a) g a) ! f =Πa:A: B(a) g Predicate extensionality: P redE :ΠA : U: ΠP; Q :(A ! Prop): (Πa : A: P a , Q a) ! P =A!Prop Q Set extensionality: SetE :ΠA : U: ΠX; Y : set(A): (Πa : A: a 2 X , a 2 Y ) ! X =set(A) Y Univalence: let idtoeqv be the canonical function of type ΠA; B : U: (A =U B) ! (A ≈ B), for all types A; B : U, idtoeqv AB is an equivalence between the types A =U B and A ≈ B. In these axiom statements, the symbol =A denotes equality between two terms of type A, set(A) is type of the sets of elements of A, 2 is the set membership relation, U is a universe and ' is the equivalence relation over types in U. -
The Axiom of Choice and the Law of Excluded Middle in Weak Set Theories
The Axiom of Choice and the Law of Excluded Middle in Weak Set Theories John L. Bell Department of Philosophy, University of Western Ontario In constructive mathematics the axiom of choice (AC) has a somewhat ambiguous status. On the one hand, in intuitionistic set theory, or the local set theory associated with a topos ([2]) it can be shown to entail the law of excluded middle (LEM) ([ 3 ], [ 5 ]). On the other hand, under the “propositions-as types” interpretation which lies at the heart of constructive predicative type theories such as that of Martin-Löf [9], the axiom of choice is actually derivable (see, e.g. [11] ), and so certainly cannot entail the law of excluded middle. This incongruity has been the subject of a number of recent investigations, for example [6], [7], [9], [12]. What has emerged is that for the derivation of LEM from AC to go through it is sufficient that sets (in particular power sets), or functions, have a degree of extensionality which is, so to speak, built into the usual set theories but is incompatible with constructive type theories Another condition, independent of extensionality, ensuring that the derivation goes through is that any equivalence relation determines a quotient set. LEM can also be shown to follow from a suitably extensionalized version of AC. The arguments establishing these intriguing results have mostly been formulated within a type-theoretic framework. It is my purpose here to formulate and derive analogous results within a comparatively straightforward set-theoretic framework. The core principles of this framework form a theory – weak set theory WST – which lacks the axiom of extensionality1 and supports only minimal set-theoretic constructions. -
Does Universalism Entail Extensionalism?
NOUSˆ 00:00 (2014) 1–12 doi: 10.1111/nous.12063 Does Universalism Entail Extensionalism? A. J. COTNOIR University of St Andrews Abstract Does a commitment to mereological universalism automatically bring along a commitment to the controversial doctrine of mereological extensionalism—the view that objects with the same proper parts are identical? A recent argument suggests the answer is ‘yes’. This paper attempts a systematic response to the argument, considering nearly every available line of reply. It argues that only one approach— the mutual parts view—can yield a viable mereology where universalism does not entail extensionalism. Here is an axiomatization of classical extensional mereology, where ‘<’ stands for the proper parthood relation, ‘≤’ stands for the parthood relation (i.e. ‘x ≤ y’ abbreviates ‘x < y ∨ x = y’), and ◦ for mereological overlap (i.e. ‘x ◦ y’abbreviates ‘∃z(z ≤ x ∧ z ≤ y)’). Transitivity (x < y ∧ y < z) → x < z Weak Supplementation x < y →∃z(z ≤ y ∧¬z ◦ x)) Unrestricted Fusion ∀xx∃y F(y, xx). Where fusions are defined via: Fusion F(t, xx):= xx ≤ t ∧∀y(y ≤ t → y ◦ xx)) To simplify notation, I use ‘xx ≤ y’ to mean that each x among xx is part of y; likewise ‘y ◦ xx’meansthaty overlaps some x among xx. It is worth noting that weak supplementation entails the remaining (strict) partial order axioms:1 Irreflexivity x < x Asymmetry x < y → y < x The definition of ≤ provides the corresponding weak partial order principles of reflexivity and antisymmetry. Listing these as separate axioms is unnecessary here; however, this will not be so in what follows. -
Extensionality Versus Constructivity∗
Extensionality versus Constructivity∗ Silvio Valentini Dipartimento di Matematica Pura ed Applicata Universit`adi Padova via G. Belzoni n.7, I–35131 Padova, Italy [email protected] May 13, 2000 Abstract We will analyze some extensions of Martin-L¨of’s constructive type theory by means of extensional set constructors and we will show that often the most natural requirements over them lead to classical logic or even to inconsistency. 1 Introduction The main purpose of the paper is to show that by adding extensional set- constructors to a constructive set theory like Martin-L¨of’s constructive type theory (see [ML84]) can lead to classical logic, or even to inconsistency, if a great attention is not used. The need for the addition of extensional set constructors to Martin-L¨of’s type theory appears immediately as soon as one tries to develop within such a framework a piece of actual mathematics, as we did with constructive topol- ogy (see the introductory sections in [CSSV]). For instance, one would like to be able to work with power-sets, in order to quantify on the elements of the collection of the subsets of a set, or with quotient-sets, in order to be able to construct in a straightforward way some well known sets, or, at least, with the collection of the finite subsets of a set, in order, for instance, to be able to express easily statements like Tychonoff’s theorem on the compactness of the product of compact spaces. Of course, the main point is to be able to deal with such constructions and still work in a set-theory with such a clear computational semantics as Martin- L¨of’s type theory has. -
On Synthetic Undecidability in Coq, with an Application to the Entscheidungsproblem
On Synthetic Undecidability in Coq, with an Application to the Entscheidungsproblem Yannick Forster Dominik Kirst Gert Smolka Saarland University Saarland University Saarland University Saarbrücken, Germany Saarbrücken, Germany Saarbrücken, Germany [email protected] [email protected] [email protected] Abstract like decidability, enumerability, and reductions are avail- We formalise the computational undecidability of validity, able without reference to a concrete model of computation satisfiability, and provability of first-order formulas follow- such as Turing machines, general recursive functions, or ing a synthetic approach based on the computation native the λ-calculus. For instance, representing a given decision to Coq’s constructive type theory. Concretely, we consider problem by a predicate p on a type X, a function f : X ! B Tarski and Kripke semantics as well as classical and intu- with 8x: p x $ f x = tt is a decision procedure, a function itionistic natural deduction systems and provide compact д : N ! X with 8x: p x $ ¹9n: д n = xº is an enumer- many-one reductions from the Post correspondence prob- ation, and a function h : X ! Y with 8x: p x $ q ¹h xº lem (PCP). Moreover, developing a basic framework for syn- for a predicate q on a type Y is a many-one reduction from thetic computability theory in Coq, we formalise standard p to q. Working formally with concrete models instead is results concerning decidability, enumerability, and reducibil- cumbersome, given that every defined procedure needs to ity without reference to a concrete model of computation. be shown representable by a concrete entity of the model. -
Type Theory and Applications
Type Theory and Applications Harley Eades [email protected] 1 Introduction There are two major problems growing in two areas. The first is in Computer Science, in particular software engineering. Software is becoming more and more complex, and hence more susceptible to software defects. Software bugs have two critical repercussions: they cost companies lots of money and time to fix, and they have the potential to cause harm. The National Institute of Standards and Technology estimated that software errors cost the United State's economy approximately sixty billion dollars annually, while the Federal Bureau of Investigations estimated in a 2005 report that software bugs cost U.S. companies approximately sixty-seven billion a year [90, 108]. Software bugs have the potential to cause harm. In 2010 there were a approximately a hundred reports made to the National Highway Traffic Safety Administration of potential problems with the braking system of the 2010 Toyota Prius [17]. The problem was that the anti-lock braking system would experience a \short delay" when the brakes where pressed by the driver of the vehicle [106]. This actually caused some crashes. Toyota found that this short delay was the result of a software bug, and was able to repair the the vehicles using a software update [91]. Another incident where substantial harm was caused was in 2002 where two planes collided over Uberlingen¨ in Germany. A cargo plane operated by DHL collided with a passenger flight holding fifty-one passengers. Air-traffic control did not notice the intersecting traffic until less than a minute before the collision occurred. -
METALOGIC METALOGIC an Introduction to the Metatheory of Standard First Order Logic
METALOGIC METALOGIC An Introduction to the Metatheory of Standard First Order Logic Geoffrey Hunter Senior Lecturer in the Department of Logic and Metaphysics University of St Andrews PALGRA VE MACMILLAN © Geoffrey Hunter 1971 Softcover reprint of the hardcover 1st edition 1971 All rights reserved. No part of this publication may be reproduced or transmitted, in any form or by any means, without permission. First published 1971 by MACMILLAN AND CO LTD London and Basingstoke Associated companies in New York Toronto Dublin Melbourne Johannesburg and Madras SBN 333 11589 9 (hard cover) 333 11590 2 (paper cover) ISBN 978-0-333-11590-9 ISBN 978-1-349-15428-9 (eBook) DOI 10.1007/978-1-349-15428-9 The Papermac edition of this book is sold subject to the condition that it shall not, by way of trade or otherwise, be lent, resold, hired out, or otherwise circulated without the publisher's prior consent, in any form of binding or cover other than that in which it is published and without a similar condition including this condition being imposed on the subsequent purchaser. To my mother and to the memory of my father, Joseph Walter Hunter Contents Preface xi Part One: Introduction: General Notions 1 Formal languages 4 2 Interpretations of formal languages. Model theory 6 3 Deductive apparatuses. Formal systems. Proof theory 7 4 'Syntactic', 'Semantic' 9 5 Metatheory. The metatheory of logic 10 6 Using and mentioning. Object language and metalang- uage. Proofs in a formal system and proofs about a formal system. Theorem and metatheorem 10 7 The notion of effective method in logic and mathematics 13 8 Decidable sets 16 9 1-1 correspondence.