NU/Linux" Redirects Here. See Also GNU/Linux Naming Controversy

Total Page:16

File Type:pdf, Size:1020Kb

NU/Linux NU/Linux" redirects here. See also GNU/Linux naming controversy .. This article is about operating systems that use the Linux kernel. For the kernel itself, see Linux kernel .. For other uses, see Linux (disambiguation).. Linux Tux thethe penguin, mascot of Linux[1] Company //developer GNU Project,, Linus Torvalds and many others PrProgogrrammed in Assembly language,, C OS f amamilyily Unix-like WWoorkingg ststaatete Current SSoource momodeldel Free and open source software [2] Latest stable release 2.6.38.3 (April 14, 2011; 2 days ago) [[+/í]] [3] Latest unstable release 2.6.39-rc3 (April 12, 2011; 4 days ago) [[+/í]] MMaarketingg ttaarrggetet Desktops, servers, embedded devices Availablelanguage(s) Multi-lingual Availableprogramming Many languages(s) Supported platf orms DEC Alpha, AR M, AVR32, Blackfin, ETRAX CRIS, FR- V, H8/300, Itanium, M32R , m68k ,Microblaze, MIPS, M N103, PA- RISC, PowerPC,s390, S+core, SuperH, SPARC, TILE64, x86,Xtensa Kernel type Monolithic Userland GNU and others Def ault user interf ace Graphical (X Window System)and command-line interface License Various including GNU General Public License,BSD License, Apache License, MIT License, and others[4] Official website kernel.org How Linus Torvalds pronounces Linux Problems listening to this file? See media help. [5][6] [7] Linux (commonly /lnks/ LIN -ks in English, also pronounced /lnks/ LIN -ooks in Europe) refers to the family of Unix-likecomputer operating systems using the Linux kernel. Linux can be installed on a wide variety of computer hardware, ranging from mobile phones, tablet computers and video game consoles, to mainframes and supercomputers.[8][9][10][11] Linux is a leading server operating system, and runs the 10 fastest supercomputers in the world.[12] The development of Linux is one of the most prominent examples of free and open source software collaboration; typically all the underlyingsource code can be used, freely modified, and redistributed, both commercially and non-commercially, by anyone under licenses such as theGNU General Public License. Typically Linux is packaged in a format known as a Linux distribution for desktop and server use. Some popular mainstream Linux distributions include Debian (and its derivatives such as Ubuntu), Fedora and openSUSE. Linux distributions include the Linux kernel and supporting utilities and libraries to fulfill the distribution's intended use. A distribution oriented toward desktop use may include the X Window System, the GNOME and KDE Plasma desktop environments. Other distributions may include a less resource intensive desktop such as LXDE or Xfce for use on older or less-powerful computers. A distribution intended to run as a server may omit any graphical environment from the standard install and instead include other software such as the Apache HTTP Server and a SSH server like OpenSSH. Because Linux is freely redistributable, it is possible for anyone to create a distribution for any intended use. Commonly used applications with desktop Linux systems include the Mozilla Firefox web browser, the OpenOffice.orgoffice application suite and the GIMP image editor. The name "Linux" comes from the Linux kernel, originally written in 1991 by Linus Torvalds. The main supporting user space system tools and libraries from the GNU Project (announced in 1983 by Richard Stallman) are the basis for the Free Software Foundation's preferred nameGNU/Linux .[13][14] Contents 1 History o 1.1 Unix o 1.2 GNU o 1.3 BSD o 1.4 MINIX o 1.5 Commercial and popular uptake o 1.6 Current development 2 Design o 2.1 User interface 3 Development o 3.1 Community o 3.2 Programming on Linux 4 Uses o 4.1 Desktop o 4.2 Servers, mainframes and supercomputers o 4.3 Embedded devices o 4.4 Market share and uptake 5 Copyright and naming o 5.1 GNU/Linux 6 See also 7 References 8 External links [edit]History [edit]Unix The Unix operating system was conceived and implemented in 1969 at AT&T's Bell Laboratories in the United States by Ken Thompson,Dennis Ritchie, Douglas McIlroy, and Joe Ossanna. It was first released in 1971 and was initially entirely written in assembly language, a common practice at the time. Later, in a key pioneering approach in 1973, Unix was re-written in the programming language C by Dennis Ritchie(with exceptions to the kernel and I/O). The availability of an operating system written in a high-level language allowed easier portability to different computer platforms. With a legal glitch forcing AT&T to license the operating system's source code,[clarification needed ] Unix quickly grew and became widely adopted by academic institutions and businesses. Richard Stallman, founder of the GNU project [edit]GNU The GNU Project, started in 1983 by Richard Stallman, had the goal of creating a "complete Unix- compatible software system" composed entirely of free software. Work began in 1984.[15] Later, in 1985, Stallman started the Free Software Foundation and wrote the GNU General Public License (GNU GPL) in 1989. By the early 1990s, many of the programs required in an operating system (such as libraries, compilers, text editors, a Unix shell, and a windowing system) were completed, although low- level elements such as device drivers, daemons, and the kernel were stalled and incomplete.[16] Linus Torvalds has said that if the GNU kernel had been av ailable at the time (1991), he would not have decided to write his own.[17] [edit]BSD Although not released until 1992 due to legal complications, development of 386BSD, from which NetBSD and FreeBSD descended, predated that of Linux. Linus Torvalds has said that if 386BSD had been available at the time, he probably would not have created Linux.[18] [edit]MINIX Andrew S. Tanenbaum (left), author of the MINIXoperating system and Linus Torvalds (right), principal author of the Linux kernel MINIX is an inexpensive minimal Unix-like operating system, designed for education in computer science, written by Andrew S. Tanenbaum. Starting with version 3, MINIX was free and redesigned for ³serious´ use. In 1991 while attending the University of Helsinki, Torvalds, curious about the operating systems [19] and frustrated by the licensing of MINIX limiting it to educational use only (which prevented any commercial use), began to work on his own operating system which eventually became theLinux kernel. Torvalds began the development of the Linux kernel on MINIX, and applications written for MINIX were also used on Linux. Later Linux matured and it became possible for Linux to be developed under itself.[20] Also GNU applications replaced all MINIX ones, because with code from the GNU system freely available, it was advantageous if this could be used with the fledgling operating system. Code licensed under the GNU GPL can be used in other projects, so long as they also are released under the same or a compatible license. In order to make the Linux available for commercial use, Torvalds initiated a switch from his original license (which prohibited commercial redistribution) to the G NU GPL.[21] Developers worked to integrate GNU components with Linux to make a fully functional and free operating system.[16] [edit]Commercial and popular uptake M ain article: Linux adoption Today, Linux distributions are used in every domain, from embedded systems to supercomputers,[22][23] and have secured a place in server installations often using the popular LAMP application stack.[24] Use of Linux distributions in home and enterprise desktops has been growing.[25][26][27][28][29][30][31] They have also gained popularity with various local and national governments. The federal government of Brazil is well known for its support for Linux.[32][33] News of the Russian military creating their own Linux distribution has also surfaced, and has come to fruition as the G.H.ost Project.[34] The Indian state of Kerala has gone to the extent of mandating that all state high schools run Linux on their computers.[35][36] China uses Linux exclusively as the operating system for itsLoongson processor family to achieve technology independence.[37] In Spain some regions have developed their own Linux distributions, which are widely used in education and official institutions, likegnuLinEx in Extremadura and Guadalinex in Andalusia. Portugal is also using its own Linux distribution Caixa Mágica, used in the Magalhães netbook[38] and the e-escola government program.[39]France and Germany have also taken steps towards the adoption of Linux.[40] Linux distributions have also become popular in the netbook market, with many devices such as the ASUS Eee PC and Acer Aspire One shipping with customized Linux distributions installed.[41] [edit]Current development Torvalds continues to direct the development of the kernel. Stallman heads the Free Software Foundation, which in turn supports the GNU components. Finally, individuals and corporations develop third-party non-GNU components. These third-party components comprise a vast body of work and may include both kernel modules and user applications and libraries. Linux vendors and communities combine and distribute the kernel, GNU components, and non-GNU components, with additional package management software in the form of Linux distributions. [edit]Design A Linux-based system is a modular Unix-like operating system. It derives much of its basic design from principles established in Unix during the 1970s and 1980s. Such a system uses a monolithic kernel, the Linux kernel, which handles process control, networking, and peripheral and file system access. Device drivers are either integrated directly with the kernel or added as modules loaded while the system is running. Separate projects that interface with the kernel provide much of the system's higher-level functionality. The GNU userland is an important part of most Linux-based systems, providing the most common implementation of the C library, a popular shell, and many of the common Unix tools which carry out many basic operating system tasks.
Recommended publications
  • Comparison of Contemporary Real Time Operating Systems
    ISSN (Online) 2278-1021 IJARCCE ISSN (Print) 2319 5940 International Journal of Advanced Research in Computer and Communication Engineering Vol. 4, Issue 11, November 2015 Comparison of Contemporary Real Time Operating Systems Mr. Sagar Jape1, Mr. Mihir Kulkarni2, Prof.Dipti Pawade3 Student, Bachelors of Engineering, Department of Information Technology, K J Somaiya College of Engineering, Mumbai1,2 Assistant Professor, Department of Information Technology, K J Somaiya College of Engineering, Mumbai3 Abstract: With the advancement in embedded area, importance of real time operating system (RTOS) has been increased to greater extent. Now days for every embedded application low latency, efficient memory utilization and effective scheduling techniques are the basic requirements. Thus in this paper we have attempted to compare some of the real time operating systems. The systems (viz. VxWorks, QNX, Ecos, RTLinux, Windows CE and FreeRTOS) have been selected according to the highest user base criterion. We enlist the peculiar features of the systems with respect to the parameters like scheduling policies, licensing, memory management techniques, etc. and further, compare the selected systems over these parameters. Our effort to formulate the often confused, complex and contradictory pieces of information on contemporary RTOSs into simple, analytical organized structure will provide decisive insights to the reader on the selection process of an RTOS as per his requirements. Keywords:RTOS, VxWorks, QNX, eCOS, RTLinux,Windows CE, FreeRTOS I. INTRODUCTION An operating system (OS) is a set of software that handles designed known as Real Time Operating System (RTOS). computer hardware. Basically it acts as an interface The motive behind RTOS development is to process data between user program and computer hardware.
    [Show full text]
  • Software De Sistemas Introduccion
    SOFTWARE DE SISTEMAS INTRODUCCION • EL CONCEPTO DE SOFTWARE VA MAS ALLA DE LOS PROGRAMAS DE COMPUTACION EN SUS DISTINTOS ESTADOS QUE ABARCA TODO LO INTANGIBLE RELACIONADO Algodesl.wordpress.com t i ¿QUE ES? p o s d e s o f t w a r e . c o m • Parte esencial para clasificar sistemas operativos • Conocido como software base • Conjunto de programas de software que permite interactuar con el hardware y operarlo junto con configuraciones y funciones de entrada y salida ¿Que hace? • Permite utilizar sistema operativo e informático, incluyendo herramientas de diagnostico • Su propósito es aislar un programa o hardware de aplicaciones tanto como sea posible proyectoova.webcindario.com Ejemplos de programas de software de sistema a d • Potenciales ejemplos: r ia n ▪ cargadores a l is s e ▪ Enlazadores t .b lo ▪ Utilidad de software g s p o ▪ Interfaz grafica t ▪ Celdas ▪ Bios ▪ Hipervisores ▪ Gestores de arranque losejemplos.com *si el software del sistema se almacena en memoria volátil se denomina firware Tipos • Como tal no existen varios tipos de software de sistema pero se pueden dividir en 3; O k • Sistema operativo h o s • t Controladores i n g • . Programas de utilería c o m Tipos; SISTEMA OPERATIVO • Parte que se encarga de administración de hardware como los componentes de computadora y encargado de que todos se unan para funcionar en 1 solo objetivo m i n d 4 2 . c o m SISTEMAS OPERATIVOS • MICROSOFT WINDOWS ▪ Núcleo: monolítico (versiones basadas en MS­DOS) e hibrido (versiones basadas en Windows NT) ▪ Plataformas: ARM, arquitectura Intel, MIPS, Alpha, Power PC SISTEMAS OPERATIVOS • MAC OS ▪ Núcleo: XNU basado en mach y BSD, es tipo hibrido ▪ Plataformas; power PC SISTEMAS OPERATIVOS • LINUX: ▪ Núcleo: núcleo Linux ▪ Plataformas; DEC Alpha, ARM, POWER PC, superH, SPARC, ETRAX CRIS, MIPS, MN103… etc.
    [Show full text]
  • Improving Performance of Virtual Machines by Virtio Bridge Bypass
    www.ijecs.in International Journal Of Engineering And Computer Science ISSN:2319-7242 Volume 6 Issue 4 April 2017, Page No. 20931-20937 Index Copernicus value (2015): 58.10 DOI: 10.18535/ijecs/v6i4.24 Improving performance of Virtual Machines by Virtio bridge Bypass for PCI devices 1Shirley Kotian, 2Kirti Menon, 3Kirti Menon, 4Utsav Mundada, 5Neeraj Vilas Auti 1234PICT, 5PICT [CS] ABSTRACT Inspired by the Virtio module of virtualization, we propose an alternate method to directly communicate with PCI devices such as NIC without the use of any kernel modules. This method uses a specialized module written by us which will avoid the mechanism of bridges like the ones used in Virtio that increase latency. This module will be present in the userspace of the guest OS and we are specifically targeting the e1000 device for this purpose and later plan to make it generic for all PCI devices. Our motivation is to avoid unnecessary communication with the kernel which slows down the system. For the first step. we do resource mapping to map the PCI device memory into userspace. Then, we expose PCI configuration space through a userspace module using ACPI cables. Thus, we create a userspace PCI driver which will decrease the latency in access time and increase speed of execution. The applications in the Guest OS that request communication with the PCI devices will be redirected to our application. This will take some load off the kernel and reduce its overhead. Finally, we boot a VM that actually talks to our PCI device emulator. GENERAL TERMS Virtio, UPCI, e1000, QEMU, virt-manager, UIO.
    [Show full text]
  • Virtualization for Embedded Software
    JETS VIRTUALIZATION FOR EMBEDDED SOFTWARE Seasoned aerospace organizations have already weathered the VIRTUALIZATION WITH JETS: change from bespoke systems and proprietary languages to COTS A KEY ENABLER OF DEVOPS TRANSFORMATION and open-source, as well as paradigm shifts from high-overhead FOR AEROSPACE AND DEFENSE waterfall and spiral development models to lightweight and agile methodologies and are considering moving to scalable agile Like all companies in the technology industry, aerospace and defense methods. As with previous seismic shifts in the industry, most suppliers are facing increased pressure to reduce cost and increase defense and aerospace firms will have to follow, especially as best-of- productivity, while meeting their market’s demand for higher breed tools, talent and processes are all refactored to take advantage overall quality and rapid adoption of new platforms, development of DevOps’ unique productivity and quality improvements. DevOps paradigms and user experiences. is a collective term for a range of modern development practices that combines loosely-coupled architectures and process automation In recent years, the rapid pace of innovation for consumer tech, with changes to the structure of development, IT and product teams. together with a new generation of ‘digital native’ users that demand Adoption of DevOps (See Figure 1). more capability than previous generations, has left many in the industry playing constant catch-up. Adoption of DevOps includes a shift from long, structured release cycles to continuous delivery, and relies on heavy use of automation to improve productivity and quality. This can be complicated by The commercial software world is shifting again, several factors common to the defense and aerospace industry.
    [Show full text]
  • Essential Abstractions in GCC
    Essential Abstractions in GCC Uday Khedker (www.cse.iitb.ac.in/˜uday) GCC Resource Center, Department of Computer Science and Engineering, Indian Institute of Technology, Bombay 13 June 2014 EAGCC-PLDI-14 EAGCC: Outline 1/1 Outline • Compilation Models • GCC: The Great Compiler Challenge • Meeting the GCC Challenge: CS 715 The course plan Uday Khedker GRC, IIT Bombay Part 1 Compilation Models EAGCC-PLDI-14 EAGCC: Compilation Models 2/1 Compilation Models Aho Ullman Davidson Fraser Model Model Uday Khedker GRC, IIT Bombay EAGCC-PLDI-14 EAGCC: Compilation Models 2/1 Compilation Models Aho Ullman Davidson Fraser Model Model Front End Input Source Program AST Uday Khedker GRC, IIT Bombay EAGCC-PLDI-14 EAGCC: Compilation Models 2/1 Compilation Models Aho Ullman Davidson Fraser Model Model Front End Input Source Program AST Optimizer Target Indep. IR Uday Khedker GRC, IIT Bombay EAGCC-PLDI-14 EAGCC: Compilation Models 2/1 Compilation Models Aho Ullman Davidson Fraser Model Model Front End Input Source Program AST Optimizer Target Indep. IR Code Generator Target Program Uday Khedker GRC, IIT Bombay EAGCC-PLDI-14 EAGCC: Compilation Models 2/1 Compilation Models Aho Ullman Davidson Fraser Model Model Front End Input Source Program Front End AST AST Optimizer Target Indep. IR Code Generator Target Program Uday Khedker GRC, IIT Bombay EAGCC-PLDI-14 EAGCC: Compilation Models 2/1 Compilation Models Aho Ullman Davidson Fraser Model Model Front End Input Source Program Front End AST AST Expander Optimizer Register Transfers Target Indep. IR Code Generator Target Program Uday Khedker GRC, IIT Bombay EAGCC-PLDI-14 EAGCC: Compilation Models 2/1 Compilation Models Aho Ullman Davidson Fraser Model Model Front End Input Source Program Front End AST AST Expander Optimizer Register Transfers Target Indep.
    [Show full text]
  • GCC Plugins and MELT Extensions
    GCC plugins and MELT extensions Basile STARYNKEVITCH [email protected] (or [email protected]) June 16th 2011 – ARCHI’11 summer school (Mont Louis, France) These slides are under a Creative Commons Attribution-ShareAlike 3.0 Unported License creativecommons.org/licenses/by-sa/3.0 and downloadable from gcc-melt.org th Basile STARYNKEVITCH GCC plugins and MELT extensions June 16 2011 ARCHI’11 ? 1 / 134 Table of Contents 1 Introduction about you and me about GCC and MELT building GCC 2 GCC Internals complexity of GCC overview inside GCC (cc1) memory management inside GCC optimization passes plugins 3 MELT why MELT? handling GCC internal data with MELT matching GCC data with MELT future work on MELT th Basile STARYNKEVITCH GCC plugins and MELT extensions June 16 2011 ARCHI’11 ? 2 / 134 Introduction Contents 1 Introduction about you and me about GCC and MELT building GCC 2 GCC Internals complexity of GCC overview inside GCC (cc1) memory management inside GCC optimization passes plugins 3 MELT why MELT? handling GCC internal data with MELT matching GCC data with MELT future work on MELT th Basile STARYNKEVITCH GCC plugins and MELT extensions June 16 2011 ARCHI’11 ? 3 / 134 Introduction about you and me opinions are mine only Opinions expressed here are only mine! not of my employer (CEA, LIST) not of the Gcc community not of funding agencies (e.g. DGCIS)1 I don’t understand or know all of Gcc ; there are many parts of Gcc I know nothing about. Beware that I have some strong technical opinions which are not the view of the majority of contributors to Gcc.
    [Show full text]
  • Design and Implementation of a Hypervisor-Based Platform for Dynamic Information Flow Tracking in a Distributed Environment by A
    Design and Implementation of a Hypervisor-Based Platform for Dynamic Information Flow Tracking in a Distributed Environment by Andrey Ermolinskiy A dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Computer Science in the GRADUATE DIVISION of the UNIVERSITY OF CALIFORNIA, BERKELEY Committee in charge: Professor Scott Shenker, Chair Professor Ion Stoica Professor Deirdre Mulligan Spring 2011 Design and Implementation of a Hypervisor-Based Platform for Dynamic Information Flow Tracking in a Distributed Environment Copyright c 2011 by Andrey Ermolinskiy Abstract Design and Implementation of a Hypervisor-Based Platform for Dynamic Information Flow Tracking in a Distributed Environment by Andrey Ermolinskiy Doctor of Philosophy in Computer Science University of California, Berkeley Professor Scott Shenker, Chair One of the central security concerns in managing an organization is protecting the flow of sensitive information, by which we mean either maintaining an audit trail or ensuring that sensitive documents are disseminated only to the authorized parties. A promising approach to securing sensitive data involves designing mechanisms that interpose at the software-hardware boundary and track the flow of information with high precision — at the level of bytes and machine instructions. Fine-grained information flow tracking (IFT) is conceptually simple: memory and registers containing sensitive data are tagged with taint labels and these labels are propagated in accordance with the computation. However, previous efforts have demonstrated that full-system IFT faces two major practi- cal limitations — enormous performance overhead and taint explosion. These challenges render existing IFT implementations impractical for deployment outside of a laboratory setting. This dissertation describes our progress in addressing these challenges.
    [Show full text]
  • Challenges in Firmware Re-Hosting, Emulation, and Analysis
    Challenges in Firmware Re-Hosting, Emulation, and Analysis CHRISTOPHER WRIGHT, Purdue University WILLIAM A. MOEGLEIN, Sandia National Laboratories SAURABH BAGCHI, Purdue University MILIND KULKARNI, Purdue University ABRAHAM A. CLEMENTS, Sandia National Laboratories System emulation and firmware re-hosting have become popular techniques to answer various security and performance related questions, such as, does a firmware contain security vulnerabilities or meet timing requirements when run on a specific hardware platform. While this motivation for emulation and binary analysis has previously been explored and reported, starting to either work or research in the field is difficult. To this end, we provide a comprehensive guide for the practitioner or system emulation researcher. We layout common challenges faced during firmware re-hosting, explaining successive steps and surveying common tools used to overcome these challenges. We provide classification techniques on five different axes, including emulator methods, system type, fidelity, emulator purpose, and control. These classifications and comparison criteria enable the practitioner to determine the appropriate tool for emulation. We use our classifications to categorize popular works in the field and present 28 common challenges faced when creating, emulating and analyzing a system, from obtaining firmwares to post emulation analysis. CCS Concepts: • Computer systems organization → Embedded and cyber-physical systems; Firmware; Embedded hardware; Embedded software; Real-time systems; • Hardware → Simulation and emulation. Additional Key Words and Phrases: Firmware re-hosting, system emulation, embedded systems, emulation fidelity, emulator classification, binary analysis, reverse engineering, emulation challenges ACM Reference Format: Christopher Wright, William A. Moeglein, Saurabh Bagchi, Milind Kulkarni, and Abraham A. Clements. 2020. Challenges in Firmware Re-Hosting, Emulation, and Analysis.
    [Show full text]
  • The Design and Implementation of Gnu Compiler Generation Framework
    The Design and Implementation of Gnu Compiler Generation Framework Uday Khedker GCC Resource Center, Department of Computer Science and Engineering, Indian Institute of Technology, Bombay January 2010 CS 715 GCC CGF: Outline 1/52 Outline • GCC: The Great Compiler Challenge • Meeting the GCC Challenge: CS 715 • Configuration and Building Uday Khedker GRC, IIT Bombay Part 1 GCC ≡ The Great Compiler Challenge CS 715 GCC CGF: GCC ≡ The Great Compiler Challenge 2/52 The Gnu Tool Chain Source Program gcc Target Program Uday Khedker GRC, IIT Bombay CS 715 GCC CGF: GCC ≡ The Great Compiler Challenge 2/52 The Gnu Tool Chain Source Program cc1 cpp gcc Target Program Uday Khedker GRC, IIT Bombay CS 715 GCC CGF: GCC ≡ The Great Compiler Challenge 2/52 The Gnu Tool Chain Source Program cc1 cpp gcc Target Program Uday Khedker GRC, IIT Bombay CS 715 GCC CGF: GCC ≡ The Great Compiler Challenge 2/52 The Gnu Tool Chain Source Program cc1 cpp gcc as Target Program Uday Khedker GRC, IIT Bombay CS 715 GCC CGF: GCC ≡ The Great Compiler Challenge 2/52 The Gnu Tool Chain Source Program cc1 cpp gcc as ld Target Program Uday Khedker GRC, IIT Bombay CS 715 GCC CGF: GCC ≡ The Great Compiler Challenge 2/52 The Gnu Tool Chain Source Program cc1 cpp gcc as glibc/newlib ld Target Program Uday Khedker GRC, IIT Bombay CS 715 GCC CGF: GCC ≡ The Great Compiler Challenge 2/52 The Gnu Tool Chain Source Program cc1 cpp gcc as GCC glibc/newlib ld Target Program Uday Khedker GRC, IIT Bombay CS 715 GCC CGF: GCC ≡ The Great Compiler Challenge 3/52 Why is Understanding GCC Difficult? Some of the obvious reasons: • Comprehensiveness GCC is a production quality framework in terms of completeness and practical usefulness • Open development model Could lead to heterogeneity.
    [Show full text]
  • Comparative Study of Virtual Machine Software Packages with Real Operating System
    Master Thesis Electrical Engineering June 2012 Comparative Study of Virtual Machine Software Packages with Real Operating System Arunkumar Jayaraman Pavankumar Rayapudi School of Computing Blekinge Institute of Technology 371 79 Karlskrona Sweden This thesis is submitted to the School of Computing at Blekinge Institute of Technology in partial fulfillment of the requirements for the degree of Master of Science in Electrical Engineering. The thesis is equivalent to 20 weeks of full time studies. Contact Information: Author: Arunkumar Jayaraman E-mail: [email protected] Author: Pavankumar Rayapudi E-mail: [email protected] University Advisor: Prof. Lars Lundberg School of Computing Blekinge Institute of Technology Email: [email protected] University Examiner: Dr. Patrik Arlos School of Computing Blekinge Institute of Technology Email: [email protected] School of Computing Internet : www.bth.se/com Blekinge Institute of Technology Phone : +46 455 38 50 00 371 79 Karlskrona Fax : +46 455 38 50 57 Sweden i i ABSTRACT Virtualization allows computer users to utilize their resources more efficiently and effectively. Operating system that runs on top of the Virtual Machine or Hypervisor is called guest OS. The Virtual Machine is an abstraction of the real physical machine. The main aim of this thesis work was to analyze different kinds of virtualization software packages and to investigate their advantages and disadvantages. In addition, we analyzed the performance of the virtual software packages with a real operating system in terms of web services. Web Servers play an important role on the Internet. The response time and throughput for a web server are different for different virtualization software packages and between a real host and a virtual host.
    [Show full text]
  • Raspberry Pi Based Hazardous Environment Monitoring Using Wireless Communication
    ITSI Transactions on Electrical and Electronics Engineering (ITSI-TEEE) _______________________________________________________________________________________________ Raspberry Pi Based Hazardous Environment Monitoring Using Wireless Communication 1Nivedha.S, 2Shambavi.P, 3Abhirami.N, 4Jyothi.A.P, 5Darwin Britto.R 1,2,3,4,5Dept of ECE, RRCE, Bangalore using RS232 and also the transmissions is on both Abstract-This paper presents a hazardous environment monitoring and control for monitoring information directions which mean the inverted logic is also handled concerning safety and security, using wireless sensor with the same. RS232 uses MARK (negative voltage) network (WSN) with Raspberry Pi technology and the and SPPACE (positive voltage) as two voltage states. So concept of implementation is described in the context of the the baud rate is identical to the maximum number of bits industrial safety monitoring scenario. The deployed transmitted per second including the control bits. The wireless sensor network is used to perform data acquisition transmission rate of the device is 9600 baud with the with focus on several parameters like current, voltage, duration of start bit and each subsequent bit is about temperature, fire, poisonous gas leakage and water level. 0.104ms. The complete character frame of 11 bits is The advanced system for process management via a credit transmitted in 1.146ms. MAX 232 IC mountedon the card sized single board computer called Raspberry Pi based multi parameter monitoring hardware system master board converts the 0’s and 1’s to TTL logic. designed using RS232 and microcontroller that measures ZigBee frequency range is 2.4 GHz, These devices can and controls various hazardous parameters. The system transmit data over long distances by passing data comprises of a single master and single slave with wireless through a mesh network of intermediate devices to reach mode of communication and a Raspberry Pi system that can operate on Linux operating system.
    [Show full text]
  • DMA Processor
    2001:275 MASTER'S THESIS DMA processor Axel Meijer Civilingenjörsprogrammet Datateknik Institutionen för Systemteknik Avdelningen för Datorteknik 2001:275 • ISSN: 1402-1617 • ISRN: LTU-EX--01/275--SE MASTER'S THESIS DMA processor Axel Meijer [email protected] Department of Computer Science and Electrical Engineering Luleå University of Technology, Sweden September 2001 Examiner: Per Lindgren Department of Computer Science and Electrical Engineering Luleå University of Technology Supervisor: Jan Bengtsson Axis Communcations Lund, Sweden Abstract The DMA (Direct Memory Access) controller, is often a non-programmable hard- ware. As new peripheral interfaces are introduced there is often a need to change the DMA operation and therefore the design of the DMA controller. Changing the design of the DMA controller is often expensive and time-consuming. Instead, a fully programmable DMA processor can alter the behaviour by simply changing a control program. This paper describes an approach for a programmable DMA processor for a future ETRAX processor developed by Axis Communications. To reach the design solu- tion, different instruction set architectures were simulated and investigated. The result is a fully programmable DMA processor with one RISC core and several burst controllers that handles the data transfers. It can transfer data in parallel with up to 16 channels. The DMA processor is able to work with 1 Gbit/s full duplex Ethernet when the DMA processor is running at 100 MHz. The program that con- trols the DMA operations is stored in a local instruction memory of the DMA proc- essor. When synthesized with 0.25 µm technology, the DMA controller has a 160 000 gate foot print without the instruction memory.
    [Show full text]