The Combination of Bromelain and Acetylcysteine (Bromac) Synergistically Inactivates SARS-Cov-2
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Application of Plant Proteolytic Enzymes for Tenderization of Rabbit Meat
Biotechnology in Animal Husbandry 34 (2), p 229-238 , 2018 ISSN 1450-9156 Publisher: Institute for Animal Husbandry, Belgrade-Zemun UDC 637.5.039'637.55'712 https://doi.org/10.2298/BAH1802229D APPLICATION OF PLANT PROTEOLYTIC ENZYMES FOR TENDERIZATION OF RABBIT MEAT Maria Doneva, Iliana Nacheva, Svetla Dyankova, Petya Metodieva, Daniela Miteva Institute of Cryobiology and Food Technology, Cherni Vrah 53, 1407, Sofia, Bulgaria Corresponding author: Maria Doneva, e-mail: [email protected] Original scientific paper Abstract: The purpose of this study is to assess the tenderizing effect of plant proteolytic enzymes upon raw rabbit meat. Tests are performed on rabbit meat samples treated with papain and two vegetal sources of natural proteases (extracts of kiwifruit and ginger root). Two variants of marinade solutions are prepared from each vegetable raw materials– 50% (w/w) and 100 % (w/w), with a duration of processing 2h, 24h, and 48h. Changes in the following physico- chemical characteristics of meat have been observed: pH, water-holding capacity, cooking losses and quantity of free amino acids. Differences in values of these characteristics have been observed, both between control and test samples, as well as depending of treatment duration. For meat samples marinated with papain and ginger extracts, the water-holding capacity reached to 6.74 ± 0.04 % (papain), 5.58 ± 0.09 % (variant 1) and 6.80 ± 0.11 % (variant 2) after 48 hours treatment. In rabbit meat marinated with kiwifruit extracts, a significant increase in WHC was observed at 48 hours, 3.37 ± 0.07 (variant 3) and 6.84 ± 0.11 (variant 4). -
Crystal Structure of Cathepsin X: a Flip–Flop of the Ring of His23
st8308.qxd 03/22/2000 11:36 Page 305 Research Article 305 Crystal structure of cathepsin X: a flip–flop of the ring of His23 allows carboxy-monopeptidase and carboxy-dipeptidase activity of the protease Gregor Guncar1, Ivica Klemencic1, Boris Turk1, Vito Turk1, Adriana Karaoglanovic-Carmona2, Luiz Juliano2 and Dušan Turk1* Background: Cathepsin X is a widespread, abundantly expressed papain-like Addresses: 1Department of Biochemistry and v mammalian lysosomal cysteine protease. It exhibits carboxy-monopeptidase as Molecular Biology, Jozef Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia and 2Departamento de well as carboxy-dipeptidase activity and shares a similar activity profile with Biofisica, Escola Paulista de Medicina, Rua Tres de cathepsin B. The latter has been implicated in normal physiological events as Maio 100, 04044-020 Sao Paulo, Brazil. well as in various pathological states such as rheumatoid arthritis, Alzheimer’s disease and cancer progression. Thus the question is raised as to which of the *Corresponding author. E-mail: [email protected] two enzyme activities has actually been monitored. Key words: Alzheimer’s disease, carboxypeptidase, Results: The crystal structure of human cathepsin X has been determined at cathepsin B, cathepsin X, papain-like cysteine 2.67 Å resolution. The structure shares the common features of a papain-like protease enzyme fold, but with a unique active site. The most pronounced feature of the Received: 1 November 1999 cathepsin X structure is the mini-loop that includes a short three-residue Revisions requested: 8 December 1999 insertion protruding into the active site of the protease. The residue Tyr27 on Revisions received: 6 January 2000 one side of the loop forms the surface of the S1 substrate-binding site, and Accepted: 7 January 2000 His23 on the other side modulates both carboxy-monopeptidase as well as Published: 29 February 2000 carboxy-dipeptidase activity of the enzyme by binding the C-terminal carboxyl group of a substrate in two different sidechain conformations. -
Food Proteins Are a Potential Resource for Mining
Hypothesis Article: Food Proteins are a Potential Resource for Mining Cathepsin L Inhibitory Drugs to Combat SARS-CoV-2 Ashkan Madadlou1 1Wageningen Universiteit en Research July 20, 2020 Abstract The entry of SARS-CoV-2 into host cells proceeds by a two-step proteolysis process, which involves the lysosomal peptidase cathepsin L. Inhibition of cathepsin L is therefore considered an effective method to prevent the virus internalization. Analysis from the perspective of structure-functionality elucidates that cathepsin L inhibitory proteins/peptides found in food share specific features: multiple disulfide crosslinks (buried in protein core), lack or low contents of a-helix structures (small helices), and high surface hydrophobicity. Lactoferrin can inhibit cathepsin L, but not cathepsins B and H. This selective inhibition might be useful in fine targeting of cathepsin L. Molecular docking indicated that only the carboxyl-terminal lobe of lactoferrin interacts with cathepsin L and that the active site cleft of cathepsin L is heavily superposed by lactoferrin. Food protein-derived peptides might also show cathepsin L inhibitory activity. Abstract The entry of SARS-CoV-2 into host cells proceeds by a two-step proteolysis process, which involves the lyso- somal peptidase cathepsin L. Inhibition of cathepsin L is therefore considered an effective method to prevent the virus internalization. Analysis from the perspective of structure-functionality elucidates that cathepsin L inhibitory proteins/peptides found in food share specific features: multiple disulfide crosslinks (buried in protein core), lack or low contents of a-helix structures (small helices), and high surface hydrophobicity. Lactoferrin can inhibit cathepsin L, but not cathepsins B and H. -
Deficiency for the Cysteine Protease Cathepsin L Promotes Tumor
Oncogene (2010) 29, 1611–1621 & 2010 Macmillan Publishers Limited All rights reserved 0950-9232/10 $32.00 www.nature.com/onc ORIGINAL ARTICLE Deficiency for the cysteine protease cathepsin L promotes tumor progression in mouse epidermis J Dennema¨rker1,6, T Lohmu¨ller1,6, J Mayerle2, M Tacke1, MM Lerch2, LM Coussens3,4, C Peters1,5 and T Reinheckel1,5 1Institute for Molecular Medicine and Cell Research, Albert-Ludwigs-University Freiburg, Freiburg, Germany; 2Department of Gastroenterology, Endocrinology and Nutrition, Ernst-Moritz-Arndt University Greifswald, Greifswald, Germany; 3Department of Pathology, University of California, San Francisco, CA, USA; 4Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, USA and 5Ludwig Heilmeyer Comprehensive Cancer Center and Centre for Biological Signalling Studies, Albert-Ludwigs-University Freiburg, Freiburg, Germany To define a functional role for the endosomal/lysosomal Introduction cysteine protease cathepsin L (Ctsl) during squamous carcinogenesis, we generated mice harboring a constitutive Proteases have traditionally been thought to promote Ctsl deficiency in addition to epithelial expression of the invasive growth of carcinomas, contributing to the the human papillomavirus type 16 oncogenes (human spread and homing of metastasizing cancer cells (Dano cytokeratin 14 (K14)–HPV16). We found enhanced tumor et al., 1999). Proteases that function outside tumor cells progression and metastasis in the absence of Ctsl. As have been implicated in these processes because of their tumor progression in K14–HPV16 mice is dependent well-established release from tumors, causing the break- on inflammation and angiogenesis, we examined immune down of basement membranes and extracellular matrix. cell infiltration and vascularization without finding any Thus, extracellular proteases may in part facilitate effect of the Ctsl genotype. -
Go Molecular! a Clinical Reference Guide to Molecular Allergy Part 2: the Allergen Components
Setting the standard in allergy diagnostics 2019 edition with the latest news in molecular allergology Go molecular! A clinical reference guide to molecular allergy Part 2: The allergen components Second edition | By Neal Bradshaw For more information on this topic allergyai.com Go molecular! Preface In the previous 2013 edition of Go the content in this new version of Go Molecular, I produced a straight forward Molecular has been aimed to provide clinical reference guide book to describe improved diagnostic explanations in common allergens and their constituent the form of tables, with concise clinical components. This guide is an update interpretation comments. Also new is a to the original but keeps the focus on section on aero-allergen components, understanding component test results, an introduction to micro-array, as well as well as what tests are actually as new information on diagnostic gaps commercial available (since this is an regarding certain food components. important practical aspect of molecular allergy!). If you need further supporting information relating to molecular allergy then I can Since 2013 the science of molecular recommend visiting our webpage: allergy has exploded with many new allergyai.com. studies both using single and multiplex allergen testing formats. There is a lot Neal Bradshaw of new clinical evidence to consider, Portfolio Manager - Allergy emerging allergens like alpha-gal and the Thermo Fisher Scientific availability of new ImmunoCAPTM Allergen Components. Beyond the new science, Disclaimer: The content of this book is intended as an aid to the physician to interpret allergen specific IgE antibody test results. It is not intended as medical advice on an individual level. -
Kinetic Properties and Characterization of Purified Proteases from Pacific Whiting
AN ABSTRACT OF THE THESIS OF JuWen Wu for the degree of Master of Science in Food Science and Technology presented on March 10. 1994 . Title: Kinetic Properties and Characterization of Purified Proteases from Pacific Whiting (Merluccius productus) . Abstract approved: ._ ■^^HaejWg An Kinetic properties of the two proteases, causing textural degradation of Pacific whiting (Merluccius productus) during heating, were compared and characterized with the synthetic substrate, Z-Phe-Arg-NMec. Pacific whiting P-I and P-II showed the highest specificity on Z-Phe-Arg-NMec, specific substrate for cathepsin L. The Km of 1 preactivated P-I and P-II were 62.98 and 76.02 (^M), and kcat, 2.38 and 1.34 (s" ) against Z-Phe-Arg-NMec at pH 7.0 and 30°C, respectively. Optimum pH stability for preactivated P-I and P-II is between 4.5 and 5.5. Both enzymes showed similar pH- induced preactivation profiles at 30oC. The maximal activity for both enzymes was obtained by preactivating the enzyme at a range of pH 5.5 to 7.5. The highest activation rate for both enzymes was determined at pH 7.5. At pH 5.5, the rate to reach the maximal activity was the slowest, but the activity was stable up to 1 hr. P-I and P-II shared similar temperature profiles at pH 5.5 and pH 7.0 studied. Optimum temperatures at pH 5.5 and 7.0 for both proteases on the same substrate were 550C. Significant thermal inactivation for both enzymes was shown at 750C. -
Actinidin Treatment and Sous Vide Cooking: Effects on Tenderness and in Vitro Protein Digestibility of Beef Brisket
Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author. Actinidin Treatment and Sous Vide Cooking: Effects on Tenderness and In Vitro Protein Digestibility of Beef Brisket A thesis presented in partial fulfilment of the requirements for the degree of Master of Food Technology at Massey University, Manawatū , New Zealand Xiaojie Zhu 2017 i ii Abstract Actinidin from kiwifruit can tenderise meat and help to add value to low-value meat cuts. Compared with other traditional tenderisers (e.g. papain and bromelain) it is a promising way, due to its less intensive tenderisation effects on meat. But, as with other plant proteases, over-tenderisation of meat may occur if the reaction is not controlled. Therefore, the objectives of this study were (1) finding a suitable process to control the enzyme activity after desired meat tenderisation has been achieved; (2) optimising the dual processing conditions- actinidin pre-treatment followed by sous vide cooking to achieve the desired tenderisation in shorter processing times. The first part of the study focused on the thermal inactivation of actinidin in freshly-prepared kiwifruit extract (KE) or a commercially available green kiwifruit enzyme extract (CEE). The second part evaluated the effects of actinidin pre-treatment on texture and in vitro protein digestibility of sous vide cooked beef brisket steaks. The results showed that actinidin in KE and CEE was inactivated at moderate temperatures (60 and 65 °C) in less than 5 min. -
VEGF-A Induces Angiogenesis by Perturbing the Cathepsin-Cysteine
Published OnlineFirst May 12, 2009; DOI: 10.1158/0008-5472.CAN-08-4539 Published Online First on May 12, 2009 as 10.1158/0008-5472.CAN-08-4539 Research Article VEGF-A Induces Angiogenesis by Perturbing the Cathepsin-Cysteine Protease Inhibitor Balance in Venules, Causing Basement Membrane Degradation and Mother Vessel Formation Sung-Hee Chang,1 Keizo Kanasaki,2 Vasilena Gocheva,4 Galia Blum,5 Jay Harper,3 Marsha A. Moses,3 Shou-Ching Shih,1 Janice A. Nagy,1 Johanna Joyce,4 Matthew Bogyo,5 Raghu Kalluri,2 and Harold F. Dvorak1 Departments of 1Pathology and 2Medicine, and the Center for Vascular Biology Research, Beth Israel Deaconess Medical Center and Harvard Medical School, and 3Departments of Surgery, Children’s Hospital and Harvard Medical School, Boston, Massachusetts; 4Cancer Biology and Genetics Program, Memorial Sloan-Kettering Cancer Center, New York, New York; and 5Department of Pathology, Stanford University, Stanford, California Abstract to form in many transplantable mouse tumor models are mother Tumors initiate angiogenesis primarily by secreting vascular vessels (MV), a blood vessel type that is also common in many endothelial growth factor (VEGF-A164). The first new vessels autochthonous human tumors (2, 3, 6–8). MV are greatly enlarged, to form are greatly enlarged, pericyte-poor sinusoids, called thin-walled, hyperpermeable, pericyte-depleted sinusoids that form mother vessels (MV), that originate from preexisting venules. from preexisting venules. The dramatic enlargement of venules We postulated that the venular enlargement necessary to form leading to MV formation would seem to require proteolytic MV would require a selective degradation of their basement degradation of their basement membranes. -
Boceprevir, GC-376, and Calpain Inhibitors II, XII Inhibit SARS-Cov-2 Viral Replication by Targeting the Viral Main Protease
bioRxiv preprint doi: https://doi.org/10.1101/2020.04.20.051581; this version posted May 8, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Boceprevir, GC-376, and calpain inhibitors II, XII inhibit SARS-CoV-2 viral replication by targeting the viral main protease Chunlong Ma,1 Michael D. Sacco,2 Brett Hurst,3,4 Julia A. Townsend,5 Yanmei Hu,1 Tommy Szeto,1 Xiujun Zhang,2 Bart Tarbet, 3,4 Michael T. Marty,5 Yu Chen,2,* Jun Wang1,* 1Department of Pharmacology and Toxicology, College of Pharmacy, The University of Arizona, Tucson, AZ, 85721, United States 2Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, 33612, United States 3Institute for Antiviral Research, Utah State University, Logan, UT, 84322, USA 4Department of Animal, Dairy and Veterinary Sciences, Utah State University, Logan, UT, 84322, USA 5Department of Chemistry and Biochemistry, The University of Arizona, Tucson, AZ, 85721, United States *Corresponding authors: Jun Wang, Tel: 520-626-1366, Fax: 520-626-0749, email: [email protected] Yu Chen, Tel: 813-974-7809, email: [email protected] Keywords: SARS-CoV-2, COVID-19, main protease, 3CL protease, calpain inhibitors, boceprevir, GC-376 bioRxiv preprint doi: https://doi.org/10.1101/2020.04.20.051581; this version posted May 8, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. -
Chapter 11 Cysteine Proteases
CHAPTER 11 CYSTEINE PROTEASES ZBIGNIEW GRZONKA, FRANCISZEK KASPRZYKOWSKI AND WIESŁAW WICZK∗ Faculty of Chemistry, University of Gdansk,´ Poland ∗[email protected] 1. INTRODUCTION Cysteine proteases (CPs) are present in all living organisms. More than twenty families of cysteine proteases have been described (Barrett, 1994) many of which (e.g. papain, bromelain, ficain , animal cathepsins) are of industrial impor- tance. Recently, cysteine proteases, in particular lysosomal cathepsins, have attracted the interest of the pharmaceutical industry (Leung-Toung et al., 2002). Cathepsins are promising drug targets for many diseases such as osteoporosis, rheumatoid arthritis, arteriosclerosis, cancer, and inflammatory and autoimmune diseases. Caspases, another group of CPs, are important elements of the apoptotic machinery that regulates programmed cell death (Denault and Salvesen, 2002). Comprehensive information on CPs can be found in many excellent books and reviews (Barrett et al., 1998; Bordusa, 2002; Drauz and Waldmann, 2002; Lecaille et al., 2002; McGrath, 1999; Otto and Schirmeister, 1997). 2. STRUCTURE AND FUNCTION 2.1. Classification and Evolution Cysteine proteases (EC.3.4.22) are proteins of molecular mass about 21-30 kDa. They catalyse the hydrolysis of peptide, amide, ester, thiol ester and thiono ester bonds. The CP family can be subdivided into exopeptidases (e.g. cathepsin X, carboxypeptidase B) and endopeptidases (papain, bromelain, ficain, cathepsins). Exopeptidases cleave the peptide bond proximal to the amino or carboxy termini of the substrate, whereas endopeptidases cleave peptide bonds distant from the N- or C-termini. Cysteine proteases are divided into five clans: CA (papain-like enzymes), 181 J. Polaina and A.P. MacCabe (eds.), Industrial Enzymes, 181–195. -
Efficiency of Plant Proteases Bromelain and Papain on Turkey Meat Tenderness
Biotechnology in Animal Husbandry 31 (3), p 407-413 , 2015 ISSN 1450-9156 Publisher: Institute for Animal Husbandry, Belgrade-Zemun UDC 637.5.03 DOI: 10.2298/BAH1503407D EFFICIENCY OF PLANT PROTEASES BROMELAIN AND PAPAIN ON TURKEY MEAT TENDERNESS M. Doneva, D. Miteva, S. Dyankova, I. Nacheva, P. Metodieva, K. Dimov Institute of Cryobiology and Food Technology, Cherni Vrah 53, 1407, Sofia, Bulgaria Corresponding author: [email protected] Original scientific paper Abstract: The main subject of study is the effect the plant proteases bromelain and papain exert on turkey meat tenderness. Experiments are conducted with samples of raw meat in 3 different concentration levels of the enzyme solutions (50U/ml 100U/ml and 200 U/ml) and in 3 different time periods (duration) of treatment (24 h, 48 h, 72h). An increase in enzyme concentration and treatment duration results in a higher degree of protein hydrolysis in the turkey meat. The optimal conditions for hydrolysis with minimal loss of protein and highest retention of organoleptic qualities of the meat samples are established. Key words: tenderizing, turkey meat, bromelain, papin Introduction Tenderness belongs to the most important meat quality traits. There are several factors that determine meat tenderness: sarcomere length, myofibril integrity and connective tissue integrity. The latter one determines the quality of background toughness. (Chen et al., 2006) There are two different components to meat toughness: actomyosin toughness and background toughness. Actomyosin toughness is attributed to myofibrillar proteins, whereas background toughness is due to connective tissue presence. In the recent years interest is growing in the development of better methods to produce meat with improved tenderness whilst preserving its nutritional qualities. -
Bromelain Inhibits Lipopolysaccharide-Induced Cytokine Production Involving Cellular Signaling Suppression in Rats
Immunological Investigations, 37:263–277, 2008 Copyright © Informa Healthcare USA, Inc. ISSN: 0882-0139 print / 1532-4311 online DOI: 10.1080/08820130802083622 BromelainLIMM0882-01391532-4311Immunological Investigations,Investigations Vol. 37, No. 4, May 2008: pp. 1–27 Inhibits Lipopolysaccharide-Induced Cytokine Production in Human THP-1 Monocytes via the Removal of CD14 MechanismJ.-R. Huang ofet bromelain’s al. anti-inflammatory effect Jing-Rong Huang,1 Chia-Chuan Wu,3 Rolis Chien-Wei Hou,4 and Kee-Ching Jeng2,3 1Institutes of Biomedical Science, National Chung-Hsing University, Taichung, Taiwan 2Medical Technology, National Chung-Hsing University, Taichung, Taiwan 3Department of Education and Research, Taichung Veterans General Hospital, Taichung, Taiwan 4Department of Medical Technology, Jen-Teh Junior College of Medical and Nursing Management, Miaoli, Taiwan Bromelain has been reported to have anti-inflammatory and immunomodulatory effects. However, the anti-inflammatory mechanism of bromelain is unclear. Therefore, we investigated the effect of bromelain on cytokine production from lipopolysaccharide (LPS)-stimulated human peripheral blood mononuclear cells (PBMC) and monocytic leukemia THP-1 cells. The result showed that bromelain (50–100 μg/ml) significantly and reversibly reduced tumor necrosis factor (TNF)-α interleukin- (IL)-1β and IL-6 from LPS-induced PBMC and THP-1 cells. This effect was correlated with reduced LPS-induced TNF-α mRNA and NF-κB activity in THP-1 cells. In addition, bromelain dose-dependently inhibited LPS-induced prostaglandin E2, thromboxane B2 and COX-2 mRNA but not COX-1 mRNA. Importantly, bromelain degraded TNF-α and IL-1β molecules, reduced the expression of surface marker CD14 but not Toll-like receptor 4 from THP-1 cells.