New Observations of Warrego Valles, Mars: Evidence for Precipitation and Surface Runoff

Total Page:16

File Type:pdf, Size:1020Kb

New Observations of Warrego Valles, Mars: Evidence for Precipitation and Surface Runoff ARTICLE IN PRESS Planetary and Space Science 54 (2006) 219–242 www.elsevier.com/locate/pss New observations of Warrego Valles, Mars: Evidence for precipitation and surface runoff V. AnsanÃ, N. Mangold Laboratoire IDES - UMR 8148-CNRS, Universite´ Paris-Sud, baˆt. 509, 91405 Orsay Cedex, France Received 25 August 2004; received in revised form 11 July 2005; accepted 12 December 2005 Abstract Most valley networks have been identified primarily in the heavily cratered uplands which are Noachian in age (43.5 Gyr). A striking exception to this general observation is Warrego Valles located on the southeastern part of the Tharsis bulge. Recent data obtained by the Mars Orbiter Laser Altimeter, the Thermal Emission Imaging System (THEMIS) spectrometer and the Mars Orbiter Camera give new insight into the formation of valley networks and the early Mars climate. We focus our study on the southern Thaumasia region especially on Warrego Valles and determine the organisation of valleys in relation to regional topography and structural geology. Warrego Valles is the most mature valley network that incised the southern side of Thaumasia highlands. It developed in a rectangular- shaped, concave-up drainage basin. Four times more valleys are identified in THEMIS infrared images than in Viking images. Valleys exist on both sides of the main tributary contrary to what was visible in Viking images. Their distribution is highly controlled by topographic slope, e.g. there is a parallel pattern on the sides and dendritic pattern on the central part of Warrego Valles. We quantitatively analyse valley morphology and morphometry to determine the processes responsible for valley network formation. Warrego Valles displays morphometric properties similar to those of a terrestrial fluvial valley network. This valley network is characterised by seven Strahler’s orders, a bifurcation ratio of 3, a length ratio of 1.7, a drainage density of 0.53 kmÀ1 and a ruggedness number of 3.3. The hypsometric curve and integral (0.46) indicate that Warrego Valles reached the mature Davis’ stage. Valleys have undergone external degradation since their incision, which masks their main morphological characteristics. Our study supports the assertion that valley networks formed by fluvial processes controlled by an atmospheric water cycle. Further, they seem to develop by successive stages of erosion that occurred during Noachian through the late Hesperian. r 2006 Elsevier Ltd. All rights reserved. Keywords: Warrego Valles; Mars; Valley network; Water; Fluvial process; Noachian–Hesperian 1. Introduction combination of surface runoff and groundwater sapping (Milton, 1973; Baker and Kochel, 1979; Gulick and Baker, Since the Mariner missions, valley networks are found in 1989, 1990; Baker et al., 1992; Carr, 1995, 1996; Grant, the heavy cratered uplands south of the Martian dichot- 2000; Malin and Edgett, 2000; Ansan and Mangold, 2003); omy (Schultz and Ingerson, 1973; Carr and Clow, 1981; (2) groundwater sapping resulting from geothermal or Mars Channel Working Group, 1983; Carr, 1995). Valley hydrothermal heating (Sharp and Malin, 1975; Pieri, 1976, networks are defined as a set of valleys typically arranged 1980; Howard, 1988; Squyres, 1989; Baker, 1990; Goldspiel in a dendritic pattern. Because of their similarity with that et al., 1993; Gulick, 1998, 2001; Goldspiel and Squyres, of terrestrial fluvial valley networks, a variety of processes 2000; Luo, 2002); (3) groundwater flow associated with involving liquid water have been proposed to explain their chemical and mechanical erosion (Malin and Carr, 1999; formation. Such processes include: (1) fluvial erosion by a Carr and Malin, 2000); and (4) water-lubricated mass wasting (Carr, 1995). Because valley networks are found on ÃCorresponding author. Fax: +33 1 60 19 14 46. the heavily cratered terrains, they probably formed during E-mail addresses: [email protected] (V. Ansan), the late Noachian (43.5 Gyr). Their formation by liquid [email protected] (N. Mangold). water would imply that Mars had a warmer and wetter 0032-0633/$ - see front matter r 2006 Elsevier Ltd. All rights reserved. doi:10.1016/j.pss.2005.12.009 ARTICLE IN PRESS 220 V. Ansan, N. Mangold / Planetary and Space Science 54 (2006) 219–242 climate early in its history (Sagan et al., 1973; Carr, 1981; Emission Imaging System (THEMIS) which covers visible Craddock and Howard, 2002) because liquid water is and thermal infrared (IR) wavelengths (Christensen et al., unstable on the Martian surface under the present-day 2003). By combining these data sets (altimetry, Viking, climatic conditions (Leighton et al., 1965; Farmer and MOC and THEMIS images) and using standard geospatial Doms, 1979). The debate continues about climatic condi- analytical techniques that are available in many Geo- tions on early Mars because numerous climate models graphic Information Systems (GIS), we derived a geologic argue in favour of a cold and dry climate since 4 Gyr map of this area in which valleys networks, craters and (Kasting, 1991; Clifford, 1993). faults were identified. Our objectives are to: (1) determine In order to discriminate between the two opposite the organisation of valleys in relation with the regional Martian climatic scenarios, we analysed valley networks topography and structural geology; (2) estimate the age located on the southern boundary of the Tharsis bulge in and the duration of the formation of the valley networks; the Thaumasia region (Fig. 1a). This region is characterised (3) analyse the morphology and the morphometry of by a 4 km high plateau surrounded by highlands rising to Warrego Valles; (4) determine the process(es) for valley an elevation 45km(Fig. 1b). Numerous folds, faults, rift network formation; and (5) deduce the climatic conditions valleys and volcanoes have been identified (Schultz and in which Warrego Valles and surrounding valley networks Tanaka, 1994; Tanaka et al., 1998; Dohm and Tanaka, formed within the Thaumasia highlands. 1999; Dohm et al., 2001). These investigations indicated that Thaumasia is 3.5 Gyr old corresponding to the 2. Morphology and age of valley networks Noachian epoch (Tanaka, 1986; Dohm and Tanaka, 1999). It is bounded by cratered plains dated from the late The southern boundary of Thaumasia region has been Noachian to the early Hesperian in the south (Dohm et al., dissected by numerous valley networks (Fig. 1). The most 2001). The Thaumasia highlands have been dissected by well-defined network, Warrego Valles, developed in the numerous valley networks (Fig. 1a and 1b) which debouch area between 401 and 441 south, and between 911 and 961 onto the southern plains (Fig. 1a). The valley networks west. We studied the characteristics of the valley network formed from the late Noachian through the early system at different scales, using both MOLA altimetry, and Hesperian ( 3.0 Gyr) based on their relative chronology o available visible and mid-IR images acquired during the and crater counts from Viking images (Tanaka, 1986; Viking, MGS and Mars Odyssey missions. Each data set Tanaka et al., 1998; Dohm and Tanaka, 1999). Valley was projected on the IAU2000 Mars datum (Duxbury networks display an usually low degree of organisation et al., 2002; Seidelmann et al., 2002) with a Lambert with few branches in this area, but some of them appear to conformal projection in GIS (ARCVIEW and Er-mapper). be more mature, such as Warrego Valles, which is located From these data, we mapped the valley networks, impact (421S–931W) on a regional south-facing slope on the craters and faults present in the Warrego Valles area in southern boundary of the Thaumasia region (WR in order to define the geologic context in which valley Fig. 1). Viking images show that Warrego Valles is networks formed. characterised by a well-formed parallel valley system in which secondary valleys join the main one (Pieri, 1980). It is interpreted to have been formed by surface runoff 2.1. Organisation of valleys in Warrego Valles from imagery because of its resemblance to terrestrial fluvial valley systems at different scales (Carr, 1981; Baker, 1982, 1985). However, surface runoff is often rejected because of the low drainage density and the Warrego Valles was first mapped using Viking image low degree of valley organisation of Warrego system (Cabrol mosaics (MDIM.2, images extracted from PDS web site; and Grin, 2001; Stepinski and Collier, 2003). Alternatively, it Kirk et al., 2001) with a resolution of 200 m/pixel at 421S has been suggested that groundwater sapping triggered by of latitude (Fig. 2). In this mosaic, the Martian surface was geothermal or hydrothermal heating (Tanaka et al., 1998; illuminated by low sun angles, which enhanced the local Dohm and Tanaka, 1999; Gulick, 2001) supported by the ground morphology. We superposed this mosaic on to regional volcanic and tectonic context of Thaumasia high- MOLA altimetry data, interpolated with a spatial resolu- lands, carved the Warrego system. tion of 463 m/pixel (Zuber et al., 1992; Smith et al., 1999, New data from Mars Global Surveyor and Mars 2001), to help the geomorphic analysis. Odyssey allow us to study Warrego Valles in much more The southern part of the Viking mosaic contains the detail. These data allow us to test hypothesis regarding the Hesperian-age plain of Sirenum Terra (Tanaka, 1986; origin of valley networks in this area. Unlike previous Dohm and Tanaka, 1999) standing at an elevation of studies, we also have topography from the Mars Orbiter 2.4 km. It borders the southern Thaumasia highlands that Laser Altimeter (MOLA) (Smith, 1998) with a height reach a maximum elevation of 8.8 km (92.71W–40.51S) accuracy of 50 cm. In addition, the surface of Mars has with a 21 south-facing slope. The Thaumasia highlands been imaged with spatial resolution ranging from 100 to are cut by three sets of normal faults oriented W–E, few m/pixel by different instruments including the Mars NNE–SSW and NNW–SSE, all of which contain long and Orbiter Camera (MOC) (Malin et al., 1998) and Thermal narrow grabens that crosscut the southern Hesperian plain.
Recommended publications
  • PDF Files Are Openly Distributed for the Educational Purpose Only. Reuse And/Or Modifications of Figures and Tables in the PDF Files Are Not Allowed
    PDF files are openly distributed for the educational purpose only. Reuse and/or modifications of figures and tables in the PDF files are not allowed. 3. Ancient landforms: Understanding the early Mars environment 3.1 Erosional landforms 3.1.1 Outflow channels 3.1.2 Valley networks 3.1.3 Erosional processes on early Mars 3.2 Standing bodies of water 3.2.1 Ocean and shorelines 3.2.2 Crater lakes and deltas 3.2.3 Layered deposits 3.3 Composition of sediments: from geomorphology to geology 3.3.1 MER rover discoveries 3.3.2 Exobiological issues 3.1.1 Outflow channels Length: 100 to 1000 km Width: 1 to 30 km Low gradient (<0.1) Anastomosing patterns, braided systems Teardrop-shaped islands Discharge rate :107 –109 m3 s-1 (Baker, 1981; Komar, 1986) 20 km Mangala valles 500 m Ares Valles Terrestrial floods: high discharge (here due to a storm) The Channeled Scabland analogy (Baker and Milton, 1974) ------- 40 km Columbia Basin (eastern Washington, USA) A glacial dam releases the subglacial lake Discharges of 2 x107 m3 s-1 Geographic distribution: Correlation with volcanic regions Role of geothermal activity Outflow channels (red) and valley networks (yellow) Elysium Mons Tharsis bulge From Carr, 1979 Relationship between chaotic terrains and outflow channels Chryse Planitia Kasei dfg Valles +Viking 1 + Pathfinder Ares Vallis Disruption of the permafrost at the source? Valles Marineris MOLA data Altitude (m) A recent outflow channel: Athabasca Vallis Outflow from fractures Very young: ~10 million years ago (Burr et al, 2002) (Berman and Hartmann, 2003) 6 km Origin of outflow channels 1 -Ground water under pressure confined within the permafrost (M.
    [Show full text]
  • Drainage Network Development in the Keanakāko'i
    JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 117, E08009, doi:10.1029/2012JE004074, 2012 Drainage network development in the Keanakāko‘i tephra, Kīlauea Volcano, Hawai‘i: Implications for fluvial erosion and valley network formation on early Mars Robert A. Craddock,1 Alan D. Howard,2 Rossman P. Irwin III,1 Stephen Tooth,3 Rebecca M. E. Williams,4 and Pao-Shin Chu5 Received 1 March 2012; revised 11 June 2012; accepted 4 July 2012; published 22 August 2012. [1] A number of studies have attempted to characterize Martian valley and channel networks. To date, however, little attention has been paid to the role of lithology, which could influence the rate of incision, morphology, and hydrology as well as the characteristics of transported materials. Here, we present an analysis of the physical and hydrologic characteristics of drainage networks (gullies and channels) that have incised the Keanakāko‘i tephra, a basaltic pyroclastic deposit that occurs mainly in the summit area of Kīlauea Volcano and in the adjoining Ka‘ū Desert, Hawai‘i. The Keanakāko‘i tephra is up to 10 m meters thick and largely devoid of vegetation, making it a good analog for the Martian surface. Although the scales are different, the Keanakāko‘i drainage networks suggest that several typical morphologic characteristics of Martian valley networks may be controlled by lithology in combination with ephemeral flood characteristics. Many gully headwalls and knickpoints within the drainage networks are amphitheater shaped, which results from strong-over-weak stratigraphy. Beds of fine ash, commonly bearing accretionary lapilli (pisolites), are more resistant to erosion than the interbedded, coarser weakly consolidated and friable tephra layers.
    [Show full text]
  • Part 629 – Glossary of Landform and Geologic Terms
    Title 430 – National Soil Survey Handbook Part 629 – Glossary of Landform and Geologic Terms Subpart A – General Information 629.0 Definition and Purpose This glossary provides the NCSS soil survey program, soil scientists, and natural resource specialists with landform, geologic, and related terms and their definitions to— (1) Improve soil landscape description with a standard, single source landform and geologic glossary. (2) Enhance geomorphic content and clarity of soil map unit descriptions by use of accurate, defined terms. (3) Establish consistent geomorphic term usage in soil science and the National Cooperative Soil Survey (NCSS). (4) Provide standard geomorphic definitions for databases and soil survey technical publications. (5) Train soil scientists and related professionals in soils as landscape and geomorphic entities. 629.1 Responsibilities This glossary serves as the official NCSS reference for landform, geologic, and related terms. The staff of the National Soil Survey Center, located in Lincoln, NE, is responsible for maintaining and updating this glossary. Soil Science Division staff and NCSS participants are encouraged to propose additions and changes to the glossary for use in pedon descriptions, soil map unit descriptions, and soil survey publications. The Glossary of Geology (GG, 2005) serves as a major source for many glossary terms. The American Geologic Institute (AGI) granted the USDA Natural Resources Conservation Service (formerly the Soil Conservation Service) permission (in letters dated September 11, 1985, and September 22, 1993) to use existing definitions. Sources of, and modifications to, original definitions are explained immediately below. 629.2 Definitions A. Reference Codes Sources from which definitions were taken, whole or in part, are identified by a code (e.g., GG) following each definition.
    [Show full text]
  • A Groundwater Sapping in Stream Piracy
    Darryll T. Pederson, Department of energy to the system as increased logic settings, such as in a delta, stream Geosciences, University of Nebraska, recharge causes groundwater levels to piracy is a cyclic event. The final act of Lincoln, NE 68588-0340, USA rise, accelerating stream piracy. stream piracy is likely a rapid event that should be reflected as such in the geo- INTRODUCTION logic record. Understanding the mecha- The term stream piracy brings to mind nisms for stream piracy can lead to bet- ABSTRACT an action of forcible taking, leaving the ter understanding of the geologic record. Stream piracy describes a water-diver- helpless and plundered river poorer for Recognition that stream piracy has sion event during which water from one the experience—a takeoff on stories of occurred in the past is commonly based stream is captured by another stream the pirates of old. In an ironic sense, on observations such as barbed tribu- with a lower base level. Its past occur- two schools of thought are claiming vil- taries, dry valleys, beheaded streams, rence is recognized by unusual patterns lain status. Lane (1899) thought the term and elbows of capture. A marked of drainage, changes in accumulating too violent and sudden, and he used change of composition of accumulating sediment, and cyclic patterns of sediment “stream capture” to describe a ground- sediment in deltas, sedimentary basins, deposition. Stream piracy has been re- water-sapping–driven event, which he terraces, and/or biotic distributions also ported on all time and size scales, but its envisioned to be less dramatic and to be may signify upstream piracy (Bishop, mechanisms are controversial.
    [Show full text]
  • IASC Workshop on the Dynamics and Mass Budget of Arctic Glaciers
    IASCIASC Workshop Workshop onon the the dynamics dynamics and and mass mass budgetbudget of of Arctic Arctic glaciers glaciers AbstractsAbstracts andand Programme Programme IASCIASC Workshop, Workshop, 26-28 26-28 February February 2013, 2013, ObergurglObergurgl (Austria) (Austria) IASC Network on Arctic Glaciology IASC Workshop on the dynamics and mass budget of Arctic glaciers Abstracts and program IASC Workshop & Network on Arctic Glaciology annual meeting, 26-28 February 2013, Obergurgl (Austria) Organised by C.H. Tijm-Reijmer Network on Arctic Glaciology ISBN: 978-90-393-6003-3 Contents Preface ............................................. 5 Program ............................................ 6 Posters ............................................. 10 Participants ......................................... 11 Minutes of the Open Forum Meeting ........................ 13 Report of the Open Session on Tidewater Glaciers ............. 17 Abstracts ........................................... 20 Seasonal velocities of eight major marine-terminating outlet glaciers of the Greenland ice sheet from continuous in situ GPS instruments . 20 A.P. Ahlstrøm, S.B. Andersen, M.L. Andersen, H. Machguth, F.M. Nick, I. Joughin, C.H. Reijmer, R.S.W. van de Wal, J.P. Merryman Boncori, J.E. Box, M. Citterio, D. van As, R.S. Fausto and A. Hubbard Homogenization of a long term mass balance record . 20 L.M. Andreassen Projections of 21st century contribution of Alaska glaciers to rising sea level 21 A.C. Beedlow V. Radic,´ A.K. Bliss, R. Hock, A.A Arendt, J.L. Rich, D.F. Hill, D.F., S.E Calos, and J.G. Cogley Five consecutive years of mass balance observations to understand glacier reaction to present climate change (Austre Lovénbreen, Spitsbergen, 79◦N) 22 E. Bernard, F. Tolle, J.M. Friedt, Ch. Marlin and M.
    [Show full text]
  • Mars-Match-Slides.Pdf
    MA RS Clouds A B Clouds A Eastern 2/3 of the U.S. Clouds Clouds on Mars are made of _____ . A. water B. carbon dioxide C. water and carbon dioxide Clouds on Mars are made of _____ . A. water B. carbon dioxide C. water and carbon dioxide Ice cap, Antarctica A B Ice cap, Antarctica Sout A h Nort B h Ice cap, Antarctica The northern ice cap on Mars consists of frozen _____ . A. water B. carbon dioxide C. water and carbon dioxide The northern ice cap on Mars consists of frozen _____ . A. water B. carbon dioxide C. water and carbon dioxide Dust storm A B Dust storm A Sahara dust storm Polar dust storm True or False? Dust storms on Mars can cover the entire planet. True! Dust storms on Mars can cover the entire planet. 2018 Dust Devil A B Dust Devil A Seen from the ground by the Opportunity rover B Dust Devil Seen from above by the Mars Reconnaissance Orbiter Barchan dunes, Mawrth Valles A B Barchan dunes, Mawrth Valles A Sahara Desert Barchan dunes, Mawrth Valles Aorounga impact crater, Chad A B Aorounga impact crater, Chad B Lowell Crater Aorounga impact crater, Chad River Delta, Jezero Crater A B River Delta, Jezero Crater B Horton River Delta, Canada River Delta, Jezero Crater What is the name of the rover that will land in Jezero crater in 2021? A. Perseverance B. Curiosity C. Spirit What is the name of the rover that will land in Jezero crater in 2021? A. Perseverance B.
    [Show full text]
  • 4.11 Hydrology General Plan DEIR
    4.11 HYDROLOGY AND WATER QUALITY This section discusses and analyzes the surface hydrology, groundwater, and water quality characteristics of the County and the proposed project. This analysis addresses impacts to hydrology and water quality and identifies mitigation measures to lessen those impacts. See Section 4.12 (Public Services and Utilities) for a more detailed discussion regarding water supplies and demand. Specifically, this section provides the following information regarding hydrology and water quality that are evaluated in this DEIR: • Identification of current hydrologic baseline of the County associated with surface water and groundwater conditions that includes identification of key watersheds and associated water features, precipitation, flood conditions, groundwater basins and associated conditions of the basins and water quality (see Section 4.11.1 below and Appendix H). • A description of the current federal, state, regional and County policies, regulations and standards that are associated with the hydrologic conditions of the County (see Section 4.11.2 below). • Identification of significant hydrologic impacts associated with the proposed General Plan Update (see Section 4.11.3 below). The impact analysis makes use of hydrologic modeling to identify the type and degree of potential impacts based on a range of potential vineyard development conditions in the future (see Appendix H) as well as consideration of current Napa County Conservation Regulations (County Code Chapter 18.108) and Best Management Practices (BMPs) that are typically applied to mitigate impacts (see Appendix I). 4.11.1 EXISTING SETTING SURFACE WATER Napa County is located within the Coast Range physiographic province northeast of San Francisco. The County is bordered to the east by California’s Central Valley and to the west by the Coast Ranges.
    [Show full text]
  • Constraints on Overland Fluid Transport Through Martian Valley Networks. M
    Lunar and Planetary Science XXXI 1189.pdf CONSTRAINTS ON OVERLAND FLUID TRANSPORT THROUGH MARTIAN VALLEY NETWORKS. M. C. Malin and K. S. Edgett, Malin Space Science Systems, Box 910148, San Diego, CA 92191-0148, USA. Introduction: Since their discovery in Mariner 9 networks. images [1,2], Òrunoff channelsÓ [3], or more properly, Flow Integration: Arguably the best example Òmartian valley networksÓ [4,5] have been almost uni- found on Mars of an arborescent network are the War- versally cited as the best evidence that Mars once rego Valles. Earlier Viking data, and now MGS im- maintained an environment capable of supporting the ages, raise serious questions concerning the interpreta- flow of liquid water across its surface. Unlike Òoutflow tion of these valleys as surficial drainage. First, the channels,Ó that appear to indicate brief, catastrophic valleys are not Òthrough-going,Ó but rather consist of releases of fluid from very localized sources, valley transecting, elongate, occasionally isolated depres- networks often display arborescent patterns, sinuosity sions. Second, mass movements appear to have played and occasionally meandering patterns that imply proc- a role in both extending and widening the valleys. esses of overland flow: drainage basin development Third, the valley walls are extremely subdued, reflect- and sustained surficial transport of fluid. As part of the ing either mantling or an origin by collapse. These on-going Mars Global Surveyor (MGS) Mars Orbiter attributes suggest that collapse may have played the Camera (MOC) imaging activities, many observations dominant role in formation of valley networks of valley networks have been planned and executed; the Discussion: Groundwater follows topographic gra- results of some of these observations have been previ- dients nearly as effectively as surface water.
    [Show full text]
  • Of Indus River at Darband
    RESTRICTED For official use only Not for . UNN42 Vol. 6 Public Disclosure Authorized REPORT TO THE PRESIDENT OF THF, INTERNATIONAL BANK FOR RECONSTRUCTION AND DEVELOPMENT AS ADMINISTRATOR OF THE INDUS BASIN DEVELOPMENT FUND STUDY OF THIE WATER AND POWER RESOURCES OF WEST PAKISI AN Public Disclosure Authorized VOLUME III Program for the Development of Surface Water Storage Public Disclosure Authorized Prepared by a Group of the World Barnk Staff Headed by Dr. P. Lieftinck July 28, 1967 Public Disclosure Authorized i R0C FPU-F ClJRRENCY EQUIVALENTS 4.76 rupees = U.S. $1.00 1 rupee = U.S. $0. 21 1 millior rupees = U. S. $210, 000 TABLE OF CONTENTS Page No. I, INTRODUCTION 11..........- II-.. SURFACE. WATER HYDROLOGY. .3 .. .. , 3 Meteorological and GeographicalI Factors, .................... 3 Discharge- Measurement and River. F-lows- ... ....... .. ,44... Sediment-.Movement ..... v...............8....... 8. Floods-.JO,:,. ,10: III.. HISTORICAL. USE OF SURFACE WATER, . 12 Development of- the. System ....... ... 12 IV.. THE IACA APPROACH ..... 17 Method- of Analysis. ........... v.. 17 Surface. Water Re.quirements;. ........ r19. Integration, of.Surface and Groundwater Supplies' .. 22 Storable. Water. 23 Balancng- of Irrigation and Power..-Requi:rements.. 25 Future. River Regime ... .. 27 Accuracy- of Basic. Data . ....................... , ,,.. 27 Vt., IDENTIFICATION OF DAM'SITES AND, COMPARISON OF. PROJECTS' 29: S'cope of-the Studies ... 29. A. The Valley of the Indus,.......... 31 Suitability of the- Valley, for: Reservoir' Storagel 31 A(l.) The Middle Indus-. ...........-.. 31 Tarbela.Projject- . .. 32 Side Valley- ProjS'ectsi Associatedt w-ith Tar.bela ... 36 The Gariala' Site......... 36 The. Dhok Pathan S.te . ... ... 39 The Sanjwal-Akhori S'ites -.- , ... 40- The Attock Site .
    [Show full text]
  • Groundwater Processes in Saharan Africa: Implications for Landscape Evolu- Tion in Arid Environments
    ÔØ ÅÒÙ×Ö ÔØ Groundwater processes in Saharan Africa: Implications for landscape evolu- tion in arid environments Abotalib Z. Abotalib, Mohamed Sultan, Racha Elkadiri PII: S0012-8252(16)30049-6 DOI: doi: 10.1016/j.earscirev.2016.03.004 Reference: EARTH 2237 To appear in: Earth Science Reviews Received date: 18 September 2015 Revised date: 3 February 2016 Accepted date: 11 March 2016 Please cite this article as: Abotalib, Abotalib Z., Sultan, Mohamed, Elkadiri, Racha, Groundwater processes in Saharan Africa: Implications for landscape evolution in arid environments, Earth Science Reviews (2016), doi: 10.1016/j.earscirev.2016.03.004 This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain. ACCEPTED MANUSCRIPT Table 1 Groundwater processes in Saharan Africa: Implications for landscape evolution in arid environments Abotalib Z. Abotalib,a, b Mohamed Sultan,a Racha Elkadiria,c (a) Department of Geosciences, Western Michigan University, 1903 West Michigan Avenue, Kalamazoo, Michigan 4900 8, USA. (b) Department of Geology, National Authority for Remote Sensing and Space Sciences, Cairo 1564, Egypt. (c) Department of Geosciences, Middle Tennessee State University, Murfreesboro, Tennessee 37132, USA. Corresponding Author: Mohamed Sultan, Department of Geosciences, Western Michigan University, 1903 West Michigan Avenue, Kalamazoo, Michigan 49008, USA.
    [Show full text]
  • Quantifying Glacier Sensitivity to Late Glacial and Holocene Climate Changes in the Southern Peruvian Andes
    University of New Hampshire University of New Hampshire Scholars' Repository Master's Theses and Capstones Student Scholarship Spring 2015 Quantifying glacier sensitivity to Late Glacial and Holocene climate changes in the southern Peruvian Andes Elizabeth Grace Huss University of New Hampshire, Durham Follow this and additional works at: https://scholars.unh.edu/thesis Recommended Citation Huss, Elizabeth Grace, "Quantifying glacier sensitivity to Late Glacial and Holocene climate changes in the southern Peruvian Andes" (2015). Master's Theses and Capstones. 1023. https://scholars.unh.edu/thesis/1023 This Thesis is brought to you for free and open access by the Student Scholarship at University of New Hampshire Scholars' Repository. It has been accepted for inclusion in Master's Theses and Capstones by an authorized administrator of University of New Hampshire Scholars' Repository. For more information, please contact [email protected]. QUANTIFYING GLACIER SENSITIVITY TO LATE GLACIAL AND HOLOCENE CLIMATE CHANGES IN THE SOUTHERN PERUVIAN ANDES BY ELIZABETH G. HUSS B.A., State University of New York at Geneseo, 2012 THESIS Submitted to the University of New Hampshire in Partial Fulfillment of the Requirements for the Degree of Master of Science in Earth Sciences: Geology May, 2015 This thesis has been examined and approved in partial fulfillment of the requirements for the degree of Master of Science in Earth Sciences by: Thesis Director, Joseph M. Licciardi, Associate Professor of Earth Sciences Matthew Huber, Professor of Earth Sciences Faron S. Anslow, Research Climatologist, Pacific Climate Impacts Consortium On May 1, 2015 Original approval signatures are on file with the University of New Hampshire Graduate School.
    [Show full text]
  • Legacy Sediment: Definitions and Processes of Episodically Produced
    Anthropocene 2 (2013) 16–26 Contents lists available at SciVerse ScienceDirect Anthropocene jo urnal homepage: www.elsevier.com/locate/ancene Legacy sediment: Definitions and processes of episodically produced anthropogenic sediment L. Allan James * Geography Department, University of South Carolina, 709 Bull Street, Columbia, SC 29208, USA A R T I C L E I N F O A B S T R A C T Article history: Extensive anthropogenic terrestrial sedimentary deposits are well recognized in the geologic literature Received 6 February 2013 and are increasingly being referred to as legacy sediment (LS). Definitions of LS are reviewed and a broad Received in revised form 2 April 2013 but explicit definition is recommended based on episodically produced anthropogenic sediment. The Accepted 2 April 2013 phrase is being used in a variety of ways, but primarily in North America to describe post-settlement alluvium overlying older surfaces. The role of humans may be implied by current usage, but this is not Keywords: always clear. The definition of LS should include alluvium and colluvium resulting to a substantial degree Legacy sediment from a range of human-induced disturbances; e.g., vegetation clearance, logging, agriculture, mining, Post-settlement alluvium grazing, or urbanization. Moreover, LS should apply to sediment resulting from anthropogenic episodes Human environmental impacts Geomorphology on other continents and to sediment deposited by earlier episodes of human activities. Rivers Given a broad definition of LS, various types of LS deposits are described followed by a qualitative description of processes governing deposition, preservation, and recruitment. LS is deposited and preserved where sediment delivery (DS) exceeds sediment transport capacity (TC).
    [Show full text]