metals Article Structural, Fatigue Behavior, and Mechanical Properties of Zirconium Tungstate-Reinforced Casted A356 Aluminum Alloy Muhammad Raza 1, Hussein Alrobei 2,* , Rizwan Ahmed Malik 1, Azhar Hussain 1, Meshal Alzaid 3 , Mohsin Saleem 4 and Mian Imran 5 1 Department of Metallurgy and Materials Engineering, University of Engineering and Technology, Taxila 47050, Pakistan; razajaff
[email protected] (M.R.);
[email protected] (R.A.M.);
[email protected] (A.H.) 2 Department of Mechanical Engineering, College of Engineering, Prince Sattam bin Abdul aziz University, AlKharj 11942, Saudi Arabia 3 Physics Department, College of Science, Jouf University, Al-Jouf, Sakaka 2014, Saudi Arabia;
[email protected] 4 School of Chemical and Materials Engineering, National University of Sciences and Technology (NUST), Islamabad 44000, Pakistan;
[email protected] 5 Department of Mechanical Engineering, Institute of Space Technology, Islamabad 44000, Pakistan;
[email protected] * Correspondence:
[email protected]; Tel.: +966-11-588-8272 Received: 28 September 2020; Accepted: 2 November 2020; Published: 9 November 2020 Abstract: The aim of this study is to investigate the structure–property relationship of the zirconium tungstate-reinforced casted A356 aluminum alloy. The reinforcement ceramic used was zirconium tungstate of the negative thermal coefficient type, which assists in the weldment of crack growth and enhances the fatigue life. The specimens used in this study were casted by stir casting method and prepared according to Compact Tension standard E-399, and microstructural, fatigue behavior, and mechanical properties were investigated systematically. Microstructural analysis showed reduction in porosity by the addition of ZrW2O8 particles. Fatigue results depict the increase in the fatigue life of aluminum reinforced ceramic as compared to the casted base aluminum alloy.