Supergiant HD 62623 with the VLTI/MIDI

Total Page:16

File Type:pdf, Size:1020Kb

Supergiant HD 62623 with the VLTI/MIDI A&A 512, A73 (2010) Astronomy DOI: 10.1051/0004-6361/200913640 & c ESO 2010 Astrophysics Resolving the dusty circumstellar environment of the A[e] supergiant HD 62623 with the VLTI/MIDI A. Meilland1, S. Kanaan2, M. Borges Fernandes2, O. Chesneau2, F. Millour1,Ph.Stee2, and B. Lopez2 1 Max Planck Intitut für Radioastronomie, Auf dem Hugel 69, 53121 Bonn, Germany e-mail: [email protected] 2 UMR 6525 CNRS H. FIZEAU UNS, OCA, Campus Valrose, 06108 Nice Cedex 2, France CNRS, Avenue Copernic, Grasse, France Received 11 November 2009 / Accepted 9 December 2009 ABSTRACT Context. B[e] stars are hot stars surrounded by circumstellar gas and dust which is responsible for the presence of emission lines and IR-excess in their spectra. How dust can be formed in this highly illuminated and diluted environment remains an open issue. Aims. HD 62623 is one of the very few A-type supergiants showing the B[e] phenomenon. We studied the geometry of its circum- stellar envelope in the mid-infrared using long-baseline interferometry, which is the only observing technique able to spatially resolve objects smaller than a few tens of milliarcseconds. Methods. We obtained nine calibrated visibility measurements between October 2006 and January 2008 using the VLTI/MIDI instru- ment in SCI-PHOT mode and PRISM spectral dispersion mode with projected baselines ranging from 13 to 71 m and with various position angles (PA). We used geometrical models and physical modeling with a radiative transfer code to analyze these data. Results. The dusty circumstellar environment of HD 62623 is partially resolved by the VLTI/MIDI, even with the shortest baselines. The environment is flattened (a/b ∼ 1.3 ± 0.1) and can be separated into two components: a compact one whose extension grows from 17 mas at 8 μm to 30 mas at 9.6 μm and stays almost constant up to 13 μm, and a more extended one that is over-resolved even with the shortest baselines. Using the radiative transfer code MC3D, we managed to model HD 62623’s circumstellar environment as ◦ −7 a dusty disk with an inner radius of 3.85 ± 0.6 AU, an inclination angle of 60 ± 10 ,andamassof2× 10 M. Conclusions. It is the first time that the dusty disk inner rim of a supergiant star exhibiting the B[e] phenomenon is significantly con- strained. The inner gaseous envelope likely contributes up to 20% to the total N band flux and acts like a reprocessing disk. Finally, the hypothesis of a stellar wind deceleration by the companion’s gravitational effects remains the most probable case since the bi-stability mechanism does not seem to be efficient for this star. Key words. techniques: high angular resolution – techniques: interferometric – stars: emission-line, Be – stars: winds, outflows – stars: individual: HD 62623 – circumstellar matter 1. Introduction In this context, HD 62623 (3 Puppis, HR 2996) was classi- fiedasanA2IabeintheYale Bright Stars Catalogue (Hoffeit & The B[e] phenomenon is defined by strong Balmer lines in emis- Jaschek 1982) making it one of the latest stars showing the B[e] sion, low-excitation emission lines (especially of ionized metals phenomenon. Other classifications range from A2Ia to A3IIpe. such as FeII), forbidden emission lines of [FeII] and [OI], and Its distance was estimated to be 700 ± 150 pc, and its radius strong infrared excess due to hot circumstellar dust (Lamers et al. R = 55 ± 10 R (Bittar et al. 2001). It exhibits radial veloc- 1998). However, these objects are not a homogeneous group of ity variations with a period of 137.7 days, interpreted as direct stars in terms of stellar evolution, as such features have been de- evidence of an unseen companion (Lambert 1988). Plets et al. tected for both pre-main sequence and evolved stars. Thus, this (1995) found that a 161.1-day period can also fit these varia- group of stars has been divided into four subclasses: B[e] su- tions. In both hypotheses, the system seems to be composed of a pergiants, Herbig AeB[e] stars, compact planetary nebulae B[e]- massive primary star with 31 M < M < 39 M and a low mass type stars, and symbiotic B[e]-type stars. Moreover, since the ratio of 0.03 < M2/M1 < 0.15, while the projected semi-major spectral class of some of these stars was still very difficult to axis is 1.6 AU < a sin i < 2.4 AU. determine accurately, a fifth class was added: unclassified B[e] Using color indices (H − K)and(K − L), Allen (1973) stars. Recently, in an effort to investigate this mysterious sub- found that HD 62623’s infrared excess is too large to only orig- group, Miroshnichenko (2007) has proposed to classify most of inate in the free-free and free-bound emissions of a gaseous en- their members as a new homogeneous group of non-supergiant velope and is probably due to the presence of optically thick and non-pre-main sequence stars. He proposes to name this dust in the circumstellar environment of this star. Observations group after its precursor, i.e. FS CMa’s group. Finally, the bi- with the low-resolution spectrograph (LRS) of the InfraRed narity detected for 30% of these stars could play a key role in Astronomical Satellite (IRAS) clearly exhibit a 9.6 μm silicate the origin of the B[e] phenomenon for these FS CMa stars. feature in the object spectra, confirming the presence of dust in the envelope. Since the star also shows evidence of Hα and Based on observations made with ESO Telescopes at Paranal [OI] emission lines (Swings & Allen 1976), it was classified as Observatory under programs 078.D-O511 and 080.D.0181. a B[e] supergiant, i.e. sgB[e] (Miroshnichenko 2007). Article published by EDP Sciences Page 1 of 13 A&A 512, A73 (2010) Fig. 1. Left: HD 62623 SED from various sources of literature: red circles are flux measurements listed in Bittar et al. (2001); green lines, IRAS LRS spectra; dark blue lines, IUE spectra; light blue lines with errors bars, our VLTI/MIDI measurements; and the dark line is the best reddened Kurucz model, whose parameters are presented in Table 1. Right: zoom of the N band of the SED (8–13 μm) to exhibit differences between the various measurements obtained in this spectral band and the VLTI/MIDI spectra. The formation mechanisms responsible for sgB[e] stars’ cir- radiative transfer modeling presented in Sect. 5. Finally, the cumstellar environment are still an open issue. Spectroscopic physical properties of HD 62623 are discussed in Sect. 6, while and polarimetric observations suggest that their circumstellar Sect. 7 draws the main conclusions of this study. envelopes are nonspherical (Magalhães 1992). Zickgraf et al. (1985) proposed a general scheme for these stars consisting of a hot and fast line-driven polar wind responsible for the pres- 2. Preliminary study ence of forbidden lines and a slowly expanding dense equatorial region where permitted-emission lines and dust can form. The 2.1. The spectral energy distribution deviation from the spherical geometry for this model can be pro- To accurately determine the stellar parameters of HD 62623, we duced by a nearly critically rotating star. started our study by reconstructing the object SED using photo- Using aperture masking interferometry with the Keck I tele- metric and low-resolution spectral measurements ranging from scope, Bittar et al. (2001) partially resolved HD 62623’s circum- ultraviolet to far-infrared. We used data from various sources stellar envelope between 1.65 and 3.08 μm and show that the in the literature already described in Bittar et al. (2001). These envelope extension was increasing from 6–7 mas at 1.65 μm data include IRAS fluxes and low resolution spectra (LRS), IUE to 25–30 mas at 3.08 μm. Stee et al. (2004) have successfully spectra, and other photometric measurements in the UV, the vis- modeled both these observations and the spectral energy distri- ible, and the near-IR. We also included our N band VLTI/MIDI bution (SED) using a gas + dust model with an inner dust radius spectra in this study. The resulting reconstructed SED is plot- of 15–20 R and a temperature at this boundary of 1500 K. In tedinFig.1. The strong IR-excess due to circumstellar dust is their best model, the gas emission originates in the inner part of shown by the inflection point in the SED around 1.5 μmand the envelope and not in a polar wind. Nevertheless, the issue of by the 9.6 μm silicate emission band visible on IRAS LRS and HD 62623’s envelope flattening remains unsolved, even if Yudin VLTI/MIDI spectra between 8 and 13 μm. The VLTI/MIDI flux &Evans(1998) measured a polarization in the visible of 1.5% ◦ is close to the other mid-IR measurements. This clearly shows with a polarization angle of 95 ± 5 , which seems to favor a non- that most of the N-band emission comes from the 250 mas inter- spherical object. ferometric field of view of this instrument. We note that a sec- By putting strong constraints on the envelope geometry, ond silicate emission band is also visible in IRAS LRS spectra long-baseline infrared interferometry can be a key technique around 20 μm. for studying the physics of active hot stars (Stee et al. 2005). Using both VLTI/MIDI and VLTI/AMBER data, Domiciano de Souza et al. (2007) resolved the circumstellar environment of the 2.2. Circumstellar or interstellar extinction ◦ sgB[e] CPD –57 2874 and modeled it as a flattened compact en- We tried to fit the UV and visible parts of the reconstructed SED velope with an extension increasing with wavelength.
Recommended publications
  • Resolving the Dusty Circumstellar Environment of the a [E] Supergiant HD 62623 with the VLTI/MIDI
    Astronomy & Astrophysics manuscript no. HD62623˙v17 c ESO 2018 November 4, 2018 Resolving the dusty circumstellar environment of the A[e] supergiant HD 62623 with the VLTI/MIDI⋆ A. Meilland1, S. Kanaan2, M. Borges Fernandes2, O. Chesneau2, F. Millour1, Ph. Stee2, and B. Lopez2 1 Max Planck Intitut f¨ur Radioastronomie, Auf dem Hugel 69, 53121 Bonn, Germany 2 UMR 6525 CNRS H. FIZEAU UNS, OCA, Campus Valrose, F-06108 Nice cedex 2, France, CNRS - Avenue Copernic, Grasse, France. Received; accepted ABSTRACT Context. B[e] stars are hot stars surrounded by circumstellar gas and dust responsible for the presence of emission lines and IR-excess in their spectra. How dust can be formed in this highly illuminated and diluted environment remains an open issue. Aims. HD 62623 is one of the very few A-type supergiants showing the B[e] phenomenon. We studied the geometry of its circum- stellar envelope in the mid-infrared using long-baseline interferometry, which is the only observing technique able to spatially resolve objects smaller than a few tens of milliarcseconds. Methods. We obtained nine calibrated visibility measurements between October 2006 and January 2008 using the VLTI/MIDI instru- ment in SCI-PHOT mode and PRISM spectral dispersion mode with projected baselines ranging from 13 to 71 m and with various position angles (PA). We used geometrical models and physical modeling with a radiative transfer code to analyze these data. Results. The dusty circumstellar environment of HD 62623 is partially resolved by the VLTI/MIDI even with the shortest baselines. The environment is flattened (a/b 1.3 0.1) and can be separated into two components: a compact one whose extension grows from 17 mas at 8µm to 30 mas at 9.6µm∼ and± stays almost constant up to 13µm, and a more extended one that is over-resolved even with the shortest baselines.
    [Show full text]
  • Imaging the Spinning Gas and Dust in the Disc Around the Supergiant a [E
    Astronomy & Astrophysics manuscript no. 16193paper c ESO 2020 July 18, 2020 Imaging the spinning gas and dust in the disc around the supergiant A[e] star HD 62623 ⋆ F. Millour1,2, A. Meilland2, O. Chesneau1, Ph. Stee1, S. Kanaan1,3, R. Petrov1, D. Mourard1, and S.Kraus2,4 1 Laboratoire FIZEAU, Universit´ede Nice-Sophia Antipolis, Observatoire de la Cˆote d’Azur, 06108 Nice, France 2 Max-Planck-Institute for Radioastronomy, Auf dem H¨ugel 69, 53121, Bonn, Germany 3 Departamento de F´ısica y Astronom´ıa, Universidad de Valpara´ıso, Errzuriz 1834, Valparaso, Chile. 4 Department of Astronomy, University of Michigan, 500 Church Street, Ann Arbor, Michigan 48109-1090, USA Received; accepted ABSTRACT Context. To progress in the understanding of evolution of massive stars one needs to constrain the mass-loss and determine the phenomenon responsible for the ejection of matter an its reorganization in the circumstellar environment Aims. In order to test various mass-ejection processes, we probed the geometry and kinematics of the dust and gas surrounding the A[e] supergiant HD 62623. Methods. We used the combined high spectral and spatial resolution offered by the VLTI/AMBER instrument. Thanks to a new multi- wavelength optical/IR interferometry imaging technique, we reconstructed the first velocity-resolved images with a milliarcsecond resolution in the infrared domain. Results. We managed to disentangle the dust and gas emission in the HD 62623 circumstellar disc. We measured the dusty disc inner inner rim, i.e. 6 mas, constrained the inclination angle and the position angle of the major-axis of the disc.
    [Show full text]
  • Resolving the Kinematics of the Disks Around Galactic B [E] Supergiants
    MNRAS 000, 1–24 (2015) Preprint 5 September 2018 Compiled using MNRAS LATEX style file v3.0 Resolving the kinematics of the disks around Galactic B[e] supergiants G. Maravelias1,2⋆, M. Kraus2,3, L. S. Cidale4,5,1, M. Borges Fernandes6, M. L. Arias4,5, M. Cur´e1, G. Vasilopoulos7 1 Instituto de F´ısica y Astronom´ıa, Facultad de Ciencias, Universidad de Valpara´ıso, Av. Gran Breta˜na 1111, Casilla 5030, Valpara´ıso, Chile 2 Astronomick´y´ustav, Akademie vˇed Cesk´erepubliky,ˇ Friˇcova 298, 251 65 Ondˇrejov, Czech Republic 3 Tartu Observatory, University of Tartu, 61602, T˜oravere, Tartumaa, Estonia 4 Instituto de Astrof´sica de La Plata, CCT La Plata, CONICET-UNLP, Paseo del Bosque s/n, La Plata, B1900FWA, Buenos Aires, Argentina 5 Departamento de Espectroscop´ıa, Facultad de Ciencias Astron´omicas y Geof´ısicas, Universidad Nacional de La Plata, Paseo del Bosque s/n, La Plata, B1900FWA, Buenos Aires, Argentina 6 Observat´orio Nacional, Rua General Jos´eCristino 77, 20921-400 S˜ao Cristov˜ao, Rio de Janeiro, Brazil 7 Max-Planck-Institut fur¨ extraterrestrische Physik,Giessenbachstraße, 85748 Garching, Germany Accepted XXX. Received YYY; in original form ZZZ ABSTRACT B[e] Supergiants are luminous evolved massive stars. The mass-loss during this phase creates a complex circumstellar environment with atomic, molecular, and dusty regions usually found in rings or disk-like structures. For a better comprehension of the mech- anisms behind the formation of these rings, detailed knowledge about their structure and dynamics is essential. To address that, we obtained high-resolution optical and near-infrared spectra for 8 selected Galactic B[e] Supergiants, for which CO emission has been detected.
    [Show full text]
  • The Low-Energy Experiment on EXOSAT
    4 :a-;-ril-;vit 7h- .'feii^. -1::?^:.' Uxpeî inen: for CXOS/iT J..-Î. H::;";~n.i<-_, Jni:*-vsiu< of Leicester TV- Lew iJr.eisy i'.ioe: ircr.:.: on IJXOEAT J.A.-l. 3:\-L-^-.->, ->STIC *<;;< Working Group, Leiden Low briefly :'po^trû£copy with EXOSAT J.,i..\\ Slceïei; Cosmic hay Working Group, Leiden lun.-.r C.- ii : a: I':n of Point X-iay Sources Optical iJer.-ificatio:. of X-rav sources ."f./. P^>:;4- ••ij .L.si;aL Greeriuie'-i Observatory lder:tH::ôt."-. of »ray Sources with Radio Dbiecr: The Precise Location of •ray Sources ard their Identification, with Infra-red Objects •\ •X-chialini-iHl'Jorth, Pulsating ar.d Binary \~rv: Sources E.P.J, van den Heuvei, University of Amsterdam and Brussels Source Structure via the Occultation Technique A.C. ?abiar.t Institute of Astronomy, Carnbridae Spâtiai Structure in Galactic X-ray Sources C.A. Ilovazshj, Meudon Observatory The Structures of Extragalactic X-ray Sources M.S. longair, Itullard Radio Astronomy Observatory, Cambridge X-ray Halos H. Spiegelhauer and J. Trumper* University of Tubingen Proposals for tl.e DCOSAT Observation Programme and Choice of Orbit F..D. Andres&i, F.5R0 The experiments to be carried will be funded by LTr:", -Î:.-.: will : •• produced by a small number of research groups, while the ;;-.-': It i~. •. will be distributed among a much wider comnurii* v> fnLb-v.'ir.^ •:.-_• selection of proposals for -he observation program--:-. In 1974 '•he Scientific Programme Board approved thf- :i--:^:"i ;• : experiments satisfying the principal mission ob^ec" Lve.- à.:.: - .• study of some experiment options which would provl:« .=:.
    [Show full text]
  • Science Cases for a Visible Interferometer
    March 22, 2017 0:30 World Scientific Book - 9.75in x 6.5in Science_cases_visible page i September, 29 2015 Science cases for a visible interferometer arXiv:1703.02395v3 [astro-ph.SR] 21 Mar 2017 Publishers' page i March 22, 2017 0:30 World Scientific Book - 9.75in x 6.5in Science_cases_visible page ii Publishers' page ii March 22, 2017 0:30 World Scientific Book - 9.75in x 6.5in Science_cases_visible page iii Publishers' page iii March 22, 2017 0:30 World Scientific Book - 9.75in x 6.5in Science_cases_visible page iv Publishers' page iv March 22, 2017 0:30 World Scientific Book - 9.75in x 6.5in Science_cases_visible page v This book is dedicated to the memory of our colleague Olivier Chesneau who passed away at the age of 41. v March 22, 2017 0:30 World Scientific Book - 9.75in x 6.5in Science_cases_visible page vi vi Science cases for a visible interferometer March 22, 2017 0:30 World Scientific Book - 9.75in x 6.5in Science_cases_visible page vii Preface High spatial resolution is the key for the understanding of various astrophysical phenomena. But even with the future E-ELT, single dish instrument are limited to a spatial resolution of about 4 mas in the visible whereas, for the closest objects within our Galaxy, most of the stellar photosphere remain smaller than 1 mas. Part of these limitations was the success of long baseline interferometry with the AMBER (Petrov et al., 2007) instrument on the VLTI, operating in the near infrared (K band) of the MIDI instrument (Leinert et al., 2003) in the thermal infrared (N band).
    [Show full text]
  • Star HD 62623
    A&A 526, A107 (2011) Astronomy DOI: 10.1051/0004-6361/201016193 & c ESO 2011 Astrophysics Imaging the spinning gas and dust in the disc around the supergiant A[e] star HD 62623 F. Millour1,2, A. Meilland2, O. Chesneau1,Ph.Stee1, S. Kanaan1,3, R. Petrov1,D.Mourard1,andS.Kraus2,4 1 Laboratoire FIZEAU, Université de Nice-Sophia Antipolis, Observatoire de la Côte d’Azur, 06108 Nice, France e-mail: [email protected] 2 Max-Planck-Institute for Radioastronomy, Auf dem Hügel 69, 53121 Bonn, Germany 3 Departamento de Física y Astronomía, Universidad de Valparaíso, Errzuriz 1834, Valparaso, Chile 4 Department of Astronomy, University of Michigan, 500 Church Street, Ann Arbor, Michigan 48109-1090, USA Received 24 November 2010 / Accepted 9 December 2010 ABSTRACT Context. To progress in the understanding of evolution of massive stars one needs to constrain the mass-loss and determine the phenomenon responsible for the ejection of matter an its reorganization in the circumstellar environment Aims. In order to test various mass-ejection processes, we probed the geometry and kinematics of the dust and gas surrounding the A[e] supergiant HD 62623. Methods. We used the combined high spectral and spatial resolution offered by the VLTI/AMBER instrument. Thanks to a new multi- wavelength optical/IR interferometry imaging technique, we reconstructed the first velocity-resolved images with a milliarcsecond resolution in the infrared domain. Results. We managed to disentangle the dust and gas emission in the HD 62623 circumstellar disc. We measured the dusty disc inner rim, i.e. 6 mas, constrained the inclination angle and the position angle of the major-axis of the disc.
    [Show full text]
  • On Two Seventeenth Century Persian Paintings Depicting Comets Or Fireballs: a Correction
    Journal of Astronomical History and Heritage, 23(3), 675 ‒ 680 (2020). ON TWO SEVENTEENTH CENTURY PERSIAN PAINTINGS DEPICTING COMETS OR FIREBALLS: A CORRECTION R.C. Kapoor Indian Institute of Astrophysics, Koramangala, Bengaluru 560034, India. Email: [email protected] and [email protected] Abstract: In a recent issue of the Journal of Astronomical History and Heritage I looked into two seventeenth century Persian paintings depicting tailed objects (comets or possibly fireballs) in the sky (Kapoor, 2019). One of these, the painting by Muhammad Zaman, has a date inscribed at the lower left as ‘sana 7’. Elsewhere, the date has been interpreted as the seventh year of the reign of the Mughal Emperor Aurangzeb (r. CE 1658–1707). Two bright comets, one in December 1664 (C/1664 W1) and another in April 1665 (C/1665 F1), had appeared during the Emperor’s seventh regnal year and it was suggested by others that the comet of December 1664 could be the one portrayed by Zaman. In my work, I had inadvertently considered that the seventh regnal year ended on 24 July 1664, which therefore ruled out either of the comets, but since the recorded date of the coronation was 1 Dhu l-Qa’da 1068 AH (31 July 1658 CE Greg), Aurangzeb’s seventh regnal year should be 1 Dhu l-Qa’da 1074–29 Shawwal 1075 A.H. (≡26 May 1664–15 May 1665), which revives the suggestion that the comet of December 1664 or of April 1665 was the one portrayed by Zaman. The December 1664 comet rose in the morning in the S-E during its best-view dates, while the April 1665 comet remained a morning object through its visible phase.
    [Show full text]
  • Resolving the Kinematics of the Discs Around Galactic B[E] Supergiants
    MNRAS 480, 320–344 (2018) doi:10.1093/mnras/sty1747 Advance Access publication 2018 July 4 Resolving the kinematics of the discs around Galactic B[e] supergiants G. Maravelias,1,2‹ M. Kraus,2,3‹ L. S. Cidale,1,4,5‹ M. Borges Fernandes,6 M. L. Arias,4,5 M. Cure´1 and G. Vasilopoulos7 1Instituto de F´ısica y Astronom´ıa, Facultad de Ciencias, Universidad de Valpara´ıso, Av. Gran Bretana˜ 1111, Casilla 5030, Valpara´ıso, Chile 2Astronomicky´ ustav,´ Akademie vedˇ Ceskˇ e´ republiky, Fricovaˇ 298, CZ-251 65 Ondrejov,ˇ Czech Republic 3Tartu Observatory, University of Tartu, 61602 Toravere,˜ Tartumaa, Estonia 4Instituto de Astrofsica´ de La Plata, CCT La Plata, CONICET-UNLP, Paseo del Bosque s/n, La Plata B1900FWA, Buenos Aires, Argentina 5Departamento de Espectroscop´ıa, Facultad de Ciencias Astronomicas´ y Geof´ısicas, Universidad Nacional de La Plata, Paseo del Bosque s/n, La Plata B1900FWA, Buenos Aires, Argentina 6Observatorio´ Nacional, Rua General Jose´ Cristino 77, 20921-400 Sao˜ Cristovao,˜ Rio de Janeiro, Brazil 7Max-Planck-Institut fur¨ extraterrestrische Physik,Giessenbachstraße, D-85748 Garching, Germany Accepted 2018 June 27. Received 2018 June 26; in original form 2018 April 7 ABSTRACT B[e] supergiants are luminous evolved massive stars. The mass-loss during this phase creates a complex circumstellar environment with atomic, molecular, and dusty regions usually found in rings or disc-like structures. For a better comprehension of the mechanisms behind the formation of these rings, detailed knowledge about their structure and dynamics is essential. To address that, we obtained high-resolution optical and near-infrared (near-IR) spectra for eight selected Galactic B[e] supergiants, for which CO emission has been detected.
    [Show full text]
  • Dusty Blue Supergiants: News from High-Angular Resolution Observations
    Hindawi Publishing Corporation Advances in Astronomy Volume 2014, Article ID 270848, 8 pages http://dx.doi.org/10.1155/2014/270848 Review Article Dusty Blue Supergiants: News from High-Angular Resolution Observations W. J. de Wit,1 R. D. Oudmaijer,2 and J. S. Vink3 1 European Southern Observatory, Alonso de Cordova 3107, Casilla, Vitacura, 19001 Santiago, Chile 2 School of Physics & Astronomy, University of Leeds, Woodhouse Lane, Leeds LS2 9JT, UK 3 Armagh Observatory, College Hill, Armagh BT61 9DG, UK Correspondence should be addressed to W. J. de Wit; [email protected] Received 21 January 2014; Accepted 14 March 2014; Published 4 May 2014 Academic Editor: Lydia Cidale Copyright © 2014 W. J. de Wit et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. An overview is presented of the recent advances in understanding the B[e] phenomenon among blue supergiant stars in light of high-angular resolution observations and with an emphasis on the results obtained by means of long baseline optical stellar interferometry. The focus of the review is on the circumstellar material and evolutionary phase of B[e] supergiants, but recent results on dust production in regular blue supergiants are also highlighted. 1. Introduction sgB[e] stars [5–8]. The galactic sgB[e] (and candidates) are listed in Kraus [9]butthisgroupisnecessarilylesshomoge- B-type stars of various luminosity classes and evolutionary neous because of the members’ distance uncertainties. phases can demonstrate the B[e] phenomenon.
    [Show full text]
  • Mapping Submillimetre Polarization with Blastpol by Steven James
    Mapping Submillimetre Polarization with BLASTPol by Steven James Benton A thesis submitted in conformity with the requirements for the degree of Doctor of Philosophy Graduate Department of Physics University of Toronto c Copyright 2015 by Steven James Benton Abstract Mapping Submillimetre Polarization with BLASTPol Steven James Benton Doctor of Philosophy Graduate Department of Physics University of Toronto 2015 The Balloon-borne Large Aperture Submillimetre Telescope for Polarimetery (BLAST- Pol) observes the linearly polarized emission from interstellar dust. Dust polarization traces magnetic fields, and submillimetre wavelengths can see into the dense molecular clouds in which stars are born. With this measurement, BLASTPol can help resolve long-standing questions about the role of magnetic fields in the beginning of star forma- tion. BLASTPol is a 1.8 m telescope with 288 Herschel/SPIRE-heritage bolometric de- tectors at 250 µm, 350 µm, and 500 µm. Polarimetric capability was added with pho- tolithographed grids and a stepped half-wave plate. This work outlines the instrument, with a focus on the BLASTbus electronics system for detector readout, telescope attitude control, and cryogenic housekeeping. In December 2010 and in December 2012, BLASTPol had two long duration balloon flights. An improved map making procedure has been used for reducing the 2012 dataset to maps of the polarized sky. The overall data analysis procedure is described, along with details of the map maker characterization. Finally, maps are presented for the seven targets observed during the 2012 flight. The 14 square degree map of the Vela C giant molecular cloud is of particularly high quality and will be used in several upcoming studies of dust physics and star formation.
    [Show full text]
  • Ρ Puppis : a New Short-Period Variable Star
    ρ PUPPIS : A NEW SHORT-PERIOD VARIABLE STAR Olin J. Eggen Lick Observatory, University of California Photoelectric observations by the writer in 1951-52 with the 9-inch Oddie refractor of the Commonwealth Observatory, Mount Stromlo, Australia, indicated that the light of /aPuppis varied approximately 0.15 mag. The light variation was also independ- ently discovered at the Cape Observatory.1 On four nights in March 1956, the light of this star was compared with that of ÇPuppis, with the 12-inch Lick refractor, with the results as shown in Figure 1. Data on these two stars follow : Spectral Star a (1900) δ VE Type P Puppis (Max.) 8h 3^3 -24o01' 2^68 +0^30 F6II ξ Puppis 7 45.1 —24 37 3.31 +1.18 G31b Am I I I I I I I I I I I + cTes o# o" X · o x x · φ + 4- Ο+λ +Χ υ -· © + . ^ ^ 'i + 0.60 i β * -Η · χ • χ March 19,1956 Ç · · + · March 20,1956 *0 · + + 0.55 Ο March 22,1956 ^ + March 26,1956 χ Ό Ο ^ Φ • ·χ· + Phase 0¾ 0.0 0.2 0.4 0.6 0.8 Fig. 1.—Light curve of ρ Puppis from photoelectric observations on four nights. Alternate deflections were taken on the variable and on the com- parison star using a 1P21 photomultiplier and a yellow filter (Corning 3385). All deflections were reduced to no atmosphere with the absorption coefficient obtained from the observations of the comparison star (0^15 at the zenith). The magnitude differ- 238 © Astronomical Society of the Pacific · Provided by the NASA Astrophysics Data System Ρ PUPPIS 239 enees, obtained from each deflection of the variable as compared with the mean of those of the comparison star, are given in Table I — — WpPuppis).
    [Show full text]
  • Optical Observatories
    NATIONAL OPTICAL ASTRONOMY OBSERVATORIES NATIONAL OPTICAL ASTRONOMY OBSERVATORIES Cerro Tololo Inter-American Observatory Kitt Peak National Observatory National Solar Observatory La Serena, Chile Tucson, Arizona 85726 Sunspot, New Mexico 88349 ANNUAL REPORT October 1993 - September 1994 November 10, 1994 TABLE OF CONTENTS I. INTRODUCTION n. AURA BOARD m. SCIENTIFIC PROGRAM Cerro Tololo Inter-American Observatory (CTIO) 1. A Hubble Diagram of Distant Type la Supernovae 2. The Stellar Populations of the Carina Dwarf Galaxy 3 3. Observations of the Collision ofComet Shoemaker-Levy 9 and Jupiter 4 B. Kitt Peak National Observatory (KPNO) 5 1. Faint Galaxy Halo Could Trace Dark Matter 5 2. Young Stellar Objects in Bok Globules 5 3. A New Tool for Stellar Population Studies 6 C. National Solar Observatory (NSO) 7 1. New Observations of IR Coronal Emission Lines 7 2. High Resolution Infrared Spectroscopy of the Carbon Monoxide Molecule 7 3. Subsurface Magnetic Flux Tubes 8 IV. DIVISION OPERATIONS 9 A. Cerro Tololo Inter-American Observatory 9 1. 4-m Telescope Image Quality Improvements 9 2. Infrared Instrumentation 10 3. Arcon CCD Controllers 10 4. Other Projects 11 B. Kitt Peak National Observatory 11 1. New KPNO Programs in FY 1994 11 2. KPNO Facilities Improvements in FY 1994 13 3. KPNO Instrumentation 14 C. National Solar Observatory 17 1. Image Quality Improvement Program for NSO Telescopes 17 2. Sac Peak Instrumentation 18 3. Tucson Instrumentation 20 D. US Gemini Program 21 E. NOAO Instrumentation Program 22 V. MAJOR PROJECTS 23 A. Global Oscillation Network Group Project 23 B. The Precision Solar Photometric Telescope Project (PSPT) 25 C.
    [Show full text]