GC Skew at the 5' and 3' Ends of Human Genes Links R-Loop Formation to Epigenetic Regulation and Transcription Termination
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated. -
Supplementary Materials
Supplementary materials Supplementary Table S1: MGNC compound library Ingredien Molecule Caco- Mol ID MW AlogP OB (%) BBB DL FASA- HL t Name Name 2 shengdi MOL012254 campesterol 400.8 7.63 37.58 1.34 0.98 0.7 0.21 20.2 shengdi MOL000519 coniferin 314.4 3.16 31.11 0.42 -0.2 0.3 0.27 74.6 beta- shengdi MOL000359 414.8 8.08 36.91 1.32 0.99 0.8 0.23 20.2 sitosterol pachymic shengdi MOL000289 528.9 6.54 33.63 0.1 -0.6 0.8 0 9.27 acid Poricoic acid shengdi MOL000291 484.7 5.64 30.52 -0.08 -0.9 0.8 0 8.67 B Chrysanthem shengdi MOL004492 585 8.24 38.72 0.51 -1 0.6 0.3 17.5 axanthin 20- shengdi MOL011455 Hexadecano 418.6 1.91 32.7 -0.24 -0.4 0.7 0.29 104 ylingenol huanglian MOL001454 berberine 336.4 3.45 36.86 1.24 0.57 0.8 0.19 6.57 huanglian MOL013352 Obacunone 454.6 2.68 43.29 0.01 -0.4 0.8 0.31 -13 huanglian MOL002894 berberrubine 322.4 3.2 35.74 1.07 0.17 0.7 0.24 6.46 huanglian MOL002897 epiberberine 336.4 3.45 43.09 1.17 0.4 0.8 0.19 6.1 huanglian MOL002903 (R)-Canadine 339.4 3.4 55.37 1.04 0.57 0.8 0.2 6.41 huanglian MOL002904 Berlambine 351.4 2.49 36.68 0.97 0.17 0.8 0.28 7.33 Corchorosid huanglian MOL002907 404.6 1.34 105 -0.91 -1.3 0.8 0.29 6.68 e A_qt Magnogrand huanglian MOL000622 266.4 1.18 63.71 0.02 -0.2 0.2 0.3 3.17 iolide huanglian MOL000762 Palmidin A 510.5 4.52 35.36 -0.38 -1.5 0.7 0.39 33.2 huanglian MOL000785 palmatine 352.4 3.65 64.6 1.33 0.37 0.7 0.13 2.25 huanglian MOL000098 quercetin 302.3 1.5 46.43 0.05 -0.8 0.3 0.38 14.4 huanglian MOL001458 coptisine 320.3 3.25 30.67 1.21 0.32 0.9 0.26 9.33 huanglian MOL002668 Worenine -
Supp Table 6.Pdf
Supplementary Table 6. Processes associated to the 2037 SCL candidate target genes ID Symbol Entrez Gene Name Process NM_178114 AMIGO2 adhesion molecule with Ig-like domain 2 adhesion NM_033474 ARVCF armadillo repeat gene deletes in velocardiofacial syndrome adhesion NM_027060 BTBD9 BTB (POZ) domain containing 9 adhesion NM_001039149 CD226 CD226 molecule adhesion NM_010581 CD47 CD47 molecule adhesion NM_023370 CDH23 cadherin-like 23 adhesion NM_207298 CERCAM cerebral endothelial cell adhesion molecule adhesion NM_021719 CLDN15 claudin 15 adhesion NM_009902 CLDN3 claudin 3 adhesion NM_008779 CNTN3 contactin 3 (plasmacytoma associated) adhesion NM_015734 COL5A1 collagen, type V, alpha 1 adhesion NM_007803 CTTN cortactin adhesion NM_009142 CX3CL1 chemokine (C-X3-C motif) ligand 1 adhesion NM_031174 DSCAM Down syndrome cell adhesion molecule adhesion NM_145158 EMILIN2 elastin microfibril interfacer 2 adhesion NM_001081286 FAT1 FAT tumor suppressor homolog 1 (Drosophila) adhesion NM_001080814 FAT3 FAT tumor suppressor homolog 3 (Drosophila) adhesion NM_153795 FERMT3 fermitin family homolog 3 (Drosophila) adhesion NM_010494 ICAM2 intercellular adhesion molecule 2 adhesion NM_023892 ICAM4 (includes EG:3386) intercellular adhesion molecule 4 (Landsteiner-Wiener blood group)adhesion NM_001001979 MEGF10 multiple EGF-like-domains 10 adhesion NM_172522 MEGF11 multiple EGF-like-domains 11 adhesion NM_010739 MUC13 mucin 13, cell surface associated adhesion NM_013610 NINJ1 ninjurin 1 adhesion NM_016718 NINJ2 ninjurin 2 adhesion NM_172932 NLGN3 neuroligin -
Whole Genome Sequencing of Finnish Type 1 Diabetic Siblings Discordant for Kidney Disease Reveals DNA Variants Associated with Diabetic Nephropathy
Supplementary Data Whole genome sequencing of Finnish type 1 diabetic siblings discordant for kidney disease reveals DNA variants associated with diabetic nephropathy Jing Guo, Owen J.L. Rackham, Bing He, Anne-May Österholm, Niina Sandholm, Erkka Valo, Valma Harjutsalo, Carol Forsblom, Iiro Toppila, Maikki Parkkonen, Qibin Li, Wenjuan Zhu, Nathan Harmston, Sonia Chothani, Miina K. Öhman, Eudora Eng, Yang Sun, Enrico Petretto, Per-Henrik Groop, Karl Tryggvason Supplementary Material: Whole Genome Sequencing on Finnish Diabetic Nephropathy Sibling cohort Table of contents Supplementary Methods ............................................................ 3 Supplementary Results .............................................................. 9 Supplementary Tables ............................................................. 11 Supplementary Table 1. Comparison of DNA sequencing quality using the Illumina and Complete Genomics platforms. ......................................................................11 Supplementary Table 2. Annotation of SNVs and indels identified in 161 genomes in the Discovery cohort by RefSeq. ......................................................................12 Supplementary Table 3. Frameshift-causing small insertions and deletions (indels) found in DN cases-only or controls-only individuals of the Finnish T1D DSP discovery cohort ...................................................................................................13 Supplementary Table 4. Recurrently mutated regions (RMR) significantly overrepresented -
Distinct Distributions of Genomic Features of the 5' and 3' Partners Of
www.impactjournals.com/oncotarget/ Oncotarget, 2017, Vol. 8, (No. 40), pp: 66769-66783 Research Paper Distinct distributions of genomic features of the 5’ and 3’ partners of coding somatic cancer gene fusions: arising mechanisms and functional implications Yongzhong Zhao1,2, Won-Min Song1,2, Fan Zhang3, Ming-Ming Zhou4, Weijia Zhang3, Martin J. Walsh1,4,5 and Bin Zhang1,2 1Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, NY 10029, USA 2Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, NY 10029, USA 3Department of Medicine, Icahn School of Medicine at Mount Sinai, NY 10029, USA 4Department of Structural and Chemical Biology, Icahn School of Medicine at Mount Sinai, NY 10029, USA 5Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA Correspondence to: Bin Zhang, email: [email protected] Keywords: cancer somatic gene fusions, gene age, GC skew, DNA-RNA R-loops, somatic amplification Received: April 02, 2016 Accepted: June 06, 2016 Published: July 20, 2016 Copyright: Zhao et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License 3.0 (CC BY 3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. ABSTRACT The genomic features and arising mechanisms of coding cancer somatic gene fusions (CSGFs) largely remain elusive. In this study, we show the gene origin stratification pattern of CSGF partners that fusion partners in human cancers are significantly enriched for genes with the gene age of Euteleostomes and with the gene family age of Bilateria. -
Genome-Wide Identification and Analysis of Mirnas Complementary to Upstream Sequences of Mrna Transcription Start Sites
In: Gene Silencing: Theory, Techniques and Applications ISBN: 978-1-61728-276-8 Editor: Anthony J. Catalano © 2010 Nova Science Publishers, Inc. The exclusive license for this PDF is limited to personal printing only. No part of this digital document may be reproduced, stored in a retrieval system or transmitted commercially in any form or by any means. The publisher has taken reasonable care in the preparation of this digital document, but makes no expressed or implied warranty of any kind and assumes no responsibility for any errors or omissions. No liability is assumed for incidental or consequential damages in connection with or arising out of information contained herein. This digital document is sold with the clear understanding that the publisher is not engaged in rendering legal, medical or any other professional services. Chapter XIII Genome-wide Identification and Analysis of miRNAs Complementary to Upstream Sequences of mRNA Transcription Start Sites Kenta Narikawa1, Kenji Nishi2, Yuki Naito2, Minami Mazda2 and Kumiko Ui-Tei1,2,* 1Department of Computational Biology, Graduate School of Frontier Sciences, University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa-shi, Chiba-ken 277-8561, Japan 2Department of Biophysics and Biochemistry, Graduate School of Science, University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan Abstract Small regulatory RNAs including short interfering RNAs (siRNAs) and microRNAs (miRNAs) are crucial regulators of gene expression at the posttranscriptional level. Recently, additional roles for small RNAs in gene activation and suppression at the transcriptional level were reported; these RNAs were shown to have sequences that closely or completely match to their respective promoter regions. -
New Views on Strand Asymmetry in Insect Mitochondrial Genomes Shu-Jun Wei Zhejiang University, China
University of Kentucky UKnowledge Entomology Faculty Publications Entomology 9-15-2010 New views on strand asymmetry in insect mitochondrial genomes Shu-Jun Wei Zhejiang University, China Min Shi Zhejiang University, China Xue-Xin Chen Zhejiang University, China Michael J. Sharkey University of Kentucky, [email protected] Cornelis van Achterberg Nationaal Natuurhistorisch Museum, Netherlands See next page for additional authors Right click to open a feedback form in a new tab to let us know how this document benefits oy u. Follow this and additional works at: https://uknowledge.uky.edu/entomology_facpub Part of the Entomology Commons Repository Citation Wei, Shu-Jun; Shi, Min; Chen, Xue-Xin; Sharkey, Michael J.; van Achterberg, Cornelis; Ye, Gong-Yin; and He, Jun-Hua, "New views on strand asymmetry in insect mitochondrial genomes" (2010). Entomology Faculty Publications. 27. https://uknowledge.uky.edu/entomology_facpub/27 This Article is brought to you for free and open access by the Entomology at UKnowledge. It has been accepted for inclusion in Entomology Faculty Publications by an authorized administrator of UKnowledge. For more information, please contact [email protected]. Authors Shu-Jun Wei, Min Shi, Xue-Xin Chen, Michael J. Sharkey, Cornelis van Achterberg, Gong-Yin Ye, and Jun- Hua He New views on strand asymmetry in insect mitochondrial genomes Notes/Citation Information Published in PLoS ONE, v. 5, no. 9, e12708. © 2010 Wei et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. -
Evolutionary Advantage of a Broken Symmetry in Autocatalytic Polymers Tentatively Explains Fundamental Properties of DNA
Evolutionary advantage of a broken symmetry in autocatalytic polymers tentatively explains fundamental properties of DNA Hemachander Subramanian1∗, Robert A. Gatenby1;2 1 Integrated Mathematical Oncology Department, 2Cancer Biology and Evolution Program, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida. ∗To whom correspondence should be addressed; E-mail: hemachander.subramanian@moffitt.org. August 17, 2018 Abstract The macromolecules that encode and translate information in living systems, DNA and RNA, exhibit distinctive structural asymmetries, in- cluding homochirality or mirror image asymmetry and 30-50 directionality, that are invariant across all life forms. The evolutionary advantages of these broken symmetries remain unknown. Here we utilize a very simple model of hypothetical self-replicating polymers to show that asymmetric autocatalytic polymers are more successful in self-replication compared to their symmetric counterparts in the Darwinian competition for space and common substrates. This broken-symmetry property, called asym- metric cooperativity, arises with the maximization of a replication poten- tial, where the catalytic influence of inter-strand bonds on their left and right neighbors is unequal. Asymmetric cooperativity also leads to ten- tative, qualitative and simple evolution-based explanations for a number of other properties of DNA that include four nucleotide alphabet, three nucleotide codons, circular genomes, helicity, anti-parallel double-strand orientation, heteromolecular base-pairing, asymmetric base compositions, and palindromic instability, apart from the structural asymmetries men- tioned above. Our model results and tentative explanations are consistent with multiple lines of experimental evidence, which include evidence for the presence of asymmetric cooperativity in DNA. arXiv:1605.00748v3 [q-bio.BM] 9 Mar 2017 Introduction Living systems, uniquely in nature, acquire, store and use information au- tonomously. -
DNA Replication and Strand Asymmetry in Prokaryotic and Mitochondrial Genomes
16 Current Genomics, 2012, 13, 16-27 DNA Replication and Strand Asymmetry in Prokaryotic and Mitochondrial Genomes Xuhua Xia*,1,2 1Department of Biology and Center for Advanced Research in Environmental Genomics, University of Ottawa, 30 Marie Curie, P.O. Box 450, Station A, Ottawa, Ontario, Canada 2Ottawa Institute of Systems Biology, Ottawa, Canada Abstract: Different patterns of strand asymmetry have been documented in a variety of prokaryotic genomes as well as mitochondrial genomes. Because different replication mechanisms often lead to different patterns of strand asymmetry, much can be learned of replication mechanisms by examining strand asymmetry. Here I summarize the diverse patterns of strand asymmetry among different taxonomic groups to suggest that (1) the single-origin replication may not be universal among bacterial species as the endosymbionts Wigglesworthia glossinidia, Wolbachia species, cyanobacterium Synechocystis 6803 and Mycoplasma pulmonis genomes all exhibit strand asymmetry patterns consistent with the multiple origins of replication, (2) different replication origins in some archaeal genomes leave quite different patterns of strand asymmetry, suggesting that different replication origins in the same genome may be differentially used, (3) mitochondrial genomes from representative vertebrate species share one strand asymmetry pattern consistent with the strand- displacement replication documented in mammalian mtDNA, suggesting that the mtDNA replication mechanism in mammals may be shared among all vertebrate species, and (4) mitochondrial genomes from primitive forms of metazoans such as the sponge and hydra (representing Porifera and Cnidaria, respectively), as well as those from plants, have strand asymmetry patterns similar to single-origin or multi-origin replications observed in prokaryotes and are drastically different from mitochondrial genomes from other metazoans. -
Gram-Positive Bacteria-Like DNA Binding Machineries Involved in Replication Initiation and Termination Mechanisms of Mimivirus
viruses Article Gram-Positive Bacteria-Like DNA Binding Machineries Involved in Replication Initiation and Termination Mechanisms of Mimivirus Motohiro Akashi * and Masaharu Takemura Laboratory of Biology, Department of Liberal Arts, Faculty of Science, Tokyo University of Science, Shinjuku, Tokyo 162-8601, Japan; [email protected] * Correspondence: [email protected] Received: 29 January 2019; Accepted: 14 March 2019; Published: 17 March 2019 Abstract: The detailed mechanisms of replication initiation, termination and segregation events were not yet known in Acanthamoeba polyphaga mimivirus (APMV). Here, we show detailed bioinformatics-based analyses of chromosomal replication in APMV from initiation to termination mediated by proteins bound to specific DNA sequences. Using GC/AT skew and coding sequence skew analysis, we estimated that the replication origin is located at 382 kb in the APMV genome. We performed homology-modeling analysis of the gamma domain of APMV-FtsK (DNA translocase coordinating chromosome segregation) related to FtsK-orienting polar sequences (KOPS) binding, suggesting that there was an insertion in the gamma domain which maintains the structure of the DNA binding motif. Furthermore, UvrD/Rep-like helicase in APMV was homologous to Bacillus subtilis AddA, while the chi-like quartet sequence 50-CCGC-30 was frequently found in the estimated ori region, suggesting that chromosomal replication of APMV is initiated via chi-like sequence recognition by UvrD/Rep-like helicase. Therefore, the replication initiation, -
Germline PTPRT Mutation Potentially Involved in Cancer Predisposition
Germline PTPRT mutation potentially involved in cancer predisposition Lorena Martin1, Victor Lorca2, Pedro P´erez-Segura2, Patricia Llovet1, Vanesa Garc´ıa-Barber´an3, Maria Luisa Gonzalez-Morales2, Sami Belhad4, Gabriel Capell´a5, Laura Valle4, Miguel de la Hoya2, Pilar Garre6, and Trinidad Caldes2 1Hospital Clinico San Carlos. IdISCC 2Hospital Clinico San Carlos. IdISSC 3Hospital Cl´ınicoSan Carlos, IdISCC, CIBERONC 4IDIBELL 5ICO-IDIBELL 6Hospital clinico San Carlos. IdISSC September 17, 2020 Abstract Familial Colorectal Cancer Type X (FCCTX) is a term used to describe a group of families with an increased predisposition to colorectal and other related cancers, but an unknown genetic basis. Whole-exome sequencing in two cancer-affected and one healthy members of a FCCTX family revealed a truncating germline mutation in PTPRT [c.4090dup, p.(Asp1364GlyfsTer24)]. PTPRT encodes a receptor phosphatase and is a tumor suppressor gene found to be frequently mutated at somatic level in many cancers, having been proven that these mutations act as drivers that promote tumor development. This germline variant shows a compatible cosegregation with cancer in the family and results in the loss of a significant fraction of the second phosphatase domain of the protein, which is essential for PTPRT's activity. In addition, the tumors of the carriers exhibit epigenetic inactivation of the wild-type allele and an altered expression of PTPRT downstream target genes, consistent with a causal role of this germline mutation in the cancer predisposition of the family. Although PTPRT's role cancer initiation and progression has been well studied, this is the first time that a germline PTPRT mutation is linked with cancer susceptibility and hereditary cancer, which highlights the relevance of the present study. -
Interplay Between DNA Sequence and Negative Superhelicity Drives R-Loop Structures
Interplay between DNA sequence and negative superhelicity drives R-loop structures Robert Stolza,b,1, Shaheen Sulthanaa,1, Stella R. Hartonoa, Maika Maliga,b, Craig J. Benhamc,d,e,2, and Frederic Chedina,e,2 aDepartment of Molecular and Cellular Biology, University of California, Davis, CA 95616; bIntegrative Genetics and Genomics Graduate Group, University of California, Davis, CA 95616; cDepartment of Mathematics, University of California, Davis, CA 95616; dDepartment of Biomedical Engineering, University of California, Davis, CA 95616; and eGenome Center, University of California, Davis, CA 95616 Edited by Philip C. Hanawalt, Stanford University, Stanford, CA, and approved February 4, 2019 (received for review November 13, 2018) R-loops are abundant three-stranded nucleic-acid structures that G clusters, in particular, were shown to be strong initiation form in cis during transcription. Experimental evidence suggests points for RNA strand invasion, leading to R-loop formation that R-loop formation is affected by DNA sequence and topology. upon extension (24, 25). However, the exact manner by which these factors interact to Experimental evidence suggests that R-loop formation is also determine R-loop susceptibility is unclear. To investigate this, we affected by DNA topology. In both Escherichia coli and yeast, developed a statistical mechanical equilibrium model of R-loop hypernegative supercoiling resulting from Topo1 inactivation formation in superhelical DNA. In this model, the energy involved leads to an increased frequency of R-loops in highly transcribed in forming an R-loop includes four terms—junctional and base- ribosomal regions (26–29). In human cells, transient knock- pairing energies and energies associated with superhelicity and down of Top1 also leads to R-loop gains at rDNA sequences with the torsional winding of the displaced DNA single strand and over long highly transcribed genes where supercoil dissi- around the RNA:DNA hybrid.