Cold Seep Ecosystems European Margins

Total Page:16

File Type:pdf, Size:1020Kb

Cold Seep Ecosystems European Margins or collective redistirbution of any portion of this article by photocopy machine, reposting, or other means is permitted only with the approval of The approval portionthe ofwith any articlepermitted only photocopy by is of machine, reposting, this means or collective or other redistirbution This article has This been published in HERMES SPECIAL ISSUE FEATURE Oceanography , Volume 22, Number 1, a quarterly journal of The 22, Number 1, a quarterly , Volume Biodiversity of Cold Seep Ecosystems O Along the Society. ceanography © European Margins The 2009 by O BY Ann Vanreusel, Ann C. ANDersen, AntJE BOetius, reproduction, systemmatic Republication, article for use and research. this copy in teaching to granted rights Society. All reserved. is ceanography Permission DOUGlas COnnellY, Marina R. Cunha, CarOle DecKer, O Ana HilariO, KOnstantinOS A. KOrmas, or Th e [email protected] Send Society. ceanography to: correspondence all LOÏS MaiGnien, Karine Olu, Maria PachiaDAKI, BeneDicte Ritt, Clara RODriGues, JOZÉE SarraZin, Paul TYler, SasKia Van Gaever, anD Heleen Vanneste O ceanography Society, P Society, ceanography O Box 1931, Rockville, M ROV Victor 6000 taking a water sample above a bush of Siboglinidae polychaetes in the central Nile Deep Sea Fan. D Image courtesy of Ifremer/MEDECO Cruise 2007 20849-1931, USA. 110 Oceanography Vol.22, No.1 Abstract. During the European Commission’s Framework Six Programme, HERMES, we investigated three main areas along the European margin, each characterized by the presence of seep-related structures exhibiting different intensity of activity and biological diversity. These areas are: (1) the Nordic margin with the Håkon Mosby mud volcano and many pockmarks, (2) the Gulf of Cádiz, and (3) the eastern Mediterranean with its hundreds of mud volcanoes and brine pool structures. One of the main goals of the HERMES project was to unravel the biodiversity associated with these seep-associated ecosystems, and to understand their driving forces and functions, using an integrated approach. Several multidisciplinary research cruises to these three areas provided evidence of high variability in ecosystem processes and associated biodiversity at different spatial scales, illustrating the “hotspot” nature of these deep water systems. IntrODuctiON observation of the European continental (Sloan, 1990) to transform seawater Soon after the discovery of the spec- margins using in situ video and photog- sulfate, thus producing high fluxes of tacular hydrothermal vent communities raphy with adapted deep submersibles hydrogen sulfide (Jorgensen and Boetius, 30 years ago, other types of chemo- provided evidence for a wide range of 2007). Chemosynthetic microorgan- synthetic assemblages—so-called “cold active cold-seep ecosystems associated isms are the primary producers in seep seeps”—were found along continental with fluid, gas, and mud escape struc- food webs, depending on such reduced margins during submersible dives to tures. These structures include pock- chemicals as methane and sulfide as the deep Gulf of Mexico (Paull et al., marks (seafloor depressions), brine lakes, their energy sources. 1984), subduction zones off Oregon in and elevated or flat mud volcanoes. Similar to their hydrothermal vent the eastern Pacific (Suess et al., 1985), As with hot vents, cold seeps are counterparts, most cold seeps support and trenches off Japan in the western characterized by the flow of reduced highly productive ecosystems (high Pacific (Juniper and Sibuet, 1987). Cold chemical compounds from the sub- biomass) that consist of specialized seeps are now among the most geologi- surface to the seafloor, but they are not metazoan communities dominated by cally diverse and widely distributed of directly associated with high thermal a few adapted taxa that can cope with the deep-sea reducing environments anomalies. Most known cold seeps elevated concentrations of chemical explored to date, and new sites are are associated with reduced environ- compounds and low oxygen levels at still being discovered every year. Since ments that are linked indirectly to gas and below the sediment-water interface. their initial discovery, active seeps hydrates or to hydrocarbon reservoirs. Other harsh conditions, such as high have been reported from shallow to Hence, in contrast to the majority of concentrations of hydrocarbons or hadal (> 6000-m) depths (Sibuet and marine deep-water ecosystems, which high-salinity brines, may locally reduce Olu-Le Roy, 2002; Levin, 2005, and depend on photosynthetically derived faunal diversity (MacDonald et al., 2004; references therein), along other active food (phytoplankton and plant mate- Bergquist et al., 2005). Among the most and passive margins, and from all parts rial), methane and other hydrocarbon remarkable of the fauna exploiting the of the global ocean, even Antarctic seeps are colonized by specific anaerobic abundant chemical energy of seeps are regions (Domack et al., 2005). It is only subsurface microbiota; these organisms the symbiont-bearing invertebrate spe- during the last decade that more intense use hydrocarbons as an energy source cies, often similar or related to the fauna Oceanography March 2009 111 found at hydrothermal vents. These Both symbiont-bearing and associated pockmarks were also visited (Figure 1A). large taxa, such as vesicomyids (clams), nonsymbiotic fauna were investigated, Håkon Mosby mud volcano was first bathymodiolids (mussels), and siboglin- as well as different size classes, from fish observed in 1989 during a side-scan ids (formerly known as Pogonophora or and large invertebrates (megafauna), to sonar survey (Vogt et al., 1997). An tube worms), and some motile species small endofaunal organisms (meio- and expedition in 1995 measured very such as shrimps and gastropods, cluster macrofauna), including the very specific high temperature gradients in the sedi- in areas where fluids rich in reduced seep-related microbial communities. In ments, recovered methane hydrate from chemicals reach the seafloor (Sibuet and addition to biodiversity patterns in rela- 2-m subbottom depth and sampled Olu, 1998; Sibuet and Olu-LeRoy, 2002; tion to the high habitat heterogeneity siboglinid polychaetes, suggesting active Bergquist et al., 2003; Van Dover et al., within a region, similarities in communi- chemosynthesis (Vogt et al., 1997). The 2003; Cordes et al., 2007). ties among regions are currently under concentric structure of the mud volcano During HERMES, three main areas investigation in order to gain better can be divided into several subhabitats harboring prominent seep ecosystems insight into the biology, biodiversity, and characterized by different biogeochemi- were investigated, including the Nordic biogeography of seep-associated biota cal sediment conditions (de Beer et al., margin and its Håkon Mosby mud vol- along Europe’s continental margins. 2006; Niemann et al., 2006b). cano, the Gulf of Cádiz, and the eastern The Storegga area is well known for Mediterranean. After a short introduc- HERMES COLD Seep its giant Holocene slide, one of the larg- tion of the three main study areas, which StuDY Sites est ever mapped on continental margins are more extensively discussed elsewhere Along the Nordic margin, the highly (Paull et al., 2008). On the northeastern (see Foucher et al., this issue), we pro- active Håkon Mosby mud volcano flank of the Storegga slide, complex vide an overview of the main results (72°N) at 1280-m water depth on the pockmarks are located in the so-called from biodiversity studies performed dur- Barents Sea slope south of Svalbard, was Nyegga area at 740-m water depth. These ing HERMES. An integrated approach the target of several multidisciplinary pockmarks are circular in plan view and combined detailed habitat mapping and cruises (Figures 1A, 2). The Storegga feature up to 190-m-long ridges of car- characterization of associated fauna. slide at 64°N and associated Nyegga bonate rock (Hovland et al., 2005). Ann Vanreusel ([email protected]) is Professor, Marine Biology Research Group, Universiteit Gent, Gent, Belgium. Ann C. Andersen is Professor, Université Pierre et Marie Curie (UPMC), and a researcher in Equipe Ecophysiologie: Adaptation et Evolution Moléculaires, UMR 7144 - Centre national de la recherche scientifique (CNRS) - UPMC, Station Biologique, Roscoff, France.Antje Boetius is Head, Microbial Habitat Group, Max Planck Institute for Marine Microbiology, and Professor, Jacobs University Bremen, Germany. Douglas Connelly is a researcher in the Geology and Geophysics Group, National Oceanography Centre, University of Southampton, Southampton, UK. Marina R. Cunha is Professor, Centro de Estudos do Ambiente e do Mar (CESAM), Departemento de Biologia, Universidade de Aveiro, Campus Universitário de Santiago, Aveiro, Portugal. Carole Decker is PhD Candidate, Deep-Sea Ecosystem Department, Institut français de recherche pour l'exploitation de la mer (Ifremer), Centre de Brest, Plouzané, France. Ana Hilario is a postdoctoral researcher at CESAM, Departemento de Biologia, Universidade de Aveiro, Campus Universitário de Santiago, Aveiro, Portugal. Konstantinos Ar. Kormas is Assistant Professor, Department of Ichthyology and Aquatic Environment, University of Thessaly, Nea Ionia, Greece.Loïs Maignien is PhD Candidate, Laboratory of Microbial Ecology and Technology (LabMET) and Renard Center for Marine Geology (RCMG), Universiteit Gent, Gent, Belgium. Karine Olu is a researcher in the Deep-Sea Ecosystem Department, Ifremer, Centre de Brest, Plouzané,
Recommended publications
  • Cold Seep Benthic Communities in Japan Subduction Zones: Spatial Organization, Trophic Strategies and Evidence for Temporal Evolution*
    MARINE ECOLOGY - PROGRESS SERIES Vol. 40: 115-126. 1987 Published October 7 Mar. Ecol. Prog. Ser. Cold seep benthic communities in Japan subduction zones: spatial organization, trophic strategies and evidence for temporal evolution* S. Kim Juniper", Myriam Sibuet IFREMER, Centre de Brest. BP 337. F-29273 Brest Cedex. France ABSTRACT: Submersible exploration of the Japan subduction zones has revealed benthic communities dominated by clams (Calyptogena spp.) around sed~mentporewater seeps at depths from 3850 to 6000 m. Photographic and video records were used to produce microcartographlc reconstructions of 3 contrasting cold seep sites. Spatial and abundance relations of megafauna lead us to propose several hypotheses regard~ngthe ecological functioning of these cold seep communities. We dlst~nguish between the likely direct use of reducing substances in venting fluids by Calyptogena-bacteria symbioses and indirect usage by accompanying abyssal species not known to harbour symbionts. Microdistribution and known or presumed feedmg modes of the accompanying species indicate 2 different sources of organic matter enrichment within cold seep sites: organic debris originating from bivalve colonies, and enrichment of extensive areas of surrounding surface sediments where weaker, more hffuse porewater seepage may support chemosynthetic production by free-living bacteria. The occurrence of colony-like groupings of empty Calyptogena valves indicates that cold seeps are ephemeral, with groups of living clams, mixed living and dead clams, and empty dissolving shells marlung the course of a cycle of porewater venting and offering clues to the recent history of cold seep activity. INTRODUCTION al. 1985). One of the bivalve species from this area has been shown to harbour symbiotic bacteria in its gill The discovery of deep-sea hydrothermal vents has tissue and to oxidise methane (Childress et al.
    [Show full text]
  • Structure and Distribution of Cold Seep Communities Along the Peruvian Active Margin: Relationship to Geological and Fluid Patterns
    MARINE ECOLOGY PROGRESS SERIES Vol. 132: 109-125, 1996 Published February 29 Mar Ecol Prog Ser l Structure and distribution of cold seep communities along the Peruvian active margin: relationship to geological and fluid patterns 'Laboratoire Ecologie Abyssale, DROIEP, IFREMER Centre de Brest, BP 70, F-29280 Plouzane, France '~epartementdes Sciences de la Terre, UBO, 6 ave. Le Gorgeu, F-29287 Brest cedex, France 3~aboratoireEnvironnements Sedimentaires, DROIGM, IFREMER Centre de Brest, BP 70, F-29280 Plouzane, France "niversite P. et M. Curie, Observatoire Oceanologique de Banyuls, F-66650 Banyuls-sur-Mer, France ABSTRACT Exploration of the northern Peruvian subduction zone with the French submersible 'Nau- tile' has revealed benthlc communities dominated by new species of vesicomyid bivalves (Calyptogena spp and Ves~comyasp ) sustained by methane-nch fluid expulsion all along the continental margin, between depths of 5140 and 2630 m Videoscoplc studies of 25 dives ('Nautiperc cruise 1991) allowed us to describe the distribution of these biological conlnlunities at different spahal scales At large scale the communities are associated with fluid expuls~onalong the major tectonic features (scarps, canyons) of the margln At a smaller scale on the scarps, the distribuhon of the communities appears to be con- trolled by fluid expulsion along local fracturatlon features such as joints, faults and small-scale scars Elght dlves were made at one particular geological structure the Middle Slope Scarp (the scar of a large debns avalanche) where numerous
    [Show full text]
  • Reconstructing the History of Fluid Flow at Cold Seep Sites from Ba/Ca Ratios
    Limnol. Oceanogr., 46(7), 2001, 1701±1708 q 2001, by the American Society of Limnology and Oceanography, Inc. Reconstructing the history of ¯uid ¯ow at cold seep sites from Ba/Ca ratios in vesicomyid clam shells M. E. Torres1 COAS, 104 Ocean Administration Building, Oregon State University, Corvallis, Oregon 97331 J. P. Barry MBARI, 7700 Sandholdt Road, Moss Landing, California 95039 D. A. Hubbard COAS, 104 Ocean Administration Building, Oregon State University, Corvallis, Oregon 97331 E. Suess GEOMAR, 1-3 Wischhofstrasse, Kiel D-24148, Germany Abstract Hydrogen sul®de discharge at cold seep sites is recorded as enrichment in the barium to calcium (Ba/Ca) ratio in shells of vesicomyid clams collected live from cold seeps in Monterey Canyon and the Cascadia margin. A direct relationship between increased Ba ¯uxes from cold seeps and Ba incorporation into shells was established for the Cascadia margin site. For the Monterey canyon site, a 2-yr episode of high ¯uid ¯ow centered on 1992 was inferred from coherent changes in the Ba/Ca pro®les of three Calyptogena kilmeri shells. Comparison with precipitation and d18O data indicates that this high-¯ow period may have been driven by an increase in rainfall after the 1988±1990 California drought. High-resolution records preserved in clam shells are shown to be useful in elucidating charac- teristics, history, and possible mechanisms driving ¯uid discharge at continental margin seeps, thus establishing their potential use as paleotracers of ¯uid seepage events. An extensive set of geophysical and geochemical mea- seepage along continental margins. Carbon and oxygen iso- surements is currently available to document the ¯ow and tope records of calcareous macrofossils have long been used expulsion of ¯uids at transform and convergent margins.
    [Show full text]
  • Diversity and Distribution of Cold-Seep Fauna Associated With
    Marine Biology Archimer June 2011, Volume 158, Issue 6, Pages 1187-1210 http://archimer.ifremer.fr http://dx.doi.org/10.1007/s00227-011-1679-6 © 2011, Springer-Verlag The original publication is available at http://www.springerlink.com ailable on the publisher Web site Diversity and distribution of cold-seep fauna associated with different geological and environmental settings at mud volcanoes and pockmarks of the Nile Deep-Sea Fan Bénédicte Ritta, *, Catherine Pierreb, Olivier Gauthiera, c, d, Frank Wenzhöfere, f, Antje Boetiuse, f and Jozée Sarrazina, * blisher-authenticated version is av aIfremer, Centre de Brest, Département Etude des Ecosystèmes Profonds/Laboratoire Environnement Profond, BP 70, 29280 Plouzané, France bLOCEAN, UMR 7159, Université Pierre et Marie Curie,75005 Paris, France cLEMAR, UMR 6539, Universiteé de Bretagne Occidentale, Place N. Copernic, 29200 Plouzaneé, France dEcole Pratique des Hautes Etudes CBAE, UMR 5059, 163 rue Auguste Broussonet, 34000 Montpellier, France eMPI, Habitat Group, Celsiusstrasse 1, 28359 Bremen, Germany fAWI, HGF MPG Research Group on Deep Sea Ecology and Technology, 27515 Bremerhaven, Germany *: Corresponding authors : Bénédicte Ritt, email address : [email protected] ; [email protected] Jozée Sarrazin, Tel.: +33 2 98 22 43 29, Fax: +33 2 98 22 47 57, email address : [email protected] Abstract : The Nile Deep-Sea Fan (NDSF) is located on the passive continental margin off Egypt and is characterized by the occurrence of active fluid seepage such as brine lakes, pockmarks and mud volcanoes. This study characterizes the structure of faunal assemblages of such active seepage systems of the NDSF. Benthic communities associated with reduced, sulphidic microhabitats such as ccepted for publication following peer review.
    [Show full text]
  • Elasmobranch Egg Capsules Associated with Modern and Ancient Cold Seeps: a Nursery for Marine Deep-Water Predators
    Vol. 437: 175–181, 2011 MARINE ECOLOGY PROGRESS SERIES Published September 15 doi: 10.3354/meps09305 Mar Ecol Prog Ser OPEN ACCESS Elasmobranch egg capsules associated with modern and ancient cold seeps: a nursery for marine deep-water predators Tina Treude1,*, Steffen Kiel2, Peter Linke1, Jörn Peckmann3, James L. Goedert4 1Leibniz Institute of Marine Sciences, IFM-GEOMAR, Wischhofstrasse 1−3, 24148 Kiel, Germany 2Geobiology Group and Courant Research Center Geobiology, Georg-August-Universität Göttingen, Geoscience Center, Goldschmidtstr. 3, 37077 Göttingen, Germany 3Department of Geodynamics and Sedimentology, Center for Earth Sciences, University of Vienna, Althanstrasse 14 (UZA II), 1090 Vienna, Austria 4Burke Museum, University of Washington, Seattle, Washington 98195-3010, USA ABSTRACT: At 2 modern deep-water cold-seep sites, the North Alex Mud Volcano (eastern Mediterranean Sea, water depth ~500 m) and the Concepción Methane Seep Area (south-east Pacific Ocean, water depth ~700 m), we found abundant catshark (Chondrichthyes: Scylio - rhinidae) and skate (Chondrichthyes: Rajidae) egg capsules, respectively, associated with carbon- ates and tubeworms. Fossilized catshark egg capsules were found at the 35 million year old Bear River Cold-Seep Deposit (Washington State, USA) closely associated with remains of tubeworms and sponges. We suggest that cold-seep ecosystems have served as nurseries for predatory elas- mobranch fishes since at least late Eocene time and therewith possibly play an important role for the functioning of deep-water ecosystems. KEY WORDS: Catshark · Skate · Authigenic carbonate · Tubeworm · Methane · Deep sea · Chemosynthesis Resale or republication not permitted without written consent of the publisher INTRODUCTION methanotrophic or thiotrophic bacteria; chemosym- biotic clams, mussels, and vestimentiferan tube- Cold-seep ecosystems are based on chemosyn- worms) or feed on biomass produced by chemosyn- thetic processes fueled by methane and petroleum thesis (e.g.
    [Show full text]
  • Life Is Weird!
    Windows to the Deep Exploration Life is Weird! FOCUS SEATING ARRANGEMENT Biological organisms in cold seep communities Groups of four students GRADE LEVEL MAXIMUM NUMBER OF STUDENTS 7-8 (Life Science) 30 FOCUS QUESTION KEY WORDS What organisms are typically found in cold seep Cold seeps Sipunculida communities, and how do these organisms interact? Methane hydrate ice Mussel Chemosynthesis Clam LEARNING OBJECTIVES Brine pool Octopus Students will be able to describe major features of Polychaete worms Crustacean cold seep communities, and list at least five organ- Chemosynthetic Alvinocaris isms typical of these communities. Methanotrophic Nematoda Thiotrophic Sea urchin Students will be able to infer probable trophic Xenophyophores Sea cucumber relationships among organisms typical of cold-seep Anthozoa Brittle star communities and the surrounding deep-sea envi- Turbellaria Sea star ronment. Polychaete worm Students will be able to describe in the process of BACKGROUND INFORMATION chemosynthesis in general terms, and will be able One of the major scientific discoveries of the last to contrast chemosynthesis and photosynthesis. 100 years is the presence of extensive deep sea communities that do not depend upon sunlight as MATERIALS their primary source of energy. Instead, these com- 5 x 7 index cards munities derive their energy from chemicals through Drawing materials a process called chemosynthesis (in contrast to Corkboard, flip chart, or large poster board photosynthesis in which sunlight is the basic energy source). Some chemosynthetic
    [Show full text]
  • A Case Study from Haima Cold Seeps of the South China Sea
    1 Journal of Asian Earth Sciences Archimer December 2018, Volume 168, Pages 137-144 https://doi.org/10.1016/j.jseaes.2018.11.011 https://archimer.ifremer.fr https://archimer.ifremer.fr/doc/00465/57662/ Using chemical compositions of sediments to constrain methane seepage dynamics: A case study from Haima cold seeps of the South China Sea Wang Xudong 1, 6, Li Niu 1, Feng Dong 1, 2, *, Hu Yu 3, Bayon Germain 4, Liang Qianyong 5, Tong Hongpeng 3, Gong Shanggui 1, 6, Tao Jun 5, Chen Duofu 2, 3 1 CAS Key Laboratory of Ocean and Marginal Sea Geology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China 2 Laboratory for Marine Mineral Resources, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266061, China 3 Shanghai Engineering Research Center of Hadal Science and Technology, College of Marine Sciences, Shanghai Ocean University, Shanghai 201306, China 4 IFREMER, Unité de Recherche Géosciences Marines, Laboratoire Géophysique et Enregistrements Sédimentaires, F-29280Plouzané, France 5 MLR Key Laboratory of Marine Mineral Resources, Guangzhou Marine Geological Survey, China Geological Survey, Guangzhou 510070, China 6 University of Chinese Academy of Sciences, Beijing 100049, China * Corresponding author : Dong Feng, email address : [email protected] Abstract : Cold seeps frequently occur at the seafloor along continental margins. The dominant biogeochemical processes at cold seeps are the combined anaerobic oxidation of methane and sulfate reduction, which can significantly impact the global carbon and sulfur cycles. The circulation of methane-rich fluids at margins is highly variable in time and space, and assessing past seepage activity requires the use of specific geochemical markers.
    [Show full text]
  • Articles and Detrital Matter
    Biogeosciences, 7, 2851–2899, 2010 www.biogeosciences.net/7/2851/2010/ Biogeosciences doi:10.5194/bg-7-2851-2010 © Author(s) 2010. CC Attribution 3.0 License. Deep, diverse and definitely different: unique attributes of the world’s largest ecosystem E. Ramirez-Llodra1, A. Brandt2, R. Danovaro3, B. De Mol4, E. Escobar5, C. R. German6, L. A. Levin7, P. Martinez Arbizu8, L. Menot9, P. Buhl-Mortensen10, B. E. Narayanaswamy11, C. R. Smith12, D. P. Tittensor13, P. A. Tyler14, A. Vanreusel15, and M. Vecchione16 1Institut de Ciencies` del Mar, CSIC. Passeig Mar´ıtim de la Barceloneta 37-49, 08003 Barcelona, Spain 2Biocentrum Grindel and Zoological Museum, Martin-Luther-King-Platz 3, 20146 Hamburg, Germany 3Department of Marine Sciences, Polytechnic University of Marche, Via Brecce Bianche, 60131 Ancona, Italy 4GRC Geociencies` Marines, Parc Cient´ıfic de Barcelona, Universitat de Barcelona, Adolf Florensa 8, 08028 Barcelona, Spain 5Universidad Nacional Autonoma´ de Mexico,´ Instituto de Ciencias del Mar y Limnolog´ıa, A.P. 70-305 Ciudad Universitaria, 04510 Mexico,` Mexico´ 6Woods Hole Oceanographic Institution, MS #24, Woods Hole, MA 02543, USA 7Integrative Oceanography Division, Scripps Institution of Oceanography, La Jolla, CA 92093-0218, USA 8Deutsches Zentrum fur¨ Marine Biodiversitatsforschung,¨ Sudstrand¨ 44, 26382 Wilhelmshaven, Germany 9Ifremer Brest, DEEP/LEP, BP 70, 29280 Plouzane, France 10Institute of Marine Research, P.O. Box 1870, Nordnes, 5817 Bergen, Norway 11Scottish Association for Marine Science, Scottish Marine Institute, Oban,
    [Show full text]
  • Cold-Seep-Like Macrofaunal Communities in Organic- and Sulfide-Rich Sediments of the Congo Deep-Sea Fan
    1 Deep Sea Research Part II: Topical Studies in Oceanography Achimer August 2017, Volume 142, Pages 180-196 http://dx.doi.org/10.1016/j.dsr2.2017.05.005 http://archimer.ifremer.fr http://archimer.ifremer.fr/doc/00384/49561/ © 2017 Published by Elsevier Ltd. Cold-seep-like macrofaunal communities in organic- and sulfide-rich sediments of the Congo deep-sea fan Olu Karine 1, Decker Carole 1, Pastor Lucie 1, Caprais Jean-Claude 1, Khripounoff Alexis 1, Morineaux Marie 1, Ain Baziz M. 1, Menot Lenaick 1, Rabouille C. 2 1 IFREMER Centre Bretagne, Laboratoire Environnement Profond, BP70, 20280 Plouzané, France 2 Laboratoire des Sciences du Climat et de l’Environnement, Université Paris-Saclay, Gif sur Yvette, France Abstract : Methane-rich fluids arising from organic matter diagenesis in deep sediment layers sustain chemosynthesis-based ecosystems along continental margins. This type of cold seep develops on pockmarks along the Congo margin, where fluids migrate from deep-buried paleo-channels of the Congo River, acting as reservoirs. Similar ecosystems based on shallow methane production occur in the terminal lobes of the present-day Congo deep-sea fan, which is supplied by huge quantities of primarily terrestrial material carried by turbiditic currents along the 800 km channel, and deposited at depths of up to nearly 5000 m. In this paper, we explore the effect of this carbon enrichment of deep- sea sediments on benthic macrofauna, along the prograding lobes fed by the current active channel, and on older lobes receiving less turbiditic inputs. Macrofaunal communities were sampled using either USNEL cores on the channel levees, or ROV blade cores in the chemosynthesis-based habitats patchily distributed in the active lobe complex.
    [Show full text]
  • Hydrothermal Vents and Cold Seeps
    Chapter 45. Hydrothermal Vents and Cold Seeps Contributors: Nadine Le Bris (Convenor), Sophie Arnaud-Haond, Stace Beaulieu, Erik Cordes, Ana Hilario, Alex Rogers, Saskia van de Gaever (lead member), Hiromi Watanabe Commentators: Françoise Gaill, Wonchoel Lee, Ricardo Serrão-Santos The chapter contains some material (identified by a footnote) originally prepared for Chapter 36F (Open Ocean Deep Sea). The contributors to that chapter were Jeroen Ingels, Malcolm R. Clark, Michael Vecchione, Jose Angel A. Perez, Lisa A. Levin, Imants G. Priede, Tracey Sutton, Ashley A. Rowden, Craig R. Smith, Moriaki Yasuhara, Andrew K. Sweetman, Thomas Soltwedel, Ricardo Santos, Bhavani E. Narayanaswamy, Henry A. Ruhl, Katsunori Fujikura, Linda Amaral Zettler, Daniel O B Jones, Andrew R. Gates, and Paul Snelgrove. 1. Inventory Hydrothermal vents and cold seeps constitute energy hotspots on the seafloor that sustain some of the most unusual ecosystems on Earth. Occurring in diverse geological settings, these environments share high concentrations of reduced chemicals (e.g., methane, sulphide, hydrogen, iron II) that drive primary production by chemosynthetic microbes (Orcutt et al. 2011). Their biota are characterized by a high level of endemism with common specific lineages at the family, genus and even species level, as well as the prevalence of symbioses between invertebrates and bacteria (Dubilier et al., 2008; Kiel, 2009). Hydrothermal vents are located at mid-ocean ridges, volcanic arcs and back-arc spreading centres or on volcanic hotspots (e.g., Hawaiian archipelago), where magmatic heat sources drive the hydrothermal circulation. Venting systems can also be located well away from spreading centres, where they are driven by exothermic, mineral-fluid reactions (Kelley, 2005) or remanent lithospheric heat (Wheat et al., 2004).
    [Show full text]
  • Cold Seeps: Marine Ecosystems Based on Hydrocarbons
    sis_16_RZ.qxq:Layout 1 31.08.2010 18:41 Uhr Seite 60 Image courtesy of MARUM, Bremen University Cold seeps: marine ecosystems based on hydrocarbons Thousands of white crabs grazing on an extensive mussel bed at a cold seep off the coast of Pakistan Glossary Chemosymbiosis: a symbi- David Fischer takes us on a trip to the bot- otic association between a tom of the sea to learn about cold seeps – multi-cellular organism (the host), which provides a their ecosystems, potential fuels, and pos- protected environment, and a bacterium that oxidises sible involvement in global warming. specific chemicals to obtain energy and synthe- What are cold seeps? These hydrocarbons form up to sev- sise organic carbon that is Cold seeps are often oases for eral kilometres below the surface of required by the host microbial and macrofaunal life on the the sediment when organic matter is Methanotrophic: a methan- sea floor – similar to hydrothermal degraded by either high temperatures otrophic organism vents, where hot water emerges or micro-organisms. When the hydro- metabolises methane as its under high pressure, several kilome- carbons are produced in very large only source of energy and tres below the sea (see Little, 2010). In quantities, or where tectonic stress carbon contrast to hydrothermal vents, how- Pore water: the water that ever, cold seeps can occur at water fills the space between depths of between a few metres and individual grains of sedi- several kilometres, often along conti- ment nental margins. Thiotrophic: a thiotrophic They are places where hydrocarbons organism oxidises sulphur – mostly methane but also ethane, compounds propane, or even oil – seep from the sediment.
    [Show full text]
  • Methane Output from Cold Seep Structures Along the Central American Continental Margin
    METHANE OUTPUT FROM COLD SEEP STRUCTURES ALONG THE CENTRAL AMERICAN CONTINENTAL MARGIN Dissertation zur Erlangung des Doktorgrades der Mathematisch-Naturwissenschaftlichen Fakultät der Christian-Albrechts-Universität zu Kiel vorgelegt von Susan Mau Kiel 2004 Referent/in: ...Prof. Erwin Suess............................................................. Korreferent/in: ...PD. Dr. Klaus Wallmann ............................................ Tag der mündlichen Prüfung: ...7. Dezember 2004................................ Zum Druck genehmigt: ...Kiel, den 15. Dezember 2004........................ Der Dekan Hiermit erkläre ich, daß ich die vorliegende Doktorarbeit selbständig und ohne unerlaubte Hilfen erstellt habe. Ferner habe ich weder diese noch eine ähnliche Arbeit an einer anderen Abteilung oder Hochschule im Rahmen eines Prüfungsverfahrens vorgelegt, veröffentlicht oder zur Veröffentlichung vorgelegt. Susan Mau Preface This study comprises a general introduction presented in Chapter I, three stand-alone publishable papers – Chapter II to IV and an overall summary and conclusion – Chapter V. Each of the Chapters II, III and IV contains a separate introduction, description of methods, presentation of data and discussion as well as a separate reference list. Chapter II has already been submitted for publication in Marine Geology; Chapters III and IV are to be submitted to Global Biochemical Cycles and Geo-Marine Letters, respectively and might be subject to revisions. The titles and authors of the papers (Chapters II, III and IV) are briefly listed below: Chapter II Estimates of methane output from mud extrusions at the erosive convergent margin off Costa Rica Authors S. Mau, H. Sahling, G. Rehder, E. Suess, P. Linke and E. Soeding Status submitted to Marine Geology Chapter III Sources, fate and output of methane from cold seeps in Jaco Scarp, an embayment caused by seamount subduction offshore Costa Rica Authors S.
    [Show full text]