The Transcriptional Network That Controls Growth Arrest and Differentiation in a Human Myeloid Leukemia Cell Line

Total Page:16

File Type:pdf, Size:1020Kb

The Transcriptional Network That Controls Growth Arrest and Differentiation in a Human Myeloid Leukemia Cell Line The transcriptional network that controls growth arrest and differentiation in a human myeloid leukemia cell line The FANTOM Consortium (Genome Network Project, Expression Cluster Workshop): Harukazu Suzuki* ,‡,≠,1 , Alistair R. R. Forrest* ,‡,≠,1,2 , Erik van Nimwegen* ,‡,≠,3 , Carsten O. Daub ‡,≠,1 , Piotr J. Balwierz ‡,3, Katharine M. Irvine ‡,≠,4,Timo Lassmann ‡,≠,1 , Timothy Ravasi ‡,≠,5, Yuki Hasegawa ‡,1 , Michiel J. L. de Hoon ‡,1 , Shintaro Katayama ‡,1 , Kate Schroder ‡,≠,4, Piero Carninci ‡,1 , Yasuhiro Tomaru ‡,1, Mutsumi Kanamori-Katayama ‡,1, Atsutaka Kubosaki ‡,1, Altuna Akalin 6, Yoshinari Ando 1, Erik Arner 1, Maki Asada 7, Hiroshi Asahara 7, Timothy Bailey 4, Vladimir B. Bajic ‡,8 , Denis Bauer 4, Anthony G. Beckhouse 2, Nicolas Bertin 1, Johan Björkegren 9, Frank Brombacher 10, Erika Bulger 1, Alistair M. Chalk 2, Joe Chiba 11, Nicole Cloonan 12 , Adam Dawe 8, Josee Dostie 13, Pär G. Engström 6, Magbubah Essack 8, Geoffrey J. Faulkner 12 , J Lynn Fink 14, David Fredman 6, Ko Fujimori 15 , Masaaki Furuno 1, Takashi Gojobori ‡,16 , Julian Gough 17 , Sean M. Grimmond ‡,12 , Mika Gustafsson 18, Megumi Hashimoto 7, Takehiro Hashimoto 1, Mariko Hatakeyama 19 , Susanne Heinzel 20, Winston Hide ‡,8,21 , Oliver Hofmann 8,21 , Michael Hörnquist 18, Lukasz Huminiecki 22 , Kazuho Ikeo 16 , Naoko Imamoto 23 , Satoshi Inoue 24 , Yusuke Inoue 25, Ryoko Ishihara 1, Takao Iwayanagi 26 , Anders Jacobsen 27 , Mandeep Kaur 8, Hideya Kawaji 1, Markus C. Kerr 14, Ryuichiro Kimura 11, Syuhei Kimura 28, Yasumasa Kimura 1, Hiroaki Kitano 29, Hisashi Koga 30 , Toshio Kojima 19 , Shinji Kondo 1, Takeshi Konno 16 , Anders Krogh 27 , Adele Kruger 8, Ajit Kumar 31 , Boris Lenhard ‡,6 , Andreas Lennartsson 1, Morten Lindow 27 , Marina Lizio 1, Cameron MacPherson 8, Norihiro Maeda 1, Christopher A. Maher 8, Monique Maqungo 8, Jessica Mar 32, Nicholas A. Matigian 2, Hideo Matsuda 33 , John S. Mattick 12 , Stuart Meier 8, Sei Miyamoto 16 , Etsuko Miyamoto-Sato 34 , Kazuhiko Nakabayashi 11, Yutaka Nakachi 35 , Mika Nakano 1, Sanne Nygaard 27 , Toshitsugu Okayama 16 , Yasushi Okazaki 35 , Haruka Okuda-Yabukami 1, Valerio Orlando 36 , Jun Otomo 37 , Mikhail Pachkov 3, Nikolai Petrovsky 20, Charles Plessy 1, John Quackenbush ‡,32 , Aleksandar Radovanovic 8, Michael Rehli 38, Rintaro Saito 39 , Albin Sandelin 27 , Sebastian Schmeier 8, Christian Schönbach 40 , Ariel S. Schwartz 5, Colin A. Semple 41 , Miho Sera 16 , Jessica Severin 1, Katsuhiko Shirahige 42, Cas Simons 12 , George St. Laurent 31 , Masanori Suzuki 1, Takahiro Suzuki 1, Matthew J. Sweet 43 , Ryan J. Taft 12 , Shizu Takeda 37 , Yoichi Takenaka 33 , Kai Tan 5, Martin S. Taylor 44, Rohan D. Teasdale 14, Jesper Tegnér ‡,9,45 , Sarah Teichmann 46 , Eivind Valen 27 , Claes Wahlestedt 47 , Kazunori Waki 1, Andrew Waterhouse 1, Christine A. Wells ‡,2 , Ole Winther 27 , Linda Wu 20 , Kazumi Yamaguchi 1, Hiroshi Yanagawa 34 , Jun Yasuda 1, Mihaela Zavolan 3, David A. Hume †,‡,≠,48 Riken Omics Science Center: Takahiro Arakawa 1, Shiro Fukuda 1, Kengo Imamura 1, Chikatoshi Kai 1, Ai Kaiho 1, Tsugumi Kawashima 1, Chika Kawazu 1, Yayoi Kitazume 1, Miki Kojima, 1 Hisashi Miura 1, Kayoko Murakami 1, Mitsuyoshi Murata 1, Noriko Ninomiya 1, Hiromi Nishiyori 1, Shohei Noma 1, Chihiro Ogawa 1, Takuma Sano 1, Christophe Simon 1, Michihira Tagami 1, Yukari Takahashi 1, Jun Kawai ‡,1 General Organizer: Yoshihide Hayashizaki †,‡,≠,1 *These authors contributed equally to this work. †To whom correspondence should be addressed. Email: [email protected] ‡These authors are core authors. ≠These authors are members of the FANTOM 4 headquarter. Affiliations: 1. RIKEN Omics Science Center, RIKEN Yokohama Institute, 1-7-22 Suehiro-cho Tsurumi-ku Yokohama, Kanagawa, 230-0045 Japan. 2. The Eskitis Institute for Cell and Molecular Therapies, Griffith University, QLD 4111, Australia. 3. Biozentrum, University of Basel, and Swiss Institute of Bioinformatics, Klingelbergstrasse 50/70, CH-4056 Basel, 4056, Switzerland 4. Institute for Molecular Bioscience, The University of Queensland, Brisbane Qld, 4072, Australia - 2 - 5. Department of Bioengineering, Jacobs School of Engineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0412 USA 6. Bergen Center for Computational Science, Høyteknologisenteret Thormøhlensgate 55, N-5008 Bergen, Norway 7. National Research Institute for Child Health and Development, 2-10-1 Okura, Setagaya-ku, Tokyo 157-8535 8. South African National Bioinformatics Institute, University of the Western Cape, Private Bag X17 , Bellville, 7535 South Africa 9. Computational Medicine Group, Atherosclerosis Research Unit, Center for Molecular Medicine, Department of Medicine, Karolinska Institutet, Karolinska University Hospital Solna SE- 171 76 Stockholm, Sweden 10. Institute of Infectious Disease and Molecular Medicine (IIDMM), Wolfson Pavilion Level 2, Faculty of Health Sciences, University of Cape Town, Observatory, 7925 11. Department of Biological Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510 Japan 12. Australian Research Council (ARC) Special Research Centre for Functional and Applied Genomics, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD 4072, Australia 13. Department of Biochemistry, McGill University, 3655 Promenade Sir William Osler, Montreal, Quebec H3G 1Y6 Canada 14. Australian Research Council (ARC) Centre of Excellence in Bioinformatics, Institute for Molecular Bioscience, The University of Queensland, St Lucia, 4072, Australia - 3 - 15. Laboratory of Biodefense and Regulation, Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka, 569-1094, Japan 16. Research Organization of Information and Systems, Center for Information Biology and DNA Data Bank of Japan (DDBJ), National Institute of Genetics, Yata 1111, Mishima, Shizuoka, 411-8540, Japan 17. Department of Computer Science, University of Bristol, Merchant Venturers Building, Woodland Road, Bristol, BS8 1UB, UK 18. Department of Science and Technology, Linköping University, SE-601 74 Norrköping, Sweden 19. Computational and Experimental Systems Biology Group, RIKEN Genomic Sciences Center, RIKEN Yokohama Institute, 1-7-22 Suehiro-cho Tsurumi-ku Yokohama, Kanagawa, 230-0045 Japan 20. Department of Diabetes and Endcrinology, Flinders University and Medical Centre, Bedford Park, Adelaide, Australia 5042 21. Department of Biostatistics, Harvard School of Public Health, 655 Huntington Avenue, SPH2, 4th Floor, Boston, Massachusetts 02115, USA 22. Department of Cell and Molecular Biology (CMB) Karolinska Institutet P.O. Box 285 SE-171 77 Stockholm, Sweden 23. Cellular Dynamics Laboratory, Discovery and Research Institute, RIKEN Wako Institute, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan 24. Graduate School of Medicine and Faculty of Medicine, the University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan - 4 - 25. Department of Biological and Chemical Engineering, Gunma University Faculty of Engineering, Tenjin-cho 1-5-1, Kiryu, Gunma 376-8515, Japan 26. R&D Solution Center, Research & Development Group, Hitachi, Ltd., 1-6-1, Marunouchi, Chiyodaku, Tokyo, 100-8220, Japan 27. The Bioinformatics Centre, Department of Biology and Biotech Research & Innovation Centre, University of Copenhagen, Ole Maloes Vej 5, DK-2200 Copenhagen N, Denmark 28. Department of Information and Knowledge Engineering, Faculty of Engineering , Tottori University, 4-101 Koyama-Minami, Tottori 680-8552 Japan 29. The Systems Biology Institute, 6-31-15 Jingumae M31 6A, Shibuya, Tokyo 150-0001 Japan 30. Department of Human Gene Research, Kazusa DNA Research Institute, 2-6-7 Kazusa-kamatari, Kisarazu, Chiba 292-0818 JAPAN 31. Department of Biochemistry and Molecular Biology, the George Washington University Medical Center, 2300 Eye St. N.W. Washington, D.C. 20037 U.S.A 32. Department of Biostatistics, Harvard School of Public Health, Dana-Farber Cancer Institute, Mayer 232, 44 Binney Street, Boston, MA 02115, USA 33. Department of Bioinformatic Engineering, Graduate School of Information Science and Technology, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka, 560-8531, Japan 34. Department of Biosciences and Informatics, Faculty of Science and Technology, Keio University, Yokohama 223-8522, Japan. - 5 - 35. Division of Functional Genomics and Systems Medicine, Research Center for Genomic Medicine, Saitama Medical School, 1397-1 Yamane, Hidaka city, Saitama 350-1241, Japan 36. Dulbecco Telethon Institute, IRCCS Fondazione Santa Lucia at EBRI, Via del Fosso di Fiorano 64, 00143 Rome & IGB CNR, Via Pietro Castellino 111, 80131 Naples, Italy 37. Central Research Laboratory, Hitachi, Ltd., 1-280, Higashi-koigakubo, Kokubunji-shi, Tokyo 185-8601, Japan 38. Department of Hematology and Oncology, University of Regensburg, Hospital, 93042 Regensburg, Germany. 39. Faculty of Environment and Information Studies, Keio University, Fujisawa, Kanagawa 252-8520 Japan 40. School of Biological Science, Division of Genomics and Genetics, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551 41. MRC Human Genetics Unit, Western, General Hospital, Crewe Road, Edinburgh, EH4 2XU, UK 42. Department of Computer Science, Graduate School of Information Science and Engineering, Tokyo Institute of Technology 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8552, Japan 43. Institute for Molecular Bioscience, School of Molecular and Microbial Sciences, CRC for Chronic Inflammatory Diseases, The University of Queensland, St Lucia QLD 4072, AUSTRALIA
Recommended publications
  • Case Report Clinical Report of a 17Q12 Microdeletion with Additionally Unreported Clinical Features
    Hindawi Publishing Corporation Case Reports in Genetics Volume 2014, Article ID 264947, 6 pages http://dx.doi.org/10.1155/2014/264947 Case Report Clinical Report of a 17q12 Microdeletion with Additionally Unreported Clinical Features Jennifer L. Roberts,1 Stephanie K. Gandomi,2 Melissa Parra,2 Ira Lu,2 Chia-Ling Gau,2 Majed Dasouki,1,3 and Merlin G. Butler1 1 The University of Kansas Medical Center, Kansas City, KS 66160, USA 2 Ambry Genetics, Aliso Viejo, CA 92656, USA 3 King Faisal Specialist Hospital and Research Center, Riyadh 12713, Saudi Arabia Correspondence should be addressed to Stephanie K. Gandomi; [email protected] Received 18 March 2014; Revised 13 May 2014; Accepted 14 May 2014; Published 2 June 2014 Academic Editor: Philip D. Cotter Copyright © 2014 Jennifer L. Roberts et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Copy number variations involving the 17q12 region have been associated with developmental and speech delay, autism, aggression, self-injury, biting and hitting, oppositional defiance, inappropriate language, and auditory hallucinations. We present a tall- appearing 17-year-old boy with marfanoid habitus, hypermobile joints, mild scoliosis, pectus deformity, widely spaced nipples, pes cavus, autism spectrum disorder, intellectual disability, and psychiatric manifestations including physical and verbal aggression, obsessive-compulsive behaviors, and oppositional defiance. An echocardiogram showed borderline increased aortic root size. An abdominal ultrasound revealed a small pancreas, mild splenomegaly with a 1.3 cm accessory splenule, and normal kidneys and liver.
    [Show full text]
  • Integrative Annotation of 21,037 Human Genes Validated by Full-Length Cdna Clones
    PLoS BIOLOGY Integrative Annotation of 21,037 Human Genes Validated by Full-Length cDNA Clones Tadashi Imanishi1, Takeshi Itoh1,2, Yutaka Suzuki3,68, Claire O’Donovan4, Satoshi Fukuchi5, Kanako O. Koyanagi6, Roberto A. Barrero5, Takuro Tamura7,8, Yumi Yamaguchi-Kabata1, Motohiko Tanino1,7, Kei Yura9, Satoru Miyazaki5, Kazuho Ikeo5, Keiichi Homma5, Arek Kasprzyk4, Tetsuo Nishikawa10,11, Mika Hirakawa12, Jean Thierry-Mieg13,14, Danielle Thierry-Mieg13,14, Jennifer Ashurst15, Libin Jia16, Mitsuteru Nakao3, Michael A. Thomas17, Nicola Mulder4, Youla Karavidopoulou4, Lihua Jin5, Sangsoo Kim18, Tomohiro Yasuda11, Boris Lenhard19, Eric Eveno20,21, Yoshiyuki Suzuki5, Chisato Yamasaki1, Jun-ichi Takeda1, Craig Gough1,7, Phillip Hilton1,7, Yasuyuki Fujii1,7, Hiroaki Sakai1,7,22, Susumu Tanaka1,7, Clara Amid23, Matthew Bellgard24, Maria de Fatima Bonaldo25, Hidemasa Bono26, Susan K. Bromberg27, Anthony J. Brookes19, Elspeth Bruford28, Piero Carninci29, Claude Chelala20, Christine Couillault20,21, Sandro J. de Souza30, Marie-Anne Debily20, Marie-Dominique Devignes31, Inna Dubchak32, Toshinori Endo33, Anne Estreicher34, Eduardo Eyras15, Kaoru Fukami-Kobayashi35, Gopal R. Gopinath36, Esther Graudens20,21, Yoonsoo Hahn18, Michael Han23, Ze-Guang Han21,37, Kousuke Hanada5, Hideki Hanaoka1, Erimi Harada1,7, Katsuyuki Hashimoto38, Ursula Hinz34, Momoki Hirai39, Teruyoshi Hishiki40, Ian Hopkinson41,42, Sandrine Imbeaud20,21, Hidetoshi Inoko1,7,43, Alexander Kanapin4, Yayoi Kaneko1,7, Takeya Kasukawa26, Janet Kelso44, Paul Kersey4, Reiko Kikuno45, Kouichi
    [Show full text]
  • Takashi Gojobori Date of Birth 24 October 1951 Place Fukuoka (Japan) Nomination 5 September 2007 Field Evolutionary Genomics Title Professor
    Takashi Gojobori Date of Birth 24 October 1951 Place Fukuoka (Japan) Nomination 5 September 2007 Field Evolutionary Genomics Title Professor Most important awards, prizes and academies Society Prize (Kihara Medal), The Genetic Society of Japan (2005); Society Prize (Motoo Kimura Medal), The Society of Evolutionary Studies, Japan (2004); The Gaetano Salvatore Gold Medal, Stazione Zoologica, Anton Dohrn, Italy (2004); Science Award from Japan Science and Technology Corporation (JST) (1997); Science Award from Hitoshi Kihara Memorial Foundation, Japan (1995); Promotion Award from Japanese Society of Genetics (1987). Fellowships: Visiting Research Fellow at Imperial Cancer Research Fund (ICRF) in London (1989); Fellow of American Association for the Advancement of Science (AAAS) (2006). Academies and Professional organisations: Foreign Honorary Member of the American Academy of Arts and Sciences (2006); Member of the Pontifical Academy of Sciences (2007); Vice-Chairman, The International Society of Molecular Evolution; Member, The American Society of Genetics; Member, The Society of Molecular Biology and Evolution; Member, The Japanese Society of Genetics; Member, The Japanese Society of Evolutionary Studies. Summary of scientific research He has worked extensively on the rates of synonymous and nonsynonymous substitutions, positive selection, horizontal gene transfer, viral evolution, genomic evolution, and comparative gene expressionics. In recent years he has focused on the evolution of the brain and of the Central Nervous System. He has contributed to the DDBJ/GenBank/EMBL international nucleotide sequence database construction as well as the H-Invitational human gene database. Main publications Jung Shan, H., Ohyanagi, H., Hayakawa, S., Osato, N., Nishimiya-Fujisawa, C., Ikeo, K., David, C., Fujisawa, T. and Gojobori, T.
    [Show full text]
  • Both Sense and Antisense Strands of the LTR of the Schistosoma Mansoni Pao-Like Retrotransposon Sinbad Drive Luciferase Expression
    Mol Genet Genomics DOI 10.1007/s00438-006-0181-1 ORIGINAL PAPER Both sense and antisense strands of the LTR of the Schistosoma mansoni Pao-like retrotransposon Sinbad drive luciferase expression Claudia S. Copeland · Victoria H. Mann · Paul J. Brindley Received: 20 August 2006 / Accepted: 4 October 2006 © Springer-Verlag 2006 Abstract Long terminal repeat (LTR) retrotranspo- activity in HeLa cells. The ability of the Sinbad LTR to sons, mobile genetic elements comprising substantial transcribe in both its forward and inverted orientation proportions of many eukaryotic genomes, are so represents one of few documented examples of bidirec- named for the presence of LTRs, direct repeats about tional promotor function. 250–600 bp in length Xanking the open reading frames that encode the retrotransposon enzymes and struc- Keywords Schistosome · Boudicca · Promotor · tural proteins. LTRs include promotor functions as Promoter · Bidirectional · Inverse well as other roles in retrotransposition. LTR retro- transposons, including the Gypsy-like Boudicca and the Pao/BEL-like Sinbad elements, comprise a sub- Introduction stantial proportion of the genome of the human blood Xuke, Schistosoma mansoni. In order to deduce the Eukaryotic genomes generally contain substantial capability of speciWc copies of Boudicca and Sinbad amounts of repetitive sequences, many of which repre- LTRs to function as promotors, these LTRs were sent mobile genetic elements (e.g., Lander et al. 2001; investigated analytically and experimentally. Sequence Holt et al. 2002). These mobile elements have played analysis revealed the presence of TATA boxes, canoni- fundamental roles in host genome evolution (Charles- cal polyadenylation signals, and direct inverted repeats worth et al.
    [Show full text]
  • Variable Selection Algorithms in Generalized Linear Models
    VARIABLE SELECTION ALGORITHMS IN GENERALIZED LINEAR MODELS Juan Carlos Laria de la Cruz A DISSERTATION Submitted in partial fulfilment of the requirements for the degree of DOCTOR OF PHILOSOPHY (Mathematical Engineering) Universidad Carlos III de Madrid Advisors Rosa E. Lillo M. Carmen Aguilera-Morillo Tutor Rosa E. Lillo June, 2020 Variable selection algorithms in generalized linear models A DISSERTATION June, 2020 By Juan Carlos Laria de la Cruz Published by: UC3M, Department of Statistics, Av. Universidad 30, 28912 Leganés, Madrid Spain www.uc3m.es This work is licensed under Creative Commons Attribution – Non Commercial – Non Derivatives A mi madre Acknowledgements None of this work would have been possible without the continuous support, expert advice, motivation, constant dedication, and commit- ment of my thesis advisors and friends, Professors Rosa Lillo and Car- men Aguilera. I am deeply grateful to them. I would also like to thank my coauthors, and coworkers at the Depart- ment of Statistics. Many people have given me relevant suggestions and insights at different points during these years. Me being here has required so much patience and sacrifice by those involved in my education, that this work is theirs too. Not only my grandmother and my parents but also my school and university teach- ers authored this thesis. Special thanks to my family and my friends, who were always there for me, unconditionally, when I needed them. Contents published and presented The materials from the following sources are included in the thesis. Their inclusion is not indicated by typographical means or references, since they are fully embedded in each chapter indicated below.
    [Show full text]
  • Ribonucleotide Reductase Genes Influence The
    RIBONUCLEOTIDE REDUCTASE GENES INFLUENCE THE BIOLOGY AND ECOLOGY OF MARINE VIRUSES by Amelia O. Harrison A thesis submitted to the Faculty of the University of Delaware in partial fulfillment of the requirements for the degree of Master of Science in Marine Studies Fall 2019 c 2019 Amelia O. Harrison All Rights Reserved RIBONUCLEOTIDE REDUCTASE GENES INFLUENCE THE BIOLOGY AND ECOLOGY OF MARINE VIRUSES by Amelia O. Harrison Approved: K. Eric Wommack, Ph.D. Professor in charge of thesis on behalf of the Advisory Committee Approved: Mark A. Moline, Ph.D. Director of the School of Marine Science and Policy Approved: Estella A. Atekwana, Ph.D. Dean of the College of Earth, Ocean, and Environment Approved: Douglas J. Doren, Ph.D. Interim Vice Provost for Graduate and Professional Education and Dean of the Graduate College ACKNOWLEDGMENTS First, I would like to thank my advisor, Eric Wommack, for taking a chance on me as a freshman undergrad and again as a masters student. It has been a privilege to work with someone so passionate and excited about science. I would also like to thank Shawn Polson, who has also supported me and helped foster my love for research over the past six years. I would like to thank the final member of my committee, Jennifer Biddle, for her insight and general awesomeness. I am deeply thankful for all of my past and current labmates. Barb Ferrell who somehow always has time for everyone. Prasanna Joglekar, for always making me laugh. Rachel Marine, who took me on as an intern despite not having the time.
    [Show full text]
  • Functional Analysis of Rice Bidirectional Promoters
    Michigan Technological University Digital Commons @ Michigan Tech Dissertations, Master's Theses and Master's Dissertations, Master's Theses and Master's Reports - Open Reports 2012 Functional analysis of rice bidirectional promoters Surendar R. Dhadi Michigan Technological University Follow this and additional works at: https://digitalcommons.mtu.edu/etds Part of the Biology Commons Copyright 2012 Surendar R. Dhadi Recommended Citation Dhadi, Surendar R., "Functional analysis of rice bidirectional promoters", Dissertation, Michigan Technological University, 2012. https://doi.org/10.37099/mtu.dc.etds/191 Follow this and additional works at: https://digitalcommons.mtu.edu/etds Part of the Biology Commons FUNCTIONAL ANALYSIS OF RICE BIDIRECTIONAL PROMOTERS By Surendar R Dhadi A DISSERTATION Submitted in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY (Biological Sciences) MICHIGAN TECHNOLOGICAL UNIVERSITY 2012 Copyright © Surendar R Dhadi 2012 This dissertation, “Functional Analysis of Rice Bidirectional Promoters”, is hereby approved in partial fulfillment of the requirements for the Degree of DOCTOR OF PHILOSOPHY IN BIOLOGICAL SCIENCES. Department of Biological Sciences Signatures: Dissertation Advisor ________________________________________ Ramakrishna Wusirika Department Chair ________________________________________ K. Michael Gibson Date ________________________________________ TABLE OF CONTENTS List of Figures..........................................................................................................................
    [Show full text]
  • Multi-Tissue Transcriptomic Study Reveals the Main Role of Liver in the Chicken Adaptive Response to a Switch in Dietary Energy
    Desert et al. BMC Genomics (2018) 19:187 https://doi.org/10.1186/s12864-018-4520-5 RESEARCH ARTICLE Open Access Multi-tissue transcriptomic study reveals the main role of liver in the chicken adaptive response to a switch in dietary energy source through the transcriptional regulation of lipogenesis C. Desert1*†, E. Baéza2†, M. Aite1, M. Boutin1, A. Le Cam3, J. Montfort3, M. Houee-Bigot4, Y. Blum1,5, P. F. Roux1,6, C. Hennequet-Antier2, C. Berri2, S. Metayer-Coustard2, A. Collin2, S. Allais1, E. Le Bihan2, D. Causeur4, F. Gondret1, M. J. Duclos2 and S. Lagarrigue1* Abstract Background: Because the cost of cereals is unstable and represents a large part of production charges for meat- type chicken, there is an urge to formulate alternative diets from more cost-effective feedstuff. We have recently shown that meat-type chicken source is prone to adapt to dietary starch substitution with fat and fiber. The aim of this study was to better understand the molecular mechanisms of this adaptation to changes in dietary energy sources through the fine characterization of transcriptomic changes occurring in three major metabolic tissues – liver, adipose tissue and muscle – as well as in circulating blood cells. Results: We revealed the fine-tuned regulation of many hepatic genes encoding key enzymes driving glycogenesis and de novo fatty acid synthesis pathways and of some genes participating in oxidation. Among the genes expressed upon consumption of a high-fat, high-fiber diet, we highlighted CPT1A, which encodes a key enzyme in the regulation of fatty acid oxidation. Conversely, the repression of lipogenic genes by the high-fat diet was clearly associated with the down- regulation of SREBF1 transcripts but was not associated with the transcript regulation of MLXIPL and NR1H3, which are both transcription factors.
    [Show full text]
  • Identification of Novel Chromosomal Rearrangements in Acute
    Leukemia (1999) 13, 1534–1538 1999 Stockton Press All rights reserved 0887-6924/99 $15.00 http://www.stockton-press.co.uk/leu Identification of novel chromosomal rearrangements in acute myelogenous leukemia involving loci on chromosome 2p23, 15q22 and 17q21 A Melnick1, S Fruchtman1, A Zelent2, M Liu3, Q Huang3, B Boczkowska1, MJ Calasanz4, A Fernandez4, JD Licht5 and V Najfeld1 1Division of Hematology, Tumor Cytogenetics Laboratory, and 5Derald H Ruttenberg Cancer Center, Mount Sinai Medical Center, New York, NY, USA; 2Institute of Cancer Research London, UK; 4University of Navarra and Hospital San Milagros, Spain; and 3Shanghai Institute of Hematology, China Chromosomal translocations are frequently linked to multiple Case reports hematological malignancies. The study of the resulting abnor- mal gene products has led to fundamental advances in the understanding of cancer biology. This is the first report of Patient 1 t(2;15)(p23;q22) and t(2;17)(p23;q21) translocations in human malignancy. Patient 1, a 73-year-old male, was diagnosed with A previously healthy 73-year-old male, presented in June myeloblastic (FAB M1 sub-type) AML. Cytogenetic analysis showed a 47,XY,t(2;15)(p23;q22),+13 karyotype. Fluorescent in 1996 with acute myeloblastic leukemia (FAB M1 sub-type). situ hybridization (FISH) showed that the PML gene was trans- The patient was treated with standard induction chemo- ferred intact to the short arm of chromosome 2 while the ALK therapy consisting of cytosine arabinoside and idarubicin and gene on chromosome 2p23 was passively transferred to the achieved complete remission. He subsequently underwent long arm of chromosome 15.
    [Show full text]
  • 1 CURRICULUM VITAE Shozo Yokoyama Shozo Yokoyama, Ph. D
    CURRICULUM VITAE Shozo Yokoyama Shozo Yokoyama, Ph. D. Asa Griggs Candler Professor of Biology Department of Biology O. Wayne Rollins Research Center 1510 Clifton Road Emory University Atlanta, GA 30322 Tel. 404-727-5379 Fax. 404-727-2880 E-mail: [email protected] Education: B. S. (Biology), Miyazaki University, Miyazaki, Japan, 1968 M. S. (Biology), Kyushu University, Fukuoka, Japan, 1971 Ph. D. (Biomathematics), University of Washington, Seattle, WA, 1977 Advisor: Dr. Joseph Felsenstein Professional Appointments: Asa G. Candler Professor of Biology, Department of Biology, Emory University, Atlanta, 2003 - present. Distinguished Professor, Department of Biology, Syracuse University, Syracuse, 2002 - 2003. Professor, Department of Biology, Syracuse University, Syracuse, 1991 - 2001 Associate Professor, Department of Ecology, Ethology and Evolution, University of Illinois, Urbana-Champaign, 1987 - 1991 Assistant Professor, Departments of Psychiatry, Genetics, & Biology, Washington University, St. Louis, 1980 - 1987 Instructor, Department of Psychiatry, Washington University, St. Louis, 1978 - 1979 Research Associate (with Dr. Masatoshi Nei), University of Texas at Houston, Houston, 1977 - 1978 Research Assistant (for Dr. Joseph Felsenstein), University of Washington, 1973 - 1977 Teaching Assistant, Division of Biological & Medical Sciences, Brown University, 1972 1 - 1973 Research Assistant (for Dr. Masatoshi Nei), Brown University, 1971 - 1972 Professional Organizations, Editorial Boards and Officers: American Association for the Advancement
    [Show full text]
  • BIG DATA and SCIENCE: Relevance of Computational Sciences for Data Collection, Data Storage and Data Management in Basic and Applied Scientific Investigations
    THE PONTIFICAL ACADEMY OF SCIENCES WORKSHOP ON BIG DATA AND SCIENCE: Relevance of Computational Sciences for Data Collection, Data Storage and Data Management in Basic and Applied Scientific Investigations 17-18 November 2015 • Casina Pio IV • Vatican City 2 BIG DATA AND SCIENCE Introduction ne of the distinctive features of contemporary sci - collected data becomes readily accessible to potential users, O entific research, in both basic and applied sciences, collaborative projects are more common than ever before. is the large amount of data that is continuously being pro - duced. Quite frequently, data production exceeds the ca - This workshop does not intend to encompass all fields of pacity of the available tools for its proper analysis and research in which data management is relevant. Instead, its interpretation, being genomics a paradigmatic example aim is to present specific examples of appropriate collec - of this situation. Therefore, the use of the most advanced tion, storage and management of data, taken mainly from methodologies for data management is of key importance the Life Sciences, Earth Sciences and Astrophysics. It is ex - for a successful research enterprise. pected that sharing experiences among various fields may lead to new opportunities for interdisciplinary research. In recent years, major advances have taken place in the field of Computational Sciences. They have not only facilitated This can be expected to provide advice and help for basic gaining access to new data in all fields of research, but they and for applied research projects in future scientific in - have also led to a more efficient processing of the informa - vestigations.
    [Show full text]
  • View, USA) with the Gene Specific Primers GSPH2 for HAND2 and GSPD1 for DEIN
    BMC Molecular Biology BioMed Central Research article Open Access Co-regulated expression of HAND2 and DEIN by a bidirectional promoter with asymmetrical activity in neuroblastoma Harald Voth1,2, André Oberthuer1, Thorsten Simon1, Yvonne Kahlert1, Frank Berthold1 and Matthias Fischer*1 Address: 1Department of Pediatric Oncology and Hematology and Center of Molecular Medicine Cologne (CMMC), University Children's Hospital, Cologne, Germany and 2Department of Dermatology, University of Bonn, Bonn, Germany Email: Harald Voth - [email protected]; André Oberthuer - [email protected]; Thorsten Simon - [email protected]; Yvonne Kahlert - [email protected]; Frank Berthold - [email protected]; Matthias Fischer* - [email protected] * Corresponding author Published: 6 April 2009 Received: 12 November 2008 Accepted: 6 April 2009 BMC Molecular Biology 2009, 10:28 doi:10.1186/1471-2199-10-28 This article is available from: http://www.biomedcentral.com/1471-2199/10/28 © 2009 Voth et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Abstract Background: HAND2, a key regulator for the development of the sympathetic nervous system, is located on chromosome 4q33 in a head-to-head orientation with DEIN, a recently identified novel gene with stage specific expression in primary neuroblastoma (NB). Both genes are expressed in primary NB as well as most NB cell lines and are separated by a genomic sequence of 228 bp.
    [Show full text]