Study of the Diffractive Component of the Inclusive Z→Ee,Μµ Cross
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Formation of Centauro and Strangelets in Nucleus–Nucleus Collisions at the LHC and Their Identification by the ALICE Experiment 1 A.L.S
HE.6.2.02 Formation of Centauro and Strangelets in Nucleus–Nucleus Collisions at the LHC and their Identification by the ALICE Experiment 1 A.L.S. Angelis1,J.Bartke2, M.Yu. Bogolyubsky3, S.N. Filippov4, E. Gładysz-Dziadus´2, Yu.V. Kharlov3,A.B.Kurepin4, A.I. Maevskaya4, G. Mavromanolakis1, A.D. Panagiotou1, S.A. Sadovsky3,P.Stefanski2 and Z. Włodarczyk5 1Division of Nuclear and Particle Physics, University of Athens,Greece. 2Institute of Nuclear Physics, Cracow, Poland. 3Institute for High Energy Physics, Protvino, Russia. 4Institute for Nuclear Research, Moscow,Russia. 5Institute of Physics, Pedagogical University, Kielce, Poland. Abstract We present a phenomenological model which describes the formation of a Centauro fireball in nucleus-nucleus interactions in the upper atmosphere and at the LHC, and its decay to non-strange baryons and Strangelets. We describe the CASTOR detector for the ALICE experiment at the LHC. CASTOR will probe, in an event- by-event mode, the very forward, baryon-rich phase space 5.6 ≤ η ≤ 7.2in5.5×A TeV central Pb + Pb collisions. We present results of simulations for the response of the CASTOR calorimeter, and in particular to the traversal of Strangelets. 1 Introduction: The physics motivation to study the very forward phase space in nucleus–nucleus collisions stems from the potentially very rich field of new phenomena, to be produced in and by an environment with very high baryochemical potential. The study of this baryon-dense region, much denser than the highest baryon density attained at the AGS or SPS, will provide important information for the understanding of a Deconfined Quark Matter (DQM) state at relatively low temperatures, with different properties from those expected in the higher temperature baryon-free region around mid-rapidity, thought to exist in the core of neutron stars. -
Diffraction at Hera, the Tevatron and the Lhc∗
Vol. 37 (2006) ACTA PHYSICA POLONICA B No 12 DIFFRACTION AT HERA, THE TEVATRON AND THE LHC∗ C. Royon DAPNIA/Service de Physique des Particules, CEA/Saclay 91191 Gif-sur-Yvette Cedex, France (Received October 18, 2006) In these lectures, we present and discus the most recent results on inclusive diffraction from the HERA and Tevatron colliders and give the prospects for the future at the LHC. Of special interest is the exclusive production of Higgs boson and heavy objects (W , top, stop pairs) which will require a better understanding of diffractive events and the link between ep and hadronic colliders, as well as precise measurements and analyses of inclusive diffraction at the LHC in particular to constrain further the gluon density in the pomeron. PACS numbers: 12.38.–t, 13.60.–r, 13.85.–t In these lectures, we describe the most recent results on inclusive diff- raction at HERA, as well as diffractive results from the Tevatron. We finish the lecture by discussing the prospects of diffractive physics at the LHC. 1. Experimental definition of diffraction In this section, we discuss the different experimental ways to define diff- raction. As an example, we describe the methods used by the H1 and ZEUS experiments at HERA, DESY, Hamburg in Germany. 1.1. The rapidity gap method HERA is a collider where electrons of 27.6 GeV collide with protons of 920 GeV. A typical event as shown in the upper plot of Fig. 1 is ep ! eX where electron and jets are produced in the final state. We notice that the ∗ Presented at the XLVI Cracow School of Theoretical Physics, Zakopane, Poland May 27–June 5, 2006. -
Electron Ion Collider Conceptual Design Report Experimental Equipment Contributors: W
November 18, 2020 Electron Ion Collider Conceptual Design Report Experimental Equipment Contributors: W. Akers2, E-C. Aschenauer1, F. Barbosa2, A. Bressan3, C.M. Camacho4, K. Chen1, S. Dalla Torre3 L. Elouadhriri2, R. Ent2, O. Evdokimov5, Y. Furletova2, D. Gaskell2, T. Horn6, J. Huang1, A. Jentsch1, A. Kiselev1, W. Schmidke1, R. Seidl7, T. Ullrich1, 1Brookhaven National Laboratory, USA 2Thomas Jefferson National Accelerator Facility, USA 3University of Trieste and INFN at Trieste, Italy 4Institut de Physique Nucleaire´ at Orsay, France 5University of Illinois at Chicago, USA 6Catholic University of America, Washington DC, USA 7RIKEN Nishina Center for Accelerator-Based Science, Japan Contents 2 The Science of EIC 1 2.1 Introduction . .1 2.1.1 EIC Physics and Accelerator Requirements . .1 2.1.2 Interaction Region and Detector Requirements . .2 2.2 EIC Context and History . .5 2.3 The Science Goals of the EIC and the Machine Parameters . .6 2.3.1 Nucleon Spin and Imaging . .9 2.3.2 Physics with High-Energy Nuclear Beams at the EIC . 17 2.3.3 Passage of Color Charge Through Cold QCD Matter . 25 2.4 Summary of Machine Design Parameters for the EIC Physics . 27 2.5 Scientific Requirements for the Detectors and IRs . 30 2.5.1 Scientific Requirements for the Detectors . 31 2.5.2 Scientific Requirements for the Interaction Regions . 38 8 The EIC Experimental Equipment 49 8.1 Realization of the Experimental Equipment in the National and Interna- tional Context . 49 8.2 Experimental Equipment Requirements Summary . 51 8.3 Operational Requirements for an EIC Detector . 54 8.3.1 EIC Collision Rates and Multiplicities . -
Tests of the Do Calorimeter Response in 2-150 Gev Beams*
TESTS OF THE DO CALORIMETER RESPONSE IN 2-150 GEV BEAMS* Kaushik De t Department of Physics University of Michigan Ann Arbor, MI 48109 Abstract At the heart of the DO detector, which recently started its maiden data run at the Fermilab Tevatron p~ collider, is a finely segmented hermetic large angle liquid argon calorimeter. We present here results from the latest test beam studies of the calorimeter in 1991. Modules from the central calorimeter, end calorimeter and the inter-cryostat detector were included in this run. New results on resolution, uniformity and linearity will be presented with electron and pion beams of various energies. Special emphasis will be placed on first results from the innovative technique of using scintillator sampling in the in- termediate rapidity region to improve uniformity and hermeticity. INTRODUCTION study pp collisions at 1.8 TeV. The three ma- jor components of the detector include a cen- The DO experiment at the Fermilab Teva- tral tracking detector surrounded by a liquid tron uses a large angle hermetic detector to argon calorimeter, which in turn is enclosed in a magnetic tracking muon detector. A cut-out *Presented for the DO Collaboration: Universi- view of the calorimeter and central detector is dad de los Andes (Colombia), University of Aft- shown in Figure 1. sons, Brookhaven National Laboratory, Brown Uni- versity, University of California at Riverside, CBPF (Brasil), CINVESTAV (Mexico), Columbia Univer- sity, Delhi University (India), Fermilab, Florida State University, University of Hawaii, -
Upgrade of the Global Muon Trigger for the Compact Muon Solenoid Experiment at CERN”
DISSERTATION/DOCTORAL THESIS Titel der Dissertation/Title of the Doctoral Thesis “Upgrade of the Global Muon Trigger for the Compact Muon Solenoid experiment at CERN” verfasst von/submitted by Mag. Dinyar Sebastian Rabady angestrebter akademischer Grad/in partial fulfilment of the requirements for the degree of Doktor der Naturwissenschaften (Dr. rer. nat.) Wien, im Jänner 2018/Vienna, in January 2018 Studienkennzahl lt. Studienblatt/ A 796 605 411 degree programme code as it appears on the student record sheet: Studienrichtung lt. Studienblatt/ Physik field of study as it appears onthe student record sheet: Betreut von/Supervisor: Dipl.-Ing. Dr. Claudia-Elisabeth Wulz Hon.-Prof. Dipl.-Phys. Dr. Eberhard Widmann Für meinen Großvater. Abstract The Large Hadron Collider is a large particle accelerator at the CERN research labo- ratory, designed to provide particle physics experiments with collisions at unprece- dented centre-of-mass energies. For its second running period both the number of colliding particles and their collision energy were increased. To cope with these more challenging conditions and maintain the excellent performance seen during the first running period, the Level-1 trigger of the Compact Muon Solenoid experiment — a so- phisticated electronics system designed to filter events in real-time — was upgraded. This upgrade consisted of the complete replacement of the trigger electronics andafull redesign of the system’s architecture. While the calorimeter trigger path now follows a time-multiplexed processing model where the entire trigger data for a collision are received by a single processing board, the muon trigger path was split into regional track finding systems where each newly introduced track finder receives data from all three muon subdetectors for a certain geometric detector slice and reconstructs fully formed muon tracks from this. -
CASTOR: the ALICE Forward Detector for Identification of Centauros And
CASTOR: A FORWARD DETECTOR FOR THE IDENTIFICATION OF CENTAURO AND STRANGELETS IN NUCLEUS–NUCLEUS COLLISIONS AT THE LHC ∗ A.L.S. ANGELISa, J. BARTKEb, M.YU. BOGOLYUBSKYc, S.N. FILIPPOVd, E. GLADYSZ-DZIADU S´b, YU.V. KHARLOVc, A.B. KUREPINd, A.I. MAEVSKAYAd, G. MAVROMANOLAKISa, A.D. PANAGIOTOUa, S.A. SADOVSKYc, P. STEFANSKIb, Z. WLODARCZYK e aNuclear and Particle Physics Division, University of Athens, Hellas. bInstitute of Nuclear Physics, Cracow, Poland. cInstitute for High Energy Physics, Protvino, Russia. dInstitute for Nuclear Research, Moscow, Russia. eInstitute of Physics, Pedagogical University, Kielce, Poland. The physics motivation for a very forward detector to be employed in heavy ion collisions at the CERN LHC is discussed. A phenomenological model describing the formation and decay of a Centauro fireball in nucleus-nucleus collisions is presented. The CASTOR detector which is aimed to measure the hadronic and photonic content of an interaction and to identify deeply penetrating objects in the very forward, baryon-rich phase space 5.6 ≤ η ≤ 7.2 in an event-by-event mode is described. Results of simulations of the expected response of the calorimeter, and in particular to the passage of strangelets, are presented. 1 Introduction The ALICE detector 1, which is aimed at investigating nucleus–nucleus col- lisions at the LHC, will be fully instrumented for hadron and photon identi- fication only in the limited angular region around mid-rapidity, covering the pseudorapidity interval η 1. An additional muon detector 2 will be in- stalled on one side and will| | cover ≤ the pseudorapidity interval 2.5 η 4.0. -
A Very Forward Hadron Spectrometer for the LHC and Cosmic Ray Physics
A Very Forward Hadron Spectrometer for the LHC and Cosmic Ray Physics Michael Albrow∗y Fermi National Accelerator Laboratory, Batavia, IL 60510, USA. ORCID 0000-0001-7329-4925 E-mail: [email protected] Charged hadron production in hadron-hadron collisions with longitudinal momentum fraction p Feynman-x, xF , between 0.1 and 0.9 has not been measured above s = 63 GeV at the CERN Intersecting Storage Rings. I discuss a way to measure this at the Large Hadron Collider at p s = 13 TeV, which is 40,000 times higher in equivalent fixed target energy, and important for understanding cosmic ray showers. arXiv:1811.02047v1 [physics.ins-det] 5 Nov 2018 2nd World Summit: Exploring the Dark Side of the Universe 25-29 June, 2018 University of Antilles, Pointe-Ã˘a-Pitre, Guadeloupe, France ∗Speaker. yScientist emeritus c Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0). https://pos.sissa.it/ Very Forward Hadron Spectrometer Michael Albrow Figure 1: The flux of cosmic rays multiplied by E2:5, showing the “knee" and the “ankle" vs. primary energy E. All this data is based on measuring showers in the atmosphere. The maximum energy of the CERN ISR and LHC are indicated. 1. Introduction When the first hadron collider, the CERN Intersecting Storage Rings, ISR, came into operation in 1971 it was known that most produced particles in inelastic collisions have small transverse q 2 2 momenta, pT = px + py less than about 1 GeV/c. -
The Very Forward CASTOR Calorimeter of the CMS Experiment
EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH (CERN) CERN-EP-2020-180 2021/02/11 CMS-PRF-18-002 The very forward CASTOR calorimeter of the CMS experiment The CMS Collaboration* Abstract The physics motivation, detector design, triggers, calibration, alignment, simulation, and overall performance of the very forward CASTOR calorimeter of the CMS exper- iment are reviewed. The CASTOR Cherenkov sampling calorimeter is located very close to the LHC beam line, at a radial distance of about 1 cm from the beam pipe, and at 14.4 m from the CMS interaction point, covering the pseudorapidity range of −6.6 < h < −5.2. It was designed to withstand high ambient radiation and strong magnetic fields. The performance of the detector in measurements of forward energy density, jets, and processes characterized by rapidity gaps, is reviewed using data collected in proton and nuclear collisions at the LHC. ”Published in the Journal of Instrumentation as doi:10.1088/1748-0221/16/02/P02010.” arXiv:2011.01185v2 [physics.ins-det] 10 Feb 2021 © 2021 CERN for the benefit of the CMS Collaboration. CC-BY-4.0 license *See Appendix A for the list of collaboration members Contents 1 Contents 1 Introduction . .1 2 Physics motivation . .3 2.1 Forward physics in proton-proton collisions . .3 2.2 Ultrahigh-energy cosmic ray air showers . .5 2.3 Proton-nucleus and nucleus-nucleus collisions . .5 3 Detector design . .6 4 Triggers and operation . .9 5 Event reconstruction and calibration . 12 5.1 Noise and baseline . 13 5.2 Gain correction factors . 15 5.3 Channel-by-channel intercalibration . -
Physics Beyond Colliders at CERN: Beyond the Standard Model
EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH (CERN) CERN-PBC-REPORT-2018-007 Physics Beyond Colliders at CERN Beyond the Standard Model Working Group Report J. Beacham1, C. Burrage2,∗, D. Curtin3, A. De Roeck4, J. Evans5, J. L. Feng6, C. Gatto7, S. Gninenko8, A. Hartin9, I. Irastorza10, J. Jaeckel11, K. Jungmann12,∗, K. Kirch13,∗, F. Kling6, S. Knapen14, M. Lamont4, G. Lanfranchi4,15,∗,∗∗, C. Lazzeroni16, A. Lindner17, F. Martinez-Vidal18, M. Moulson15, N. Neri19, M. Papucci4,20, I. Pedraza21, K. Petridis22, M. Pospelov23,∗, A. Rozanov24,∗, G. Ruoso25,∗, P. Schuster26, Y. Semertzidis27, T. Spadaro15, C. Vallée24, and G. Wilkinson28. Abstract: The Physics Beyond Colliders initiative is an exploratory study aimed at exploiting the full scientific potential of the CERN’s accelerator complex and scientific infrastructures through projects complementary to the LHC and other possible future colliders. These projects will target fundamental physics questions in modern particle physics. This document presents the status of the proposals presented in the framework of the Beyond Standard Model physics working group, and explore their physics reach and the impact that CERN could have in the next 10-20 years on the international landscape. arXiv:1901.09966v2 [hep-ex] 2 Mar 2019 ∗ PBC-BSM Coordinators and Editors of this Report ∗∗ Corresponding Author: [email protected] 1 Ohio State University, Columbus OH, United States of America 2 University of Nottingham, Nottingham, United Kingdom 3 Department of Physics, University of Toronto, Toronto, -
Future Physics Program with Tagged Forward Protons at RHIC
Future Physics Program with Tagged Forward Protons at RHIC J.H. Lee For STAR Collaboration BNL April 29, DIS09, Madrid 1 Relativistic Heavy Ion Collider (RHIC): THE QCD Factory QCD is the theory of strong interaction: “Theoretical evidences” vs. current and future Experimental QCD measurements at RHIC z Confinement/ phase of QCD - QGP Further investigationateRHIC z Distribution of spin in the nucleon - Spin sum rule z Parton splitting limit - Saturated gluon state (Color Glass Condensate…) z Gluonic degree of freedom in Hadrons – exotica (glueballs…) z Nature of diffractive processes – structure of Pomeron, Odderon… April 29 DIS09 J.H. Lee 2 near Future Program with tagged forward protons at RHIC studying: Elastic scattering for understanding structure of Pomeron and Odderon Central production for searching for glueballs in Double Pomeron Exchange (DPE) processes April 29 DIS09 J.H. Lee 3 Summary of the Existing Elastic Data (unpolarized) 50 500 RHIC Highest energy so far: pp: 62 GeV (ISR) pp: 1.8 Tev (Tevatron) RHIC energy range: 50 GeV ≤√s ≤ 500 GeV Elastic measurements: Details on the nature of elastic scattering at the energy are NOT well understood in the energy range: Unique measurements in wide t- range with polarized beams April 29 DIS09 J.H. Lee 4 Can Odderon be identified at RHIC? Odderon is a counterpart of pomeron (C=1) with C=-1: “RHIC is the machine to find it” (E. Leader, Odderon Workshop (2005)) by measuring Δσpp –Δσpbarp ≠ 0 (~3mb) dσ/dtpp ≠ dσ/dtpbarp Shape of Asymmetries: ANN Centrally produced C=-1 particle hep-ph/0210437 M. Islam et al. -
The ATLAS Experiment at The
High School Teacher Programme 2016 https://indico.cern.ch/e/HST2016 • Particle Detectors • Mar Capeans CERN EP-DT July 8th 2016 • Particle Detectors• OUTLINE 1. Particle Detector Challenges at LHC 2. Interactions of Particles with Matter 3. Detector Technologies 4. How HEP Experiments Work Mar Capeans 8/7/2016 2 • Particle Physics Tools• • Accelerators . Luminosity, energy… • Detectors . Efficiency, granularity, resolution… • Trigger/DAQ (Online) . Efficiency, filters, through-put… • Data Analysis (Offline) . Large scale computing, physics results… Mar Capeans 8/7/2016 3 • Imaging Events• 50’s – 70’s LEP: 88 - 2000 LHC Mar Capeans 8/7/2016 4 • ATLAS Event • Mar Capeans 8/7/2016 5 • LHC• p-p Beam Energy Luminosity Nb of bunches Nb p/bunch Bunch collisions 40 million/s ~25 interactions / Bunch crossing overlapping in time and space 1000 x 106 events/s > 1000 particle signals in the detector at 40MHz rate 1 interesting collision in 1013 Mar Capeans 8/7/2016 6 • Past VS LHC• Dozens of 109 collisions/s particles/s No event selection VS Registering 1/1012 events ‘Eye’ analysis GRID computing At each bunch crossing ~1000 individual particles to be identified every 25 ns …. High density of particles imply high granularity in the detection system … Large quantity of readout services (100 M channels/active components) Large neutron fluxes, large photon fluxes capable of compromising the mechanical properties of materials and electronics components. Induced radioactivity in high Z materials (activation) which will add complexity to the maintenance -
Centauro and Strange Object Research in Nucleus
View metadata, citation and similar papers at core.ac.uk brought to you by CORE CASTOR: Centauro And Strange Object Research in provided by CERN Document Server nucleus-nucleus collisions at LHC Ewa G ladysz-Dziadu´s for the CASTOR group A L S Angelis1, X Aslanoglou2,JBartke3, K Chileev4, 3 4 4 4 EG ladysz-Dziadu´s ∗,MGolubeva,FGuber,TKaravitcheva, YVKharlov5,ABKurepin4, G Mavromanolakis1, A D Panagiotou1, S A Sadovsky5 VVTiflov4, and Z Wlodarczyk 6 1 Nuclear and Particle Physics Division, University of Athens, Athens, Greece. 2 Department of Physics, the University of Ioannina, Ioannina, Greece. 3 Institute of Nuclear Physics, Cracow, Poland. 4 Institute for Nuclear Research, Moscow, Russia. 5 Institute for High Energy Physics, Protvino, Russia. 6 Institute of Physics, Pedagogical University, Kielce, Poland. Abstract. We describe the CASTOR detector designed to probe the very forward, baryon-rich rapidity region in nucleus-nucleus collisions at the LHC. We present a phenomenological model describing the formation of a QGP fireball in high baryochemical potential environment, and its subsequent decay into baryons and possibly strangelets. The model explains the Centauro events observed in cosmic rays and the long-penetrating component frequently accompanying them, and makes predictions for the LHC. Simulations of Centauro-type events by means of our Monte-Carlo event generator CNGEN were done. To study the response of the apparatus to new effects, different exotic species (DCC clusters, Centauros, strangelets and so{called mixed events produced by baryons and strangelets being the remnants of the Centauro fireball explosion) were passed through the deep calorimeter. The energy deposition pattern in the calorimeter appears to be a new clear signature of the QGP state.