SST + gem5 = A Scalable Simulation Infrastructure for High Performance Computing Mingyu Hsieh Jie Meng Michael Levenhagen Sandia National Labs P.O.Box Boston University Sandia National Labs 5800 ECE Department P.O.Box 5800 Albuquerque, NM Boston, MA Albuquerque, NM
[email protected] [email protected] [email protected] Kevin Pedretti Ayse Coskun Arun Rodrigues Sandia National Labs Boston University Sandia National Labs P.O.Box 5800 ECE Department P.O.Box 5800 Albuquerque, NM Boston, MA Albuquerque, NM
[email protected] [email protected] [email protected] ABSTRACT 1. INTRODUCTION High Performance Computing (HPC) faces new challenges in As HPC continues to push the bounds of computation, it scalability, performance, reliability, and power consumption. faces new challenges in scalability, performance, reliability, Solving these challenges will require radically new hardware and power consumption. To address these challenges, we and software approaches. It is impractical to explore this need to design new architectures, operating systems, pro- vast design space without detailed system-level simulations. gramming models, and software. It is impractical to ex- However, most of the existing simulators are either not suffi- plore this vast design space without detailed system-level ciently detailed, not scalable, or cannot evaluate key system simulations. However, most simulators are either not suffi- characteristics such as energy consumption or reliability. ciently detailed (i.e., glossing over important details in pro- To address this problem, we integrate the highly detailed cessor, memory, or network implementations), not scalable gem5 performance simulator into the parallel Structural Sim- (i.e., simulating highly parallel architectures with serial sim- ulation Toolkit (SST).