A Comparative Study on Different Big Data Tools

Total Page:16

File Type:pdf, Size:1020Kb

A Comparative Study on Different Big Data Tools A COMPARATIVE STUDY ON DIFFERENT BIG DATA TOOLS A Paper Submitted to the Graduate Faculty of the North Dakota State University of Agriculture and Applied Science By Sifat Ibtisum In Partial Fulfillment of the Requirements for the Degree of MASTER OF SCIENCE Major Department: Computer Science September 2020 Fargo, North Dakota North Dakota State University Graduate School Title A COMPARATIVE STUDY ON DIFFERENT BIG DATA TOOLS By Sifat Ibtisum The Supervisory Committee certifies that this disquisition complies with North Dakota State University’s regulations and meets the accepted standards for the degree of MASTER OF SCIENCE SUPERVISORY COMMITTEE: Kendall Nygard Chair Pratap Kotala Chad Ulven Approved: October 15, 2020 Simone Ludwig Date Department Chair ABSTRACT Big data has long been the topic of fascination for computer science enthusiasts around the world, and has gained even more prominence in recent times with the continuous explosion of data resulting from the likes of social media and the quest for tech giants to gain access to deeper analysis. This paper discusses various tools in big data technology and conducts a comparison among them. Different tools namely Sqoop, Apache Flume, Apache Kafka, Hive, Spark and many more are included. Various datasets are used for the experiment and a comparative study is made to figure out which tool works faster and more efficiently over the others, and explains the reason behind this. iii ACKNOWLEDGMENTS First and foremost, praises and thanks to the almighty Allah, for his blessing throughout everything and finely being able to finish my paper which is the last requirement of my Master’s program. I would like to express my deep and sincere gratitude to my research supervisor, Dr. Kendall E Nygard, Professor and Head of the Department of Computer Science at North Dakota State University for giving me the opportunity to do research and providing invaluable guidance throughout this research. His dynamism, vision, sincerity, and motivation have deeply inspired me. He has taught me the methodology to carry out the research and to present the research works as clearly as possible. It was a great privilege and honor to work and study under his guidance. I am extremely grateful for what he has offered me. I would also like to thank him for his friendship, empathy, and a great sense of humor. Again, due his absence Dr. Simone Ludwig took over as my chair, and the way she has guided me is really press worthy. Her sincerity, hard work and punctuality was the key reason why I am being able finish my paper so early. I also would like to extend my gratitude to my co-supervisors Dr. Ulven and Dr. Kotala for extending their support in the best possible way. My heartiest thanks to the person, who brought me here is my mother Dr. Ferdouse Islam. My dad expired when I was 13, since then it was my mom who did everything possible to bring me where I am now. Without her unconditional support, I could never be the person who I am today. I still can remember those early days when all the odds were against us but it was she, who single-handedly made things possible. I can't put into words, how proud, honored and blessed I am to be her son. May Almighty grant her a healthy and longer life. Moreover, my little iv sister Prioty, who made countless sacrifices so that I can achieve my dreams. Wish I could ever put into words, how thankful I am to you, my little angle. I also would like to extend my gratitude to my families and friends who believed in my dreams and helped me to progress. Among my families, Jes and Mr. Rony to whom I am really thankful for their exceptional support towards my family. And among my friends, Mr. Rafsan and Mr. Opu are the two people who acted like my elder brothers and did everything possibly they can so that I can achieve my dream. I am truly honored to have you guys in my life. Lastly, I want to thank everyone in the computer science Dept, graduate school and international office of North Dakota State University to guide me throughout this journey and last but not the least each member of NDSU for making my journey so exceptional and memorable. v DEDICATION I dedicate this work to the most valuable person of my life, my mom. vi TABLE OF CONTENTS ABSTRACT ................................................................................................................................... iii ACKNOWLEDGMENTS ............................................................................................................. iv DEDICATION ............................................................................................................................... vi LIST OF TABLES .......................................................................................................................... x LIST OF FIGURES ....................................................................................................................... xi 1. INTRODUCTION ...................................................................................................................... 1 1.1. Characteristics of Big Data .................................................................................................. 3 1.2. Benefits of Big Data and Data Analytics ............................................................................. 4 1.3. What is Big Data .................................................................................................................. 5 1.4. Importance of Big Data Processing ..................................................................................... 8 1.5. Application of Big Data ..................................................................................................... 10 1.6. Big Data and Cloud Computing Challenges ...................................................................... 24 2. TARGET AUDIENCE OF THE BIG DATA TOOLS ............................................................. 26 2.1. Knowing your Current and Future Customers ................................................................... 26 2.2. Targeting your Customers ................................................................................................. 27 2.3. Improving the Customer Experience ................................................................................. 27 2.4. Being Proactive .................................................................................................................. 28 3. LIST OF TOOLS USED IN BIG DATA ................................................................................. 29 3.1. Sqoop ................................................................................................................................. 29 3.2. Apache Flume .................................................................................................................... 29 3.3. Apache Kafka .................................................................................................................... 30 3.4. Hive .................................................................................................................................... 31 3.5. Hbase ................................................................................................................................. 31 3.6. Hadoop Distributed File System (HDFS) .......................................................................... 32 vii 3.7. Apache Spark ..................................................................................................................... 32 3.8. MapReduce ........................................................................................................................ 33 3.9. Pig ...................................................................................................................................... 33 3.10. Yarn ................................................................................................................................. 34 3.11. Zookeeper ........................................................................................................................ 34 3.12. Apache Oozie ................................................................................................................... 34 4. TRANSFORMATION TO NOSQL FROM RDMS ................................................................ 35 4.1. Relational Database ........................................................................................................... 35 4.2. ACID Properties ................................................................................................................ 36 4.3. NoSql DataBase ................................................................................................................. 36 4.4. NoSQL Database Types ..................................................................................................... 37 4.4.1. Document Store Database ........................................................................................... 37 4.4.2. Key Value Store Database .......................................................................................... 38 4.4.3. Graph Stores Database ................................................................................................ 40 4.4.4. Wide column stores database ...................................................................................... 41 4.4.5. Performance of NoSql and Sql Database for Big Data ............................................... 44 5. DESCRIPTION OF DATASETS ............................................................................................
Recommended publications
  • Hadoop Tutorials  Cassandra  Hector API  Request Tutorial  About
    Home Big Data Hadoop Tutorials Cassandra Hector API Request Tutorial About LABELS: HADOOP-TUTORIAL, HDFS 3 OCTOBER 2013 Hadoop Tutorial: Part 1 - What is Hadoop ? (an Overview) Hadoop is an open source software framework that supports data intensive distributed applications which is licensed under Apache v2 license. At-least this is what you are going to find as the first line of definition on Hadoop in Wikipedia. So what is data intensive distributed applications? Well data intensive is nothing but BigData (data that has outgrown in size) anddistributed applications are the applications that works on network by communicating and coordinating with each other by passing messages. (say using a RPC interprocess communication or through Message-Queue) Hence Hadoop works on a distributed environment and is build to store, handle and process large amount of data set (in petabytes, exabyte and more). Now here since i am saying that hadoop stores petabytes of data, this doesn't mean that Hadoop is a database. Again remember its a framework that handles large amount of data for processing. You will get to know the difference between Hadoop and Databases (or NoSQL Databases, well that's what we call BigData's databases) as you go down the line in the coming tutorials. Hadoop was derived from the research paper published by Google on Google File System(GFS) and Google's MapReduce. So there are two integral parts of Hadoop: Hadoop Distributed File System(HDFS) and Hadoop MapReduce. Hadoop Distributed File System (HDFS) HDFS is a filesystem designed for storing very large files with streaming data accesspatterns, running on clusters of commodity hardware.
    [Show full text]
  • Introduction to Hbase Schema Design
    Introduction to HBase Schema Design AmANDeeP KHURANA Amandeep Khurana is The number of applications that are being developed to work with large amounts a Solutions Architect at of data has been growing rapidly in the recent past . To support this new breed of Cloudera and works on applications, as well as scaling up old applications, several new data management building solutions using the systems have been developed . Some call this the big data revolution . A lot of these Hadoop stack. He is also a co-author of HBase new systems that are being developed are open source and community driven, in Action. Prior to Cloudera, Amandeep worked deployed at several large companies . Apache HBase [2] is one such system . It is at Amazon Web Services, where he was part an open source distributed database, modeled around Google Bigtable [5] and is of the Elastic MapReduce team and built the becoming an increasingly popular database choice for applications that need fast initial versions of their hosted HBase product. random access to large amounts of data . It is built atop Apache Hadoop [1] and is [email protected] tightly integrated with it . HBase is very different from traditional relational databases like MySQL, Post- greSQL, Oracle, etc . in how it’s architected and the features that it provides to the applications using it . HBase trades off some of these features for scalability and a flexible schema . This also translates into HBase having a very different data model . Designing HBase tables is a different ballgame as compared to relational database systems . I will introduce you to the basics of HBase table design by explaining the data model and build on that by going into the various concepts at play in designing HBase tables through an example .
    [Show full text]
  • Combined Documents V2
    Outline: Combining Brainstorming Deliverables Table of Contents 1. Introduction and Definition 2. Reference Architecture and Taxonomy 3. Requirements, Gap Analysis, and Suggested Best Practices 4. Future Directions and Roadmap 5. Security and Privacy - 10 Top Challenges 6. Conclusions and General Advice Appendix A. Terminology Glossary Appendix B. Solutions Glossary Appendix C. Use Case Examples Appendix D. Actors and Roles 1. Introduction and Definition The purpose of this outline is to illustrate how some initial brainstorming documents might be pulled together into an integrated deliverable. The outline will follow the diagram below. Section 1 introduces a definition of Big Data. An extended terminology Glossary is found in Appendix A. In section 2, a Reference Architecture diagram is presented followed by a taxonomy describing and extending the elements of the Reference Architecture. Section 3 maps requirements from use case building blocks to the Reference Architecture. A description of the requirement, a gap analysis, and suggested best practice is included with each mapping. In Section 4 future improvements in Big Data technology are mapped to the Reference Architecture. An initial Technology Roadmap is created on the requirements and gap analysis in Section 3 and the expected future improvements from Section 4. Section 5 is a placeholder for an extended discussion of Security and Privacy. Section 6 gives an example of some general advice. The Appendices provide Big Data terminology and solutions glossaries, Use Case Examples, and some possible Actors and Roles. Big Data Definition - “Big Data refers to the new technologies and applications introduced to handle increasing Volumes of data while enhancing data utilization capabilities such as Variety, Velocity, Variability, Veracity, and Value.” The key attribute is the large Volume of data available that forces horizontal scalability of storage and processing and has implications for all the other V-attributes.
    [Show full text]
  • Oracle Metadata Management V12.2.1.3.0 New Features Overview
    An Oracle White Paper October 12 th , 2018 Oracle Metadata Management v12.2.1.3.0 New Features Overview Oracle Metadata Management version 12.2.1.3.0 – October 12 th , 2018 New Features Overview Disclaimer This document is for informational purposes. It is not a commitment to deliver any material, code, or functionality, and should not be relied upon in making purchasing decisions. The development, release, and timing of any features or functionality described in this document remains at the sole discretion of Oracle. This document in any form, software or printed matter, contains proprietary information that is the exclusive property of Oracle. This document and information contained herein may not be disclosed, copied, reproduced, or distributed to anyone outside Oracle without prior written consent of Oracle. This document is not part of your license agreement nor can it be incorporated into any contractual agreement with Oracle or its subsidiaries or affiliates. 1 Oracle Metadata Management version 12.2.1.3.0 – October 12 th , 2018 New Features Overview Table of Contents Executive Overview ............................................................................ 3 Oracle Metadata Management 12.2.1.3.0 .......................................... 4 METADATA MANAGER VS METADATA EXPLORER UI .............. 4 METADATA HOME PAGES ........................................................... 5 METADATA QUICK ACCESS ........................................................ 6 METADATA REPORTING .............................................................
    [Show full text]
  • MÁSTER EN INGENIERÍA WEB Proyecto Fin De Máster
    UNIVERSIDAD POLITÉCNICA DE MADRID Escuela Técnica Superior de Ingeniería de Sistemas Informáticos MÁSTER EN INGENIERÍA WEB Proyecto Fin de Máster …Estudio Conceptual de Big Data utilizando Spring… Autor Gabriel David Muñumel Mesa Tutor Jesús Bernal Bermúdez 1 de julio de 2018 Estudio Conceptual de Big Data utilizando Spring AGRADECIMIENTOS Gracias a mis padres Julian y Miriam por todo el apoyo y empeño en que siempre me mantenga estudiando. Gracias a mi tia Gloria por sus consejos e ideas. Gracias a mi hermano José Daniel y mi cuñada Yule por siempre recordarme que con trabajo y dedicación se pueden alcanzar las metas. [UPM] Máster en Ingeniería Web RESUMEN Big Data ha sido el término dado para aglomerar la gran cantidad de datos que no pueden ser procesados por los métodos tradicionales. Entre sus funciones principales se encuentran la captura de datos, almacenamiento, análisis, búsqueda, transferencia, visualización, monitoreo y modificación. Las empresas han visto en Big Data una poderosa herramienta para mejorar sus negocios en una economía mundial basada firmemente en el conocimiento. Los datos son el combustible para las compañías modernas y, por lo tanto, dar sentido a estos datos permite realmente comprender las conexiones invisibles dentro de su origen. En efecto, con mayor información se toman mejores decisiones, permitiendo la creación de estrategias integrales e innovadoras que garanticen resultados exitosos. Dada la creciente relevancia de Big Data en el entorno profesional moderno ha servido como motivación para la realización de este proyecto. Con la utilización de Java como software de desarrollo y Spring como framework web se desea analizar y comprobar qué herramientas ofrecen estas tecnologías para aplicar procesos enfocados en Big Data.
    [Show full text]
  • Security Log Analysis Using Hadoop Harikrishna Annangi Harikrishna Annangi, [email protected]
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by St. Cloud State University St. Cloud State University theRepository at St. Cloud State Culminating Projects in Information Assurance Department of Information Systems 3-2017 Security Log Analysis Using Hadoop Harikrishna Annangi Harikrishna Annangi, [email protected] Follow this and additional works at: https://repository.stcloudstate.edu/msia_etds Recommended Citation Annangi, Harikrishna, "Security Log Analysis Using Hadoop" (2017). Culminating Projects in Information Assurance. 19. https://repository.stcloudstate.edu/msia_etds/19 This Starred Paper is brought to you for free and open access by the Department of Information Systems at theRepository at St. Cloud State. It has been accepted for inclusion in Culminating Projects in Information Assurance by an authorized administrator of theRepository at St. Cloud State. For more information, please contact [email protected]. Security Log Analysis Using Hadoop by Harikrishna Annangi A Starred Paper Submitted to the Graduate Faculty of St. Cloud State University in Partial Fulfillment of the Requirements for the Degree of Master of Science in Information Assurance April, 2016 Starred Paper Committee: Dr. Dennis Guster, Chairperson Dr. Susantha Herath Dr. Sneh Kalia 2 Abstract Hadoop is used as a general-purpose storage and analysis platform for big data by industries. Commercial Hadoop support is available from large enterprises, like EMC, IBM, Microsoft and Oracle and Hadoop companies like Cloudera, Hortonworks, and Map Reduce. Hadoop is a scheme written in Java that allows distributed processes of large data sets across clusters of computers using programming models. A Hadoop frame work application works in an environment that provides storage and computation across clusters of computers.
    [Show full text]
  • E6895 Advanced Big Data Analytics Lecture 4: Data Store
    E6895 Advanced Big Data Analytics Lecture 4: Data Store Ching-Yung Lin, Ph.D. Adjunct Professor, Dept. of Electrical Engineering and Computer Science Chief Scientist, Graph Computing, IBM Watson Research Center E6895 Advanced Big Data Analytics — Lecture 4 © CY Lin, 2016 Columbia University Reference 2 E6895 Advanced Big Data Analytics – Lecture 4: Data Store © 2015 CY Lin, Columbia University Spark SQL 3 E6895 Advanced Big Data Analytics – Lecture 4: Data Store © 2015 CY Lin, Columbia University Spark SQL 4 E6895 Advanced Big Data Analytics – Lecture 4: Data Store © 2015 CY Lin, Columbia University Apache Hive 5 E6895 Advanced Big Data Analytics – Lecture 4: Data Store © 2015 CY Lin, Columbia University Using Hive to Create a Table 6 E6895 Advanced Big Data Analytics – Lecture 4: Data Store © 2015 CY Lin, Columbia University Creating, Dropping, and Altering DBs in Apache Hive 7 E6895 Advanced Big Data Analytics – Lecture 4: Data Store © 2015 CY Lin, Columbia University Another Hive Example 8 E6895 Advanced Big Data Analytics – Lecture 4: Data Store © 2015 CY Lin, Columbia University Hive’s operation modes 9 E6895 Advanced Big Data Analytics – Lecture 4: Data Store © 2015 CY Lin, Columbia University Using HiveQL for Spark SQL 10 E6895 Advanced Big Data Analytics – Lecture 4: Data Store © 2015 CY Lin, Columbia University Hive Language Manual 11 E6895 Advanced Big Data Analytics – Lecture 4: Data Store © 2015 CY Lin, Columbia University Using Spark SQL — Steps and Example 12 E6895 Advanced Big Data Analytics – Lecture 4: Data Store © 2015 CY Lin, Columbia University Query testtweet.json Get it from Learning Spark Github ==> https://github.com/databricks/learning-spark/tree/master/files 13 E6895 Advanced Big Data Analytics – Lecture 4: Data Store © 2015 CY Lin, Columbia University SchemaRDD 14 E6895 Advanced Big Data Analytics – Lecture 4: Data Store © 2015 CY Lin, Columbia University Row Objects Row objects represent records inside SchemaRDDs, and are simply fixed-length arrays of fields.
    [Show full text]
  • Apache Log4j 2 V
    ...................................................................................................................................... Apache Log4j 2 v. 2.4.1 User's Guide ...................................................................................................................................... The Apache Software Foundation 2015-10-08 T a b l e o f C o n t e n t s i Table of Contents ....................................................................................................................................... 1. Table of Contents . i 2. Introduction . 1 3. Architecture . 3 4. Log4j 1.x Migration . 10 5. API . 16 6. Configuration . 19 7. Web Applications and JSPs . 50 8. Plugins . 58 9. Lookups . 62 10. Appenders . 70 11. Layouts . 128 12. Filters . 154 13. Async Loggers . 167 14. JMX . 181 15. Logging Separation . 188 16. Extending Log4j . 190 17. Programmatic Log4j Configuration . 198 18. Custom Log Levels . 204 © 2 0 1 5 , T h e A p a c h e S o f t w a r e F o u n d a t i o n • A L L R I G H T S R E S E R V E D . T a b l e o f C o n t e n t s ii © 2 0 1 5 , T h e A p a c h e S o f t w a r e F o u n d a t i o n • A L L R I G H T S R E S E R V E D . 1 I n t r o d u c t i o n 1 1 Introduction ....................................................................................................................................... 1.1 Welcome to Log4j 2! 1.1.1 Introduction Almost every large application includes its own logging or tracing API. In conformance with this rule, the E.U.
    [Show full text]
  • Apache Sentry
    Apache Sentry Prasad Mujumdar [email protected] [email protected] Agenda ● Various aspects of data security ● Apache Sentry for authorization ● Key concepts of Apache Sentry ● Sentry features ● Sentry architecture ● Integration with Hadoop ecosystem ● Sentry administration ● Future plans ● Demo ● Questions Who am I • Software engineer at Cloudera • Committer and PPMC member of Apache Sentry • also for Apache Hive and Apache Flume • Part of the the original team that started Sentry work Aspects of security Perimeter Access Visibility Data Authentication Authorization Audit, Lineage Encryption, what user can do data origin, usage Kerberos, LDAP/AD Masking with data Data access Access ● Provide user access to data Authorization ● Manage access policies what user can do ● Provide role based access with data Agenda ● Various aspects of data security ● Apache Sentry for authorization ● Key concepts of Apache Sentry ● Sentry features ● Sentry architecture ● Integration with Hadoop ecosystem ● Sentry administration ● Future plans ● Demo ● Questions Apache Sentry (Incubating) Unified Authorization module for Hadoop Unlocks Key RBAC Requirements Secure, fine-grained, role-based authorization Multi-tenant administration Enforce a common set of policies across multiple data access path in Hadoop. Key Capabilities of Sentry Fine-Grained Authorization Permissions on object hierarchie. Eg, Database, Table, Columns Role-Based Authorization Support for role templetes to manage authorization for a large set of users and data objects Multi Tanent Administration
    [Show full text]
  • Orchestrating Big Data Analysis Workflows in the Cloud: Research Challenges, Survey, and Future Directions
    00 Orchestrating Big Data Analysis Workflows in the Cloud: Research Challenges, Survey, and Future Directions MUTAZ BARIKA, University of Tasmania SAURABH GARG, University of Tasmania ALBERT Y. ZOMAYA, University of Sydney LIZHE WANG, China University of Geoscience (Wuhan) AAD VAN MOORSEL, Newcastle University RAJIV RANJAN, Chinese University of Geoscienes and Newcastle University Interest in processing big data has increased rapidly to gain insights that can transform businesses, government policies and research outcomes. This has led to advancement in communication, programming and processing technologies, including Cloud computing services and technologies such as Hadoop, Spark and Storm. This trend also affects the needs of analytical applications, which are no longer monolithic but composed of several individual analytical steps running in the form of a workflow. These Big Data Workflows are vastly different in nature from traditional workflows. Researchers arecurrently facing the challenge of how to orchestrate and manage the execution of such workflows. In this paper, we discuss in detail orchestration requirements of these workflows as well as the challenges in achieving these requirements. We alsosurvey current trends and research that supports orchestration of big data workflows and identify open research challenges to guide future developments in this area. CCS Concepts: • General and reference → Surveys and overviews; • Information systems → Data analytics; • Computer systems organization → Cloud computing; Additional Key Words and Phrases: Big Data, Cloud Computing, Workflow Orchestration, Requirements, Approaches ACM Reference format: Mutaz Barika, Saurabh Garg, Albert Y. Zomaya, Lizhe Wang, Aad van Moorsel, and Rajiv Ranjan. 2018. Orchestrating Big Data Analysis Workflows in the Cloud: Research Challenges, Survey, and Future Directions.
    [Show full text]
  • Unravel Data Systems Version 4.5
    UNRAVEL DATA SYSTEMS VERSION 4.5 Component name Component version name License names jQuery 1.8.2 MIT License Apache Tomcat 5.5.23 Apache License 2.0 Tachyon Project POM 0.8.2 Apache License 2.0 Apache Directory LDAP API Model 1.0.0-M20 Apache License 2.0 apache/incubator-heron 0.16.5.1 Apache License 2.0 Maven Plugin API 3.0.4 Apache License 2.0 ApacheDS Authentication Interceptor 2.0.0-M15 Apache License 2.0 Apache Directory LDAP API Extras ACI 1.0.0-M20 Apache License 2.0 Apache HttpComponents Core 4.3.3 Apache License 2.0 Spark Project Tags 2.0.0-preview Apache License 2.0 Curator Testing 3.3.0 Apache License 2.0 Apache HttpComponents Core 4.4.5 Apache License 2.0 Apache Commons Daemon 1.0.15 Apache License 2.0 classworlds 2.4 Apache License 2.0 abego TreeLayout Core 1.0.1 BSD 3-clause "New" or "Revised" License jackson-core 2.8.6 Apache License 2.0 Lucene Join 6.6.1 Apache License 2.0 Apache Commons CLI 1.3-cloudera-pre-r1439998 Apache License 2.0 hive-apache 0.5 Apache License 2.0 scala-parser-combinators 1.0.4 BSD 3-clause "New" or "Revised" License com.springsource.javax.xml.bind 2.1.7 Common Development and Distribution License 1.0 SnakeYAML 1.15 Apache License 2.0 JUnit 4.12 Common Public License 1.0 ApacheDS Protocol Kerberos 2.0.0-M12 Apache License 2.0 Apache Groovy 2.4.6 Apache License 2.0 JGraphT - Core 1.2.0 (GNU Lesser General Public License v2.1 or later AND Eclipse Public License 1.0) chill-java 0.5.0 Apache License 2.0 Apache Commons Logging 1.2 Apache License 2.0 OpenCensus 0.12.3 Apache License 2.0 ApacheDS Protocol
    [Show full text]
  • Talend Open Studio for Big Data Release Notes
    Talend Open Studio for Big Data Release Notes 6.0.0 Talend Open Studio for Big Data Adapted for v6.0.0. Supersedes previous releases. Publication date July 2, 2015 Copyleft This documentation is provided under the terms of the Creative Commons Public License (CCPL). For more information about what you can and cannot do with this documentation in accordance with the CCPL, please read: http://creativecommons.org/licenses/by-nc-sa/2.0/ Notices Talend is a trademark of Talend, Inc. All brands, product names, company names, trademarks and service marks are the properties of their respective owners. License Agreement The software described in this documentation is licensed under the Apache License, Version 2.0 (the "License"); you may not use this software except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0.html. Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. This product includes software developed at AOP Alliance (Java/J2EE AOP standards), ASM, Amazon, AntlR, Apache ActiveMQ, Apache Ant, Apache Avro, Apache Axiom, Apache Axis, Apache Axis 2, Apache Batik, Apache CXF, Apache Cassandra, Apache Chemistry, Apache Common Http Client, Apache Common Http Core, Apache Commons, Apache Commons Bcel, Apache Commons JxPath, Apache
    [Show full text]