Space Astronomy
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Status and Future of EUV Astronomy
The status and future of EUV astronomy M. A. Barstow∗, S. L. Casewell Department of Physics and Astronomy, University of Leicester, University Road, Leicester, LE1 7RH, UK J. B. Holberg Lunar and Planetary Laboratory, 1541 East University Boulevard, Sonett Space Sciences Building, University of Arizona, Tucson, AZ 85721, USA M.P. Kowalski Naval Research Laboratory,4555 Overlook Ave SW Washington, DC 20375, USA Abstract The Extreme Ultraviolet wavelength range was one of the final windows to be opened up to astronomy. Nevertheless, it provides very important diagnostic tools for a range of astronomical objects, although the opacity of the interstellar medium restricts the majority of observations to sources in our own galaxy. This review gives a historical overview of EUV astronomy, describes current instrumental capabilities and examines the prospects for future facilities on small and medium-class satellite platforms. Keywords: Extreme Ultraviolet, Spectroscopy, White Dwarfs, Stellar Coronae, Interstellar Medium 1. Introduction arXiv:1309.2181v1 [astro-ph.SR] 9 Sep 2013 The Extreme Ultraviolet (EUV) nominally spans the wavelength range from 100 to 912 A,˚ although for practical purposes the edges are often some- what indistinct as instrument band-passes may extend short-ward into the soft X-ray or long-ward into the far ultraviolet (far-UV). The production of EUV photons is primarily associated with the existence of hot, 105-107 K gas ∗Corresponding Author: [email protected] Preprint submitted to Advances in Space Research October 29, 2018 in the Universe. Sources of EUV radiation can be divided into two main cat- egories, those where the emission arises from recombination of ions and elec- trons in a hot, optically thin plasma, giving rise to emission line spectra, and objects which are seen by thermal emission from an optically thick medium, resulting in a strong continuum spectrum which may contain features arising from transitions between different energy levels or ionisation stages of sev- eral elements. -
Ira Sprague Bowen Papers, 1940-1973
http://oac.cdlib.org/findaid/ark:/13030/tf2p300278 No online items Inventory of the Ira Sprague Bowen Papers, 1940-1973 Processed by Ronald S. Brashear; machine-readable finding aid created by Gabriela A. Montoya Manuscripts Department The Huntington Library 1151 Oxford Road San Marino, California 91108 Phone: (626) 405-2203 Fax: (626) 449-5720 Email: [email protected] URL: http://www.huntington.org/huntingtonlibrary.aspx?id=554 © 1998 The Huntington Library. All rights reserved. Observatories of the Carnegie Institution of Washington Collection Inventory of the Ira Sprague 1 Bowen Papers, 1940-1973 Observatories of the Carnegie Institution of Washington Collection Inventory of the Ira Sprague Bowen Paper, 1940-1973 The Huntington Library San Marino, California Contact Information Manuscripts Department The Huntington Library 1151 Oxford Road San Marino, California 91108 Phone: (626) 405-2203 Fax: (626) 449-5720 Email: [email protected] URL: http://www.huntington.org/huntingtonlibrary.aspx?id=554 Processed by: Ronald S. Brashear Encoded by: Gabriela A. Montoya © 1998 The Huntington Library. All rights reserved. Descriptive Summary Title: Ira Sprague Bowen Papers, Date (inclusive): 1940-1973 Creator: Bowen, Ira Sprague Extent: Approximately 29,000 pieces in 88 boxes Repository: The Huntington Library San Marino, California 91108 Language: English. Provenance Placed on permanent deposit in the Huntington Library by the Observatories of the Carnegie Institution of Washington Collection. This was done in 1989 as part of a letter of agreement (dated November 5, 1987) between the Huntington and the Carnegie Observatories. The papers have yet to be officially accessioned. Cataloging of the papers was completed in 1989 prior to their transfer to the Huntington. -
UV and Infrared Astronomy
Why Put a Telescope In Space? • Access to light that does not penetrate the atmosphere • No seeing. A telescope can reach the diffraction limit: 1.22 l/D radians Astronomy in Space. I. UV Astronomy Ultraviolet Astronomy 912-3650 Å (Lyman Limit to Balmer jump) • Continuua of hot stars (spectral types O,B,A) • H I Lyman lines (1-n transitions) • Resonance lines of Li-like ions C IV, N V, O VI • H2 Lyman and Werner bands Normal incidence optics • Special UV-reflective coatings The Far Ultraviolet 912 to 1150 Å • Defined by Lyman limit, MgF cutoff at 1150 Å • LiF + Al reflects longward of 1050 Å • SiC reflects at shorter wavelengths The Astronomy Quarterly, Vol. 7, pp. 131-142, 1990 0364-9229f90 $3.00+.00 Printed in the USA. All rights reserved. Copyright (c) 1990 Pergamon Press plc ASTRONOMICAL ADVANTAGES History OFAN • 9/1/1946: Lyman Spitzer EXTRA-TERRESTRIAL OBSERVATORY proposed a Space Telescope in LYMAN SPITZER, Jr. ’ a Report to project Rand This study points out, in a very preliminary way, the results that might be expected from astronomical measurements made with a satellite • 1966: Spitzer (Princeton) vehicle. The discussion is divided into three parts, corresponding to three different assumptions concerning the amount of instrumentation provided. chairs NASA Ad Hoc In the first section it is assumed that no telescope is provided; in the second a 10-&h reflector is assumed; in the third section some of the results Committee on the "Scientific obtainable with a large reflecting telescope, many feet in diameter, and revolving about the earth above the terrestrial atmosphere, are briefly Uses of the Large Space sketched. -
GRAVITY ASTROPHYSICS a Plan for the 1990S
ULTRAVIOLET, VISIBLE, and GRAVITY ASTROPHYSICS A Plan for the 1990s (NASA-NP-I52) ULTRAVIOLET, N94-24973 VISI3LE, ANO GRAVITY ASTROPHYSICS: A PLAN FOR THE 1990'S (NASA) 76 p Unclas HI190 0207794 ORIGINAL PAGE COLOR PHOTOGRAPH National Aeronautics and Space Administration I-oreword N ASA'sprioritiesOfficefrom oftheSpaceU.S. NationalScience Academyand Applicationsof Sciences.(OSSA)Guidancereceivesto theadviceOSSAon Astrophysicsscientific strategyDivision,and in particular, is provided by dedicated Academy committees, ad hoc study groups and, at 10-year intervals, by broadly mandated astronomy and astrophysics survey committees charged with making recommen- dations for the coming decade. Many of the Academy's recommendations have important implications for the conduct of ultraviolet and visible-light astronomy from space. Moreover, these areas are now poised for an era of rapid growth. Through technological progress, ultraviolet astronomy has already risen from a novel observational technique four decades ago to the mainstream of astronomical research today. Recent developments in space technology and instrumen- tation have the potential to generate comparably dramatic strides in observational astronomy within the next 10 years. In 1989, the Ultraviolet and Visible Astrophysics Branch of the OSSA Astrophysics Division recognized the need for a new, long-range plan that would implement the Academy's recommendations in a way that yielded the most advantageous use of new technology. NASA's Ultraviolet, Visible, and Gravity Astrophysics Management Operations Working Group was asked to develop such a plan for the 1990s. Since the Branch holds programmatic responsibility for space research in gravitational physics and relativity, as well as for ultraviolet and visible-light astrophysics, missions in those areas were also included. -
Observing Photons in Space
—1— Observing photons in space For the truth of the conclusions of physical science, observation is the supreme court of appeals Sir Arthur Eddington Martin C.E. HuberI, Anuschka PauluhnI and J. Gethyn TimothyII Abstract This first chapter of the book ‘Observing Photons in Space’ serves to illustrate the rewards of observing photons in space, to state our aims, and to introduce the structure and the conventions used. The title of the book reflects the history of space astronomy: it started at the high-energy end of the electromagnetic spectrum, where the photon aspect of the radiation dominates. Nevertheless, both the wave and the photon aspects of this radiation will be considered extensively. In this first chapter we describe the arduous efforts that were needed before observations from pointed, stable platforms, lifted by rocket above the Earth’s atmosphere, became the matter of course they seem to be today. This exemplifies the direct link between technical effort — including proper design, construction, testing and calibration — and some of the early fundamental insights gained from space observations. We further report in some detail the pioneering work of the early space astronomers, who started with the study of γ- and X-rays as well as ultraviolet photons. We also show how efforts to observe from space platforms in the visible, infrared, sub-millimetre and microwave domains developed and led to today’s emphasis on observations at long wavelengths. The aims of this book This book conveys methods and techniques for observing photons1 in space. ‘Observing’ photons implies not only detecting them, but also determining their direction at arrival, their energy, their rate of arrival, and their polarisation. -
Ral History Interview with Martin Schwarzschild
An Interview with MARTIN SCHWARZSCHILD OH 124 Conducted by William Aspray on 18 November 1986 Princeton, NJ Charles Babbage Institute Center for the History of Information Processing University of Minnesota, Minneapolis Copyright, Charles Babbage Institute 1 Martin Schwarzschild Interview 18 November 1986 Abstract Schwarzschild describes his early training in automatic computing when he assumed the position of director of the Watson Scientific Computation Laboratory at Columbia University upon the resignation of Wallace Eckert. Schwarzschild describes the computational research he did there on stellar models using advanced IBM tabulating equipment. He next turns to his experience during world war II at Aberdeen Proving Grounds as an enlisted member of the army working on bomb blasts, and mentions work of R. H. Kent, L. Dederick, IBM personnel, John von Neumann, and other scientific consultants on the design of new automatic calculating equipment for the laboratories. Schwarzschild answers questions about the relationship between Kent and von Neumann. His final topic is the work during the 1950s he undertook on stellar interiors using the Institute for Advanced Study computer. He describes his experiences trying to use the computer for large scientific purposes, and recalls the reception of his computational research by the professional astronomy journals. 2 MARTIN SCHWARZSCHILD INTERVIEW DATE: 18 November 1986 INTERVIEWER: William Aspray LOCATION: Princeton, NJ ASPRAY: This is an interview on the 18th of November, 1986 with Martin Schwarzschild in his office at Princeton University. The interviewer is William Aspray of the Charles Babbage Institute. Let's begin by talking about your contacts with von Neumann during the second world war. -
Where Are All the Sirius-Like Binary Systems?
Mon. Not. R. Astron. Soc. 000, 1-22 (2013) Printed 20/08/2013 (MAB WORD template V1.0) Where are all the Sirius-Like Binary Systems? 1* 2 3 4 4 J. B. Holberg , T. D. Oswalt , E. M. Sion , M. A. Barstow and M. R. Burleigh ¹ Lunar and Planetary Laboratory, Sonnett Space Sciences Bld., University of Arizona, Tucson, AZ 85721, USA 2 Florida Institute of Technology, Melbourne, FL. 32091, USA 3 Department of Astronomy and Astrophysics, Villanova University, 800 Lancaster Ave. Villanova University, Villanova, PA, 19085, USA 4 Department of Physics and Astronomy, University of Leicester, University Road, Leicester LE1 7RH, UK 1st September 2011 ABSTRACT Approximately 70% of the nearby white dwarfs appear to be single stars, with the remainder being members of binary or multiple star systems. The most numerous and most easily identifiable systems are those in which the main sequence companion is an M star, since even if the systems are unresolved the white dwarf either dominates or is at least competitive with the luminosity of the companion at optical wavelengths. Harder to identify are systems where the non-degenerate component has a spectral type earlier than M0 and the white dwarf becomes the less luminous component. Taking Sirius as the prototype, these latter systems are referred to here as ‘Sirius-Like’. There are currently 98 known Sirius-Like systems. Studies of the local white dwarf population within 20 pc indicate that approximately 8 per cent of all white dwarfs are members of Sirius-Like systems, yet beyond 20 pc the frequency of known Sirius-Like systems declines to between 1 and 2 per cent, indicating that many more of these systems remain to be found. -
Division a Fundamental Astronomy NC-‐5 Gravitational Wave
25/11/14 1 TM LoIs for Commissions: http://www.iau.org/submissions/commissionproposal/list/ Sorted by "Parent Divisions" (or by "Cross-Divisions") Titles may be abridged. Division A Fundamental Astronomy NC-5 Gravitational Wave Astronomy NC-9 Astrometry NC-10 Computational Astrophysics NC-18 Rotation of the Earth NC-23 Dynamical Astronomy NC-26 Solar System Ephemerides NC-30 Fundamental Standards NC-36 Gravitational Lensing NC-46 Time Division B Facitilities, Technologies & Data Science NC-5 Gravitational Wave Astronomy NC-6 Computational Astrophysics NC-10 Computational Astrophysics NC-15 Photometry and Polarimetry NC-19 Ultraviolet Astronomy NC-21 Data and Documentation NC-27 Astronomical Telescopes NC-29 Time Domain Astronomy NC-34 Radio Astronomy NC-35 Optical and IR Interferometry NC-41 Astrostatistics & Astroinformatics NC-42 Laboratory Astrophysics NC-55 Protection of Observatory Sites NC-56 Computational Astrophysics Division C Education, Outreach & Heritage NC-10 Computational Astrophysics NC-11 Astronomy Education & Development NC-20 Astronomical Heritage NC-52 Astronomical Discoveries & Alerts NC-54 Communicating Astronomy NC-57 History of Astronomy Division D High-Energy Phenomena & Fundamental Physics NC-5 Gravitational Wave Astronomy NC-39 Gravitational Wave Astrophysics NC-44 Supernovae NC-53 BH & Evolution of Galaxies Division E Sun & Heliosphere NC-37 Solar Radiation and Structure NC-45 Space Weather etc. NC-49 Solar Activity 25/11/14 2 TM Division F Planetary Systems & Bioastronomy NC-12 Celestial Spectroscopy NC-13 Astrobiology -
Full Issue 2016 (Volume 10)
Inklings Forever: Published Colloquium Proceedings 1997-2016 Volume 10 A Collection of Essays Presented at the Tenth Frances White Ewbank Colloquium on Article 54 C.S. Lewis & Friends 6-5-2016 Full Issue 2016 (Volume 10) Follow this and additional works at: https://pillars.taylor.edu/inklings_forever Part of the English Language and Literature Commons, History Commons, Philosophy Commons, and the Religion Commons Recommended Citation (2016) "Full Issue 2016 (Volume 10)," Inklings Forever: Published Colloquium Proceedings 1997-2016: Vol. 10 , Article 54. Available at: https://pillars.taylor.edu/inklings_forever/vol10/iss1/54 This Full Issue is brought to you for free and open access by the Center for the Study of C.S. Lewis & Friends at Pillars at Taylor University. It has been accepted for inclusion in Inklings Forever: Published Colloquium Proceedings 1997-2016 by an authorized editor of Pillars at Taylor University. For more information, please contact [email protected]. Full Issue 2016 (Volume 10) Cover Page Footnote This file is not paginated the same as the print journal. Contact [email protected] if you need additional pagination information. This full issue is available in Inklings Forever: Published Colloquium Proceedings 1997-2016: https://pillars.taylor.edu/inklings_forever/vol10/iss1/54 Inklings Forever, Volume X Proceedings from the Frances White Ewbank Colloquium on C. S. Lewis and Friends Joe Ricke and Rick Hill, Editors Copyright © 2017 Taylor University Winged Lion Press Hamden, CT All rights reserved. Except in the case of quotations embodied in critical articles or reviews, no part of this book may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, recording, or by any information storage or retrieval system, without written permission of the publisher. -
Cumulative Bio-Bibliography University of California, Santa Cruz June 2020
Cumulative Bio-Bibliography University of California, Santa Cruz June 2020 Puragra Guhathakurta Astronomer/Professor University of California Observatories/University of California, Santa Cruz ACADEMIC HISTORY 1980–1983 B.Sc. in Physics (Honours), Chemistry, and Mathematics, St. Xavier’s College, University of Calcutta 1984–1985 M.Sc. in Physics, University of Calcutta Science College; transferred to Princeton University after first year of two-year program 1985–1987 M.A. in Astrophysical Sciences, Princeton University 1987–1989 Ph.D. in Astrophysical Sciences, Princeton University POSITIONS HELD 1989–1992 Member, Institute for Advanced Study, School of Natural Sciences 1992–1994 Hubble Fellow, Astrophysical Sciences, Princeton University 1994 Assistant Astronomer, Space Telescope Science Institute (UPD) 1994–1998 Assistant Astronomer/Assistant Professor, UCO/Lick Observatory, University of California, Santa Cruz 1998–2002 Associate Astronomer/Associate Professor, UCO/Lick Observatory, University of California, Santa Cruz 2002–2003 Herzberg Fellow, Herzberg Institute of Astrophysics, National Research Council of Canada, Victoria, BC, Canada 2002– Astronomer/Professor, UCO/Lick Observatory, University of California, Santa Cruz 2009– Faculty Director, Science Internship Program, University of California, Santa Cruz 2012–2018 Adjunct Faculty, Science Department, Castilleja School, Palo Alto, CA 2015 Visiting Faculty, Google Headquarters, Mountain View, CA 2015– Co-founder, Global SPHERE (STEM Programs for High-schoolers Engaging in Research -
Optical Astronomy from Orbiting Observatories
The Space Congress® Proceedings 1981 (18th) The Year of the Shuttle Apr 1st, 8:00 AM Optical Astronomy from Orbiting Observatories P. M. Perry Astronomy Department, Computer Sciences Corporation William R. Whitman Technical Staff, Astronomy Department, Computer Sciences Corporation Follow this and additional works at: https://commons.erau.edu/space-congress-proceedings Scholarly Commons Citation Perry, P. M. and Whitman, William R., "Optical Astronomy from Orbiting Observatories" (1981). The Space Congress® Proceedings. 5. https://commons.erau.edu/space-congress-proceedings/proceedings-1981-18th/session-2/5 This Event is brought to you for free and open access by the Conferences at Scholarly Commons. It has been accepted for inclusion in The Space Congress® Proceedings by an authorized administrator of Scholarly Commons. For more information, please contact [email protected]. OPTICAL Dr. P. M. Perry, Manager Mr. William R. Whitman, Astronomy Department of Technical Staff Computer Sciences Corporation Astronomy Department Computer Sciences Corporation ABSTRACT Atmospheric extinction, seeing, and "light pollution" £re the most significant factors ultraviolet, visible, and infrared wavelengths) affecting the quality of observations obtained conducted by modern ground-based observatories from ground-based optical telescopes, degrading is that of atmospheric extinction and seeing. resolution and limiting reach. In addition, Irregularities in the earth's atmosphere tend the earth's atmosphere is opaque to radiation to degrade star images to much below the per shorter than 0.3 microns preventing the ultra formance potential of good instruments. Even violet from being observed in detail from the under the best observing conditions with the ground. The solution to these problems has been best ground-based instruments 5 a resolution of to move astronomical telescopes into earth orbit. -
FP6 OPTICON Final Report
Final Report OPTICON Optical Infrared Co-ordination Network for Astronomy Integrating Activity implemented as Integrated Infrastructure Initiative Contract number: RII3-CT-2004-001566 Project Co-ordinator: Professor Gerard Gilmore, The Chancellor, Masters and Scholars of the University of Cambridge. Project website: www.astro-opticon.org Project Duration: 60 months from 01-01-2004 to 31-12-2008 Project funded by the European Community under the “Structuring the European Research Area” Specific Programme Research Infrastructures action Table of contents A. ACTIVITY REPORT ........................................................................................................................................ 3 1. PROGRESS REPORT..................................................................................................................................... 4 2. LIST OF DELIVERABLES.......................................................................................................................... 114 B. MANAGEMENT REPORT (FINANCIAL INFORMATION)..................................................................... 127 1. SUMMARY FINANCIAL REPORT ................................................................................................... 128 A. ACTIVITY REPORT 1. FINAL REPORT 1.1 SUMMARY OF THE ACTIVITIES AND MAJOR ACHIEVEMENTS 1.2 MANAGEMENT ACTIVITY 1.3 NETWORKING ACTIVITIES (OTHER THAN MANAGEMENT) 1.3.1 NA2: COORDINATION AND INTEGRATION OF ENO FACILITIES 1.3.2 NA3: STRUCTURING EUROPEAN ASTRONOMY 1.3.3 NA4: MECHANISMS FOR SYNERGY