Uncorrected Proof
Lacustrine-fluvial interactions in Australia's Riverine Plains Author Kemp, Justine, Pietsch, Timothy, Gontz, Allen, Olley, Jon Published 2017 Journal Title Quaternary Science Reviews Version Accepted Manuscript (AM) DOI https://doi.org/10.1016/j.quascirev.2017.02.015 Copyright Statement © 2017 Elsevier. Licensed under the Creative Commons Attribution-NonCommercial- NoDerivatives 4.0 International Licence (http://creativecommons.org/licenses/by-nc-nd/4.0/) which permits unrestricted, non-commercial use, distribution and reproduction in any medium, providing that the work is properly cited. Downloaded from http://hdl.handle.net/10072/342972 Griffith Research Online https://research-repository.griffith.edu.au Quaternary Science Reviews xxx (2017) xxx-xxx Contents lists available at ScienceDirect Quaternary Science Reviews journal homepage: www.elsevier.com Lacustrine-fluvial interactions in Australia's Riverine Plains Justine Kemp a, ∗, Timothy Pietsch a, Allen Gontz b, Jon Olley a a Australian Rivers Institute, Griffith University, Nathan, 4111, Queensland, Australia b Department of Geological Sciences, San Diego State University, San Diego, CA, 92108, USA ARTICLE INFO ABSTRACT Article history: Climatic forcing of fluvial systems has been a pre-occupation of geomorphological studies in Australia since the 1940s. In Received 7 April 2016 the Riverine Plain, southeastern Australia, the stable tectonic setting and absence of glaciation have combined to produce Received in revised form 23 December PROOF sediment loads that are amongst the lowest in the world. Surficial sediments and landforms exceed 140,000 yr in age, 2016 and geomorphological change recorded in the fluvial, fluvio-lacustrine and aeolian features have provided a well-studied Accepted 15 February 2017 record of Quaternary environmental change over the last glacial cycle.
[Show full text]