Public-Key Cryptography and the RSA Algorithm Lecture Notes On
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Public-Key Cryptography
Public Key Cryptography EJ Jung Basic Public Key Cryptography public key public key ? private key Alice Bob Given: Everybody knows Bob’s public key - How is this achieved in practice? Only Bob knows the corresponding private key Goals: 1. Alice wants to send a secret message to Bob 2. Bob wants to authenticate himself Requirements for Public-Key Crypto ! Key generation: computationally easy to generate a pair (public key PK, private key SK) • Computationally infeasible to determine private key PK given only public key PK ! Encryption: given plaintext M and public key PK, easy to compute ciphertext C=EPK(M) ! Decryption: given ciphertext C=EPK(M) and private key SK, easy to compute plaintext M • Infeasible to compute M from C without SK • Decrypt(SK,Encrypt(PK,M))=M Requirements for Public-Key Cryptography 1. Computationally easy for a party B to generate a pair (public key KUb, private key KRb) 2. Easy for sender to generate ciphertext: C = EKUb (M ) 3. Easy for the receiver to decrypt ciphertect using private key: M = DKRb (C) = DKRb[EKUb (M )] Henric Johnson 4 Requirements for Public-Key Cryptography 4. Computationally infeasible to determine private key (KRb) knowing public key (KUb) 5. Computationally infeasible to recover message M, knowing KUb and ciphertext C 6. Either of the two keys can be used for encryption, with the other used for decryption: M = DKRb[EKUb (M )] = DKUb[EKRb (M )] Henric Johnson 5 Public-Key Cryptographic Algorithms ! RSA and Diffie-Hellman ! RSA - Ron Rives, Adi Shamir and Len Adleman at MIT, in 1977. • RSA -
Public Key Cryptography And
PublicPublic KeyKey CryptographyCryptography andand RSARSA Raj Jain Washington University in Saint Louis Saint Louis, MO 63130 [email protected] Audio/Video recordings of this lecture are available at: http://www.cse.wustl.edu/~jain/cse571-11/ Washington University in St. Louis CSE571S ©2011 Raj Jain 9-1 OverviewOverview 1. Public Key Encryption 2. Symmetric vs. Public-Key 3. RSA Public Key Encryption 4. RSA Key Construction 5. Optimizing Private Key Operations 6. RSA Security These slides are based partly on Lawrie Brown’s slides supplied with William Stallings’s book “Cryptography and Network Security: Principles and Practice,” 5th Ed, 2011. Washington University in St. Louis CSE571S ©2011 Raj Jain 9-2 PublicPublic KeyKey EncryptionEncryption Invented in 1975 by Diffie and Hellman at Stanford Encrypted_Message = Encrypt(Key1, Message) Message = Decrypt(Key2, Encrypted_Message) Key1 Key2 Text Ciphertext Text Keys are interchangeable: Key2 Key1 Text Ciphertext Text One key is made public while the other is kept private Sender knows only public key of the receiver Asymmetric Washington University in St. Louis CSE571S ©2011 Raj Jain 9-3 PublicPublic KeyKey EncryptionEncryption ExampleExample Rivest, Shamir, and Adleman at MIT RSA: Encrypted_Message = m3 mod 187 Message = Encrypted_Message107 mod 187 Key1 = <3,187>, Key2 = <107,187> Message = 5 Encrypted Message = 53 = 125 Message = 125107 mod 187 = 5 = 125(64+32+8+2+1) mod 187 = {(12564 mod 187)(12532 mod 187)... (1252 mod 187)(125 mod 187)} mod 187 Washington University in -
Ch 13 Digital Signature
1 CH 13 DIGITAL SIGNATURE Cryptography and Network Security HanJung Mason Yun 2 Index 13.1 Digital Signatures 13.2 Elgamal Digital Signature Scheme 13.3 Schnorr Digital Signature Scheme 13.4 NIST Digital Signature Algorithm 13.6 RSA-PSS Digital Signature Algorithm 3 13.1 Digital Signature - Properties • It must verify the author and the date and time of the signature. • It must authenticate the contents at the time of the signature. • It must be verifiable by third parties, to resolve disputes. • The digital signature function includes authentication. 4 5 6 Attacks and Forgeries • Key-Only attack • Known message attack • Generic chosen message attack • Directed chosen message attack • Adaptive chosen message attack 7 Attacks and Forgeries • Total break • Universal forgery • Selective forgery • Existential forgery 8 Digital Signature Requirements • It must be a bit pattern that depends on the message. • It must use some information unique to the sender to prevent both forgery and denial. • It must be relatively easy to produce the digital signature. • It must be relatively easy to recognize and verify the digital signature. • It must be computationally infeasible to forge a digital signature, either by constructing a new message for an existing digital signature or by constructing a fraudulent digital signature for a given message. • It must be practical to retain a copy of the digital signature in storage. 9 Direct Digital Signature • Digital signature scheme that involves only the communication parties. • It must authenticate the contents at the time of the signature. • It must be verifiable by third parties, to resolve disputes. • Thus, the digital signature function includes the authentication function. -
On the NIST Lightweight Cryptography Standardization
On the NIST Lightweight Cryptography Standardization Meltem S¨onmez Turan NIST Lightweight Cryptography Team ECC 2019: 23rd Workshop on Elliptic Curve Cryptography December 2, 2019 Outline • NIST's Cryptography Standards • Overview - Lightweight Cryptography • NIST Lightweight Cryptography Standardization Process • Announcements 1 NIST's Cryptography Standards National Institute of Standards and Technology • Non-regulatory federal agency within U.S. Department of Commerce. • Founded in 1901, known as the National Bureau of Standards (NBS) prior to 1988. • Headquarters in Gaithersburg, Maryland, and laboratories in Boulder, Colorado. • Employs around 6,000 employees and associates. NIST's Mission to promote U.S. innovation and industrial competitiveness by advancing measurement science, standards, and technology in ways that enhance economic security and improve our quality of life. 2 NIST Organization Chart Laboratory Programs Computer Security Division • Center for Nanoscale Science and • Cryptographic Technology Technology • Secure Systems and Applications • Communications Technology Lab. • Security Outreach and Integration • Engineering Lab. • Security Components and Mechanisms • Information Technology Lab. • Security Test, Validation and • Material Measurement Lab. Measurements • NIST Center for Neutron Research • Physical Measurement Lab. Information Technology Lab. • Advanced Network Technologies • Applied and Computational Mathematics • Applied Cybersecurity • Computer Security • Information Access • Software and Systems • Statistical -
CS 255: Intro to Cryptography 1 Introduction 2 End-To-End
Programming Assignment 2 Winter 2021 CS 255: Intro to Cryptography Prof. Dan Boneh Due Monday, March 1st, 11:59pm 1 Introduction In this assignment, you are tasked with implementing a secure and efficient end-to-end encrypted chat client using the Double Ratchet Algorithm, a popular session setup protocol that powers real- world chat systems such as Signal and WhatsApp. As an additional challenge, assume you live in a country with government surveillance. Thereby, all messages sent are required to include the session key encrypted with a fixed public key issued by the government. In your implementation, you will make use of various cryptographic primitives we have discussed in class—notably, key exchange, public key encryption, digital signatures, and authenticated encryption. Because it is ill-advised to implement your own primitives in cryptography, you should use an established library: in this case, the Stanford Javascript Crypto Library (SJCL). We will provide starter code that contains a basic template, which you will be able to fill in to satisfy the functionality and security properties described below. 2 End-to-end Encrypted Chat Client 2.1 Implementation Details Your chat client will use the Double Ratchet Algorithm to provide end-to-end encrypted commu- nications with other clients. To evaluate your messaging client, we will check that two or more instances of your implementation it can communicate with each other properly. We feel that it is best to understand the Double Ratchet Algorithm straight from the source, so we ask that you read Sections 1, 2, and 3 of Signal’s published specification here: https://signal. -
Implementation and Performance Evaluation of XTR Over Wireless Network
Implementation and Performance Evaluation of XTR over Wireless Network By Basem Shihada [email protected] Dept. of Computer Science 200 University Avenue West Waterloo, Ontario, Canada (519) 888-4567 ext. 6238 CS 887 Final Project 19th of April 2002 Implementation and Performance Evaluation of XTR over Wireless Network 1. Abstract Wireless systems require reliable data transmission, large bandwidth and maximum data security. Most current implementations of wireless security algorithms perform lots of operations on the wireless device. This result in a large number of computation overhead, thus reducing the device performance. Furthermore, many current implementations do not provide a fast level of security measures such as client authentication, authorization, data validation and data encryption. XTR is an abbreviation of Efficient and Compact Subgroup Trace Representation (ECSTR). Developed by Arjen Lenstra & Eric Verheul and considered a new public key cryptographic security system that merges high level of security GF(p6) with less number of computation GF(p2). The claim here is that XTR has less communication requirements, and significant computation advantages, which indicate that XTR is suitable for the small computing devices such as, wireless devices, wireless internet, and general wireless applications. The hoping result is a more flexible and powerful secure wireless network that can be easily used for application deployment. This project presents an implementation and performance evaluation to XTR public key cryptographic system over wireless network. The goal of this project is to develop an efficient and portable secure wireless network, which perform a variety of wireless applications in a secure manner. The project literately surveys XTR mathematical and theoretical background as well as system implementation and deployment over wireless network. -
Choosing Key Sizes for Cryptography
information security technical report 15 (2010) 21e27 available at www.sciencedirect.com www.compseconline.com/publications/prodinf.htm Choosing key sizes for cryptography Alexander W. Dent Information Security Group, University Of London, Royal Holloway, UK abstract After making the decision to use public-key cryptography, an organisation still has to make many important decisions before a practical system can be implemented. One of the more difficult challenges is to decide the length of the keys which are to be used within the system: longer keys provide more security but mean that the cryptographic operation will take more time to complete. The most common solution is to take advice from information security standards. This article will investigate the methodology that is used produce these standards and their meaning for an organisation who wishes to implement public-key cryptography. ª 2010 Elsevier Ltd. All rights reserved. 1. Introduction being compromised by an attacker). It also typically means a slower scheme. Most symmetric cryptographic schemes do The power of public-key cryptography is undeniable. It is not allow the use of keys of different lengths. If a designer astounding in its simplicity and its ability to provide solutions wishes to offer a symmetric scheme which provides different to many seemingly insurmountable organisational problems. security levels depending on the key size, then the designer However, the use of public-key cryptography in practice is has to construct distinct variants of a central design which rarely as simple as the concept first appears. First one has to make use of different pre-specified key lengths. -
Basics of Digital Signatures &
> DOCUMENT SIGNING > eID VALIDATION > SIGNATURE VERIFICATION > TIMESTAMPING & ARCHIVING > APPROVAL WORKFLOW Basics of Digital Signatures & PKI This document provides a quick background to PKI-based digital signatures and an overview of how the signature creation and verification processes work. It also describes how the cryptographic keys used for creating and verifying digital signatures are managed. 1. Background to Digital Signatures Digital signatures are essentially “enciphered data” created using cryptographic algorithms. The algorithms define how the enciphered data is created for a particular document or message. Standard digital signature algorithms exist so that no one needs to create these from scratch. Digital signature algorithms were first invented in the 1970’s and are based on a type of cryptography referred to as “Public Key Cryptography”. By far the most common digital signature algorithm is RSA (named after the inventors Rivest, Shamir and Adelman in 1978), by our estimates it is used in over 80% of the digital signatures being used around the world. This algorithm has been standardised (ISO, ANSI, IETF etc.) and been extensively analysed by the cryptographic research community and you can say with confidence that it has withstood the test of time, i.e. no one has been able to find an efficient way of cracking the RSA algorithm. Another more recent algorithm is ECDSA (Elliptic Curve Digital Signature Algorithm), which is likely to become popular over time. Digital signatures are used everywhere even when we are not actually aware, example uses include: Retail payment systems like MasterCard/Visa chip and pin, High-value interbank payment systems (CHAPS, BACS, SWIFT etc), e-Passports and e-ID cards, Logging on to SSL-enabled websites or connecting with corporate VPNs. -
Efficient Regular Modular Exponentiation Using
J Cryptogr Eng (2017) 7:245–253 DOI 10.1007/s13389-016-0134-5 SHORT COMMUNICATION Efficient regular modular exponentiation using multiplicative half-size splitting Christophe Negre1,2 · Thomas Plantard3,4 Received: 14 August 2015 / Accepted: 23 June 2016 / Published online: 13 July 2016 © Springer-Verlag Berlin Heidelberg 2016 Abstract In this paper, we consider efficient RSA modular x K mod N where N = pq with p and q prime. The private exponentiations x K mod N which are regular and con- data are the two prime factors of N and the private exponent stant time. We first review the multiplicative splitting of an K used to decrypt or sign a message. In order to insure a integer x modulo N into two half-size integers. We then sufficient security level, N and K are chosen large enough take advantage of this splitting to modify the square-and- to render the factorization of N infeasible: they are typically multiply exponentiation as a regular sequence of squarings 2048-bit integers. The basic approach to efficiently perform always followed by a multiplication by a half-size inte- the modular exponentiation is the square-and-multiply algo- ger. The proposed method requires around 16% less word rithm which scans the bits ki of the exponent K and perform operations compared to Montgomery-ladder, square-always a sequence of squarings followed by a multiplication when and square-and-multiply-always exponentiations. These the- ki is equal to one. oretical results are validated by our implementation results When the cryptographic computations are performed on which show an improvement by more than 12% compared an embedded device, an adversary can monitor power con- approaches which are both regular and constant time. -
Key Improvements to XTR
To appear in Advances in Cryptology|Asiacrypt 2000, Lecture Notes in Computer Science 1976, Springer-Verlag 2000, 220-223. Key improvements to XTR Arjen K. Lenstra1, Eric R. Verheul2 1 Citibank, N.A., Technical University Eindhoven, 1 North Gate Road, Mendham, NJ 07945-3104, U.S.A., [email protected] 2 PricewaterhouseCoopers, GRMS Crypto Group, Goudsbloemstraat 14, 5644 KE Eindhoven, The Netherlands, Eric.Verheul@[nl.pwcglobal.com, pobox.com] Abstract. This paper describes improved methods for XTR key rep- resentation and parameter generation (cf. [4]). If the ¯eld characteristic is properly chosen, the size of the XTR public key for signature appli- cations can be reduced by a factor of three at the cost of a small one time computation for the recipient of the key. Furthermore, the para- meter set-up for an XTR system can be simpli¯ed because the trace of a proper subgroup generator can, with very high probability, be com- puted directly, thus avoiding the probabilistic approach from [4]. These non-trivial extensions further enhance the practical potential of XTR. 1 Introduction In [1] it was shown that conjugates of elements of a subgroup of GF(p6)¤ of order 2 dividing Á6(p) = p ¡ p + 1 can be represented using 2 log2(p) bits, as opposed to the 6 log2(p) bits that would be required for their traditional representation. In [4] an improved version of the method from [1] was introduced that achieves the same communication advantage at a much lower computational cost. The resulting representation method is referred to as XTR, which stands for E±cient and Compact Subgroup Trace Representation. -
Quantum Computing Threat: How to Keep Ahead
Think openly, build securely White paper: Quantum Computing Threat: How to Keep Ahead Ë PQShield Ƕ February 2021 © PQShield Ltd | www.pqshield.com | PQShield Ltd, Oxford, OX2 7HT, UK Cryptographic agility and a clear roadmap to the upcoming NIST standards are key to a smooth and secure transition. 1 Background 1.1 New Cryptography Standards The NIST (U.S. National Institute of Standards and Technology) Post‐Quantum Cryptography (PQC) Project has been running since 2016 and is now in its third, final evaluation round. This project standardizes new key establishment and digital signature algorithms that have been designed to be resistant against attacks by quantum computers. These new algorithms are intended to replace current classical‐security RSA and Elliptic Cryptography (ECDH, ECDSA) standards in applications. The particular mathematical problems that RSA and Elliptic Cryptography are based onareeasy (polynomial‐time solvable) for quantum computers. Unless complemented with quantum‐safe cryptography, this will allow for the forgery of digital signatures (integrity compromise) and de‐ cryption of previously encrypted data (confidentiality compromise) in the future. This is aheight‐ ened risk for organizations that need to secure data for long periods of time; government orga‐ nizations that handle and secure classified information have largely been the drivers ofthepost‐ quantum standardization and its adoption in the field, but banks, financial services, healthcare providers, those developing intellectual property and many others increasingly feel the need to ensure that they can protect their customers and IP – now and in the future. 1.2 Quantum Threat and Post-Quantum Cryptography The current position of NCSC (UK’s National Cyber Security Centre) and NSA (USA’s National Se‐ curity Agency) is that the best mitigation against the threat of quantum computers is quantum‐ safe cryptography, also known as post‐quantum cryptography (PQC). -
Miller-Rabin Primality Test (Java)
Miller-Rabin primality test (Java) Other implementations: C | C, GMP | Clojure | Groovy | Java | Python | Ruby | Scala The Miller-Rabin primality test is a simple probabilistic algorithm for determining whether a number is prime or composite that is easy to implement. It proves compositeness of a number using the following formulas: Suppose 0 < a < n is coprime to n (this is easy to test using the GCD). Write the number n−1 as , where d is odd. Then, provided that all of the following formulas hold, n is composite: for all If a is chosen uniformly at random and n is prime, these formulas hold with probability 1/4. Thus, repeating the test for k random choices of a gives a probability of 1 − 1 / 4k that the number is prime. Moreover, Gerhard Jaeschke showed that any 32-bit number can be deterministically tested for primality by trying only a=2, 7, and 61. [edit] 32-bit integers We begin with a simple implementation for 32-bit integers, which is easier to implement for reasons that will become apparent. First, we'll need a way to perform efficient modular exponentiation on an arbitrary 32-bit integer. We accomplish this using exponentiation by squaring: Source URL: http://www.en.literateprograms.org/Miller-Rabin_primality_test_%28Java%29 Saylor URL: http://www.saylor.org/courses/cs409 ©Spoon! (http://www.en.literateprograms.org/Miller-Rabin_primality_test_%28Java%29) Saylor.org Used by Permission Page 1 of 5 <<32-bit modular exponentiation function>>= private static int modular_exponent_32(int base, int power, int modulus) { long result = 1; for (int i = 31; i >= 0; i--) { result = (result*result) % modulus; if ((power & (1 << i)) != 0) { result = (result*base) % modulus; } } return (int)result; // Will not truncate since modulus is an int } int is a 32-bit integer type and long is a 64-bit integer type.