Sex Reversal and Early Larval Biology of Farmed Silver Perch, Bidyanus Bidyanus (Mitchell, 1838) in Western Australia

Total Page:16

File Type:pdf, Size:1020Kb

Sex Reversal and Early Larval Biology of Farmed Silver Perch, Bidyanus Bidyanus (Mitchell, 1838) in Western Australia Department of Environment and Agriculture Sex reversal and early larval biology of farmed silver perch, Bidyanus bidyanus (Mitchell, 1838) in Western Australia Sulaeman This thesis is presented for the Degree of Doctor of Philosophy of Curtin University October 2017 DECLARATION To the best of my knowledge and belief, this thesis contains no material previously published by any other person except where due acknowledgment has been made. This thesis contains no material which has been accepted for the award of any other degree or diploma in any university. The research presented and reported in this thesis was conducted in compliance with the National Health and Medical Research Council Australian code for the care and use of animals for scientific purposes 8th edition (2013). The proposed research study received animal ethics approval from the Curtin University Animal Ethics Committee, Approval Number AEC_2011_70 Signature : Date : 03 October 2017 i STATEMENT OF ACCESS TO THESIS I, the undersigned, the author of this thesis, understand that Curtin University, Perth, Western Australia, will make it available for use within the University library and allow access to users in other approved libraries. All users consulting this thesis have to sign the following statement: “In consulting this thesis I agree not to copy or closely paraphrase it in whole or part without the written consent of the author, and to make proper written acknowledgement for any assistance which I have obtained from it”. Beyond this, I do not wish to place any restrictions on this thesis. Sulaeman 03 October 2017 ii ACKNOWLEDGEMENTS I am highly indebted to Prof. Ravi Fotedar, my supervisor who painstaking guided me through the conduct of this research project. I really appreciate his patience and readiness to help any time I needed him. I also express my sincere thanks to Simon Longbottom and Anne Barnes who helped in diverse ways from behind the scene. I also thank Lidia who taught me histology. She did not hesitate to answer my questions even if the time was inappropriate. I am thankful to my lovely wife Najmiah and my beautiful daughters Ummu Aiman and Haura Ainun and to my sons Muh. Fathan and Muhammad Naufal for their encouragement and support during my stay in Perth. They all allowed me to stay late in the laboratory and permitted me to work during weekends. I am extending my special gratitude to my Father Marhali who passed away during my study period and to my mother and my relatives who whole heartedly prayed for my success. I also thank my friends Irfan Ambas, Ilham, Ky, Ha, Tui and Ardiansyah for making my stay in Perth worthwhile. I really appreciate their friendly care. I also thank the pemprov scholasship group Ferdi, Dedi, Santi, Nurwati, Dino for their prayers and support. I deeply appreciate Pemrov for giving me this opportunity by way of the scholarship to study this course in Australia. Above all, I am thankful to almighty Allah for giving me all the energy, strength, and patience needed to complete the dissertation. I thank the Almighty God who made everything, in its finest detail possible. Dedication This body of work is dedicated to my family Najmiah, Ummu Aiman Sulaeman, Muh. Fathan Sulaeman, Haura Ainun Sulaeman and Muhammad Naufal Sulaeman for their guidance and support. I would also like to dedicate this work in the memory of my Father Marhali who passed away during my study. iii LIST OF CONTENTS DECLARATION ..................................................................................................... i STATEMENT OF ACCESS TO THESIS .............................................................. ii ACKNOWLEDGEMENTS ................................................................................... iii LIST OF CONTENTS ........................................................................................... iv LIST OF FIGURES ............................................................................................. viii LIST OF TABLES ................................................................................................. xi LIST OF ABREVIATIONS .................................................................................. xii LIST OF SPECIES ............................................................................................... xiv PREAMBLE ...................................................................................................... xviii ABSTRACT .......................................................................................................... xx CHAPTER 1: Introduction ...................................................................................... 1 1.1. Background .............................................................................................. 1 1.2. Aim ............................................................................................................... 4 1.3. Objectives ..................................................................................................... 4 CHAPTER 2: Literature review .............................................................................. 6 2.1. Background .................................................................................................. 6 2.2. Silver perch Taxonomy ................................................................................ 6 2.3. Silver perch Biology ..................................................................................... 7 2.3.1. Reproductive performance ..................................................................... 8 2.3.2. Egg quality ............................................................................................. 9 2.3.3. Larval food and feeding ....................................................................... 10 2.3.4. Onset of first feeding and the PNR ...................................................... 11 2.3.5. Hermaphroditism ................................................................................. 13 2.3.6. Sex reversal .......................................................................................... 14 2.4. Monosex Culture ........................................................................................ 15 2.4.1. Feminzation ......................................................................................... 17 2.4.2. Masculinization .................................................................................... 19 CHAPTER 3: Reproductive performance of a domesticated broodstock and the relationship between oil globule fragmentation and the egg quality of silver perch ............................................................................................................................... 20 3.1. Introduction ................................................................................................ 20 iv 3.2.1. Broodstock source and preparation...................................................... 22 3.2.2. Egg quality classification ..................................................................... 23 3.2.3. Reproductive performance of the female broodstock (experiment-1) . 24 3.2.4. The relationship between the degrees of oil globule fragmentation and egg quality (experiment-2)............................................................................. 25 3.2.5. Data analysis ........................................................................................ 26 3.3. Results ........................................................................................................ 26 3.3.1. Reproductive performance of the female broodstock (experiment-1) . 26 3.3.2. The relationship between the degrees of oil globule fragmentation and egg quality (experiment-2)............................................................................. 27 3.4. Discussion .................................................................................................. 31 CHAPTER 4: Yolk utilization and growth during the early larval life of the silver perch ...................................................................................................................... 35 4.1. Introduction ................................................................................................ 35 4.2. Material and Methods ................................................................................. 36 4.2.1. Fish and experimental setup ................................................................ 37 4.2.2. Morphometric measurements .............................................................. 38 4.2.3. Age at first feeding .............................................................................. 39 4.2.4. Mortality .............................................................................................. 39 4.2.5. Data analysis ........................................................................................ 40 4.3. Results ........................................................................................................ 40 4.3.1. Larval size, yolk reserves, and early growth ....................................... 40 4.3.2. Yolk utilization rate ............................................................................. 41 4.3.3. Age at first feeding .............................................................................. 41 4.3.4. Mortality .............................................................................................. 42 4.4. Discussion .................................................................................................
Recommended publications
  • Fisheries Guidelines for Design of Stream Crossings
    Fish Habitat Guideline FHG 001 FISH PASSAGE IN STREAMS Fisheries guidelines for design of stream crossings Elizabeth Cotterell August 1998 Fisheries Group DPI ISSN 1441-1652 Agdex 486/042 FHG 001 First published August 1998 Information contained in this publication is provided as general advice only. For application to specific circumstances, professional advice should be sought. The Queensland Department of Primary Industries has taken all reasonable steps to ensure the information contained in this publication is accurate at the time of publication. Readers should ensure that they make appropriate enquiries to determine whether new information is available on the particular subject matter. © The State of Queensland, Department of Primary Industries 1998 Copyright protects this publication. Except for purposes permitted by the Copyright Act, reproduction by whatever means is prohibited without the prior written permission of the Department of Primary Industries, Queensland. Enquiries should be addressed to: Manager Publishing Services Queensland Department of Primary Industries GPO Box 46 Brisbane QLD 4001 Fisheries Guidelines for Design of Stream Crossings BACKGROUND Introduction Fish move widely in rivers and creeks throughout Queensland and Australia. Fish movement is usually associated with reproduction, feeding, escaping predators or dispersing to new habitats. This occurs between marine and freshwater habitats, and wholly within freshwater. Obstacles to this movement, such as stream crossings, can severely deplete fish populations, including recreational and commercial species such as barramundi, mullet, Mary River cod, silver perch, golden perch, sooty grunter and Australian bass. Many Queensland streams are ephemeral (they may flow only during the wet season), and therefore crossings must be designed for both flood and drought conditions.
    [Show full text]
  • Condition Monitoring of Threatened Fish Populations in Lake Alexandrina and Lake Albert
    Condition Monitoring of Threatened Fish Populations in Lake Alexandrina and Lake Albert Report to the Murray–Darling Basin Authority and the South Australian Department for Environment and Water Scotte Wedderburn and Thomas Barnes June 2018 © The University of Adelaide and the Department for Environment and Water With the exception of the Commonwealth Coat of Arms, the Murray–Darling Basin Authority logo, photographs and presented data, all material presented in this document is provided under a Creative Commons Attribution 4.0 International licence (https://creativecommons.org/licences/by/4.0/). For the avoidance of any doubt, this licence only applies to the material set out in this document. The details of the licence are available on the Creative Commons website (accessible using the links provided) as is the full legal code for the CC BY 4.0 licence (https://creativecommons.org/licences/by/4.0/legalcode). MDBA’s preference is that this publication be attributed (and any material sourced from it) using the following: Publication title: Condition Monitoring of Threatened Fish Populations in Lake Alexandrina and Lake Albert Source: Licensed from the Department for Environment and Water under a Creative Commons Attribution 4.0 International Licence The contents of this publication do not purport to represent the position of the Commonwealth of Australia or the MDBA in any way and are presented for the purpose of informing and stimulating discussion for improved management of Basin's natural resources. To the extent permitted by law, the copyright holders (including its employees and consultants) exclude all liability to any person for any consequences, including but not limited to all losses, damages, costs, expenses and any other compensation, arising directly or indirectly from using this report (in part or in whole) and any information or material contained in it.
    [Show full text]
  • Stock Assessment of Golden Perch for PIRSA
    Ferguson and Ye 2012 Stock assessment of golden perch for PIRSA Stock Assessment of Golden perch (Macquaria ambigua) G.J Ferguson and Q. Ye SARDI Publication No. F2007/001051-1 SARDI Research Report Series No. 656 SARDI Aquatic Sciences PO Box 120 Henley Beach SA 5022 October 2012 Fishery Stock Assessment Report to PIRSA Fisheries and Aquaculture 1 Ferguson and Ye 2012 Stock assessment of golden perch for PIRSA Stock Assessment of Golden perch (Macquaria ambigua) Fishery Stock Assessment Report to PIRSA Fisheries and Aquaculture G.J Ferguson and Q. Ye SARDI Publication No. F2007/001051-1 SARDI Research Report Series No. 656 October 2012 2 Ferguson and Ye 2012 Stock assessment of golden perch for PIRSA This publication may be cited as: Ferguson, G. J. and Ye, Q (2012). Stock Assessment of Golden perch (Macquaria ambigua). Stock Assessment Report for PIRSA Fisheries and Aquaculture. South Australian Research and Development Institute (Aquatic Sciences), Adelaide. F2007/01051- 1. SARDI Research Report Series No. 656. 55pp. South Australian Research and Development Institute SARDI Aquatic Sciences 2 Hamra Avenue West Beach SA 5024 Telephone: (08) 8207 5400 Facsimile: (08) 8207 5406 http://www.sardi.sa.gov.au DISCLAIMER The authors warrant that they have taken all reasonable care in producing this report. The report has been through the SARDI Aquatic Sciences internal review process, and has been formally approved for release by the Research Chief, Aquatic Sciences. Although all reasonable efforts have been made to ensure quality, SARDI Aquatic Sciences does not warrant that the information in this report is free from errors or omissions.
    [Show full text]
  • Native Fish Strategy
    MURRAY-DARLING BASIN AUTHORITY Native Fish Strategy Mesoscale movements of small- and medium-sized fish in the Murray-Darling Basin MURRAY-DARLING BASIN AUTHORITY Native Fish Strategy Mesoscale movements of small- and medium-sized fish in the Murray-Darling Basin M. Hutchison, A. Butcher, J. Kirkwood, D. Mayer, K. Chilcott and S. Backhouse Queensland Department of Primary Industries and Fisheries Published by Murray-Darling Basin Commission Postal Address GPO Box 409, Canberra ACT 2601 Office location Level 4, 51 Allara Street, Canberra City Australian Capital Territory Telephone (02) 6279 0100 international + 61 2 6279 0100 Facsimile (02) 6248 8053 international + 61 2 6248 8053 Email [email protected] Internet http://www.mdbc.gov.au For further information contact the Murray-Darling Basin Commission office on (02) 6279 0100 This report may be cited as: Hutchison, M, Butcher, A, Kirkwood, J, Mayer, D, Chikott, K and Backhouse, S. Mesoscale movements of small and medium-sized fish in the Murray-Darling Basin MDBC Publication No. 41/08 ISBN 978 1 921257 81 0 © Copyright Murray-Darling Basin Commission 2008 This work is copyright. Graphical and textual information in the work (with the exception of photographs and the MDBC logo) may be stored, retrieved and reproduced in whole or in part, provided the information is not sold or used for commercial benefit and is acknowledged. Such reproduction includes fair dealing for the purpose of private study, research, criticism or review as permitted under the Copyright Act 1968. Reproduction for other purposes is prohibited without prior permission of the Murray-Darling Basin Commission or the individual photographers and artists with whom copyright applies.
    [Show full text]
  • Decline in Fish Species Diversity Due to Climatic and Anthropogenic Factors
    Heliyon 7 (2021) e05861 Contents lists available at ScienceDirect Heliyon journal homepage: www.cell.com/heliyon Research article Decline in fish species diversity due to climatic and anthropogenic factors in Hakaluki Haor, an ecologically critical wetland in northeast Bangladesh Md. Saifullah Bin Aziz a, Neaz A. Hasan b, Md. Mostafizur Rahman Mondol a, Md. Mehedi Alam b, Mohammad Mahfujul Haque b,* a Department of Fisheries, University of Rajshahi, Rajshahi, Bangladesh b Department of Aquaculture, Bangladesh Agricultural University, Mymensingh, Bangladesh ARTICLE INFO ABSTRACT Keywords: This study evaluates changes in fish species diversity over time in Hakaluki Haor, an ecologically critical wetland Haor in Bangladesh, and the factors affecting this diversity. Fish species diversity data were collected from fishers using Fish species diversity participatory rural appraisal tools and the change in the fish species diversity was determined using Shannon- Fishers Wiener, Margalef's Richness and Pielou's Evenness indices. Principal component analysis (PCA) was conducted Principal component analysis with a dataset of 150 fishers survey to characterize the major factors responsible for the reduction of fish species Climate change fi Anthropogenic activity diversity. Out of 63 sh species, 83% of them were under the available category in 2008 which decreased to 51% in 2018. Fish species diversity indices for all 12 taxonomic orders in 2008 declined remarkably in 2018. The first PCA (climatic change) responsible for the reduced fish species diversity explained 24.05% of the variance and consisted of erratic rainfall (positive correlation coefficient 0.680), heavy rainfall (À0.544), temperature fluctu- ation (0.561), and beel siltation (0.503). The second PCA was anthropogenic activity, including the use of harmful fishing gear (0.702), application of urea to harvest fish (0.673), drying beels annually (0.531), and overfishing (0.513).
    [Show full text]
  • Systematic Taxonomy and Biogeography of Widespread
    Systematics and Biogeography of Three Widespread Australian Freshwater Fish Species. by Bernadette Mary Bostock B.Sc. (Hons) Submitted in fulfilment of the requirements for the degree of Doctor of Philosophy Deakin University February 2014 i ABSTRACT The variation within populations of three widespread and little studied Australian freshwater fish species was investigated using molecular genetic techniques. The three species that form the focus of this study are Leiopotherapon unicolor, Nematalosa erebi and Neosilurus hyrtlii, commonly recognised as the three most widespread Australian freshwater fish species, all are found in most of the major Australian drainage basins with habitats ranging from clear running water to near stagnant pools. This combination of a wide distribution and tolerance of a wide range of ecological conditions means that these species are ideally suited for use in investigating phylogenetic structure within and amongst Australian drainage basins. Furthermore, the combination of increasing aridity of the Australian continent and its diverse freshwater habitats is likely to promote population differentiation within freshwater species through the restriction of dispersal opportunities and localised adaptation. A combination of allozyme and mtDNA sequence data were employed to test the null hypothesis that Leiopotherapon unicolor represents a single widespread species. Conventional approaches to the delineation and identification of species and populations using allozyme data and a lineage-based approach using mitochondrial 16S rRNA sequences were employed. Apart from addressing the specific question of cryptic speciation versus high colonisation potential in widespread inland fishes, the unique status of L. unicolor as both Australia’s most widespread inland fish and most common desert fish also makes this a useful species to test the generality of current biogeographic hypotheses relating to the regionalisation of the Australian freshwater fish fauna.
    [Show full text]
  • Barmah Forest Ramsar Site Strategic Management Plan
    Barmah Forest Ramsar Site Strategic Management Plan Department of Sustainability and Environment Parks Victoria developed this Strategic Management Plan in conjunction with the Department of Sustainability and Environment and key stakeholders, and coordinated the public comment process on the draft document. This report was prepared with financial support from the National Wetlands Program, under the Natural Heritage Trust. © The State of Victoria, Department of Sustainability and Environment, 2003 This publication is copyright. Apart from any fair dealing for the purposes of private study, research, criticism or review as permitted under the Copyright Act 1968, no part may be reproduced, copied, transmitted in any form or by any means (electronic, mechanical or graphic) without the prior permission of the State of Victoria, Department of Sustainability and Environment. All requests and enquiries should be directed to the Copyright Officer, Library Information Services, Department of Sustainability and Environment, 5/250 Victoria Parade, East Melbourne, Victoria 3002. Disclaimers This publication may be of assistance to you and every effort has been made to ensure that the information in the report is accurate. The Department of Sustainability and Environment does not guarantee that the report is without flaw of any kind or is wholly appropriate for your particular purposes and therefore disclaims all liability for any error, loss or other consequence, which may arise from you relying on any information in this publication. The views and opinions expressed in this document are those of the authors and do not necessarily reflect the views and opinions of the Commonwealth Government of Australia, the Federal Minister for Environment and Heritage, or the Department of the Environment and Heritage.
    [Show full text]
  • Pethia Gelius (Dwarf Barb) Ecological Risk Screening Summary
    Dwarf Barb (Pethia gelius) Ecological Risk Screening Summary U.S. Fish and Wildlife Service, May 2011 Revised, July 2018 Web Version, 8/7/2019 Photo: F. M. Greco. Licensed under CC BY 3.0. Available: https://commons.wikimedia.org/wiki/File:Pethia_gelius.jpg. (July 2018). 1 Native Range and Status in the United States Native Range From Dahanukar (2015): “Pethia gelius has a wide distribution in India (Madhya Pradesh, Uttar Pradesh, Orissa, West Bengal, Assam, Bihar) and Bangladesh (Jayaram 1991, Menon 1999).” Status in the United States Nico and Neilson (2018) report Pethia gelius from Florida (Southeast Coast and South Atlantic- Gulf Region). The earliest observation occurred in 1974 and the last observation occurred in 1984. From Nico and Neilson (2018): “Failed in Florida.” This species is in trade in the United States. For example, from Bluegrass Aquatics (2018): “$4.62 […] DWARF GOLDEN BARB::: Barbus gelius […]” 1 Means of Introductions in the United States From Nico and Neilson (2018): “Probable escape from fish farm.” Remarks From Nico and Neilson (2018): “[…] Pethiyagoda et al. (2012) reassigned this species from Puntius to Pethia, […]” The name Puntius gelius still commonly appears in scientific literature and as a trade name, so it was also used when researching in preparation of this report. 2 Biology and Ecology Taxonomic Hierarchy and Taxonomic Standing From ITIS (2018): “Kingdom Animalia Subkingdom Bilateria Infrakingdom Deuterostomia Phylum Chordata Subphylum Vertebrata Infraphylum Gnathostomata Superclass Actinopterygii Class Teleostei Superorder Ostariophysi Order Cypriniformes Superfamily Cyprinoidea Family Cyprinidae Genus Puntius Species Puntius gelius (Hamilton, 1822)” From Eschmeyer et al. (2018): “Current status: Valid as Pethia gelius (Hamilton 1822).
    [Show full text]
  • Pisces: Terapontidae) with Particular Reference to Ontogeny and Phylogeny
    ResearchOnline@JCU This file is part of the following reference: Davis, Aaron Marshall (2012) Dietary ecology of terapontid grunters (Pisces: Terapontidae) with particular reference to ontogeny and phylogeny. PhD thesis, James Cook University. Access to this file is available from: http://eprints.jcu.edu.au/27673/ The author has certified to JCU that they have made a reasonable effort to gain permission and acknowledge the owner of any third party copyright material included in this document. If you believe that this is not the case, please contact [email protected] and quote http://eprints.jcu.edu.au/27673/ Dietary ecology of terapontid grunters (Pisces: Terapontidae) with particular reference to ontogeny and phylogeny PhD thesis submitted by Aaron Marshall Davis BSc, MAppSci, James Cook University in August 2012 for the degree of Doctor of Philosophy in the School of Marine and Tropical Biology James Cook University 1 2 Statement on the contribution of others Supervision was provided by Professor Richard Pearson (James Cook University) and Dr Brad Pusey (Griffith University). This thesis also includes some collaborative work. While undertaking this collaboration I was responsible for project conceptualisation, laboratory and data analysis and synthesis of results into a publishable format. Dr Peter Unmack provided the raw phylogenetic trees analysed in Chapters 6 and 7. Peter Unmack, Tim Jardine, David Morgan, Damien Burrows, Colton Perna, Melanie Blanchette and Dean Thorburn all provided a range of editorial advice, specimen provision, technical instruction and contributed to publications associated with this thesis. Greg Nelson-White, Pia Harkness and Adella Edwards helped compile maps. The project was funded by Internal Research Allocation and Graduate Research Scheme grants from the School of Marine and Tropical Biology, James Cook University (JCU).
    [Show full text]
  • Molecular Phylogeny of Philippine Tigerperches (Perciformes: Terapontidae) Based on Mitochondrial Genes
    Philippine Journal of Science 148 (S1): 251-261, Special Issue on Genomics ISSN 0031 - 7683 Date Received: 18 Mar 2019 Molecular Phylogeny of Philippine Tigerperches (Perciformes: Terapontidae) Based on Mitochondrial Genes Reynand Jay C. Canoy1,2,3, Ian Kendrich C. Fontanilla1,2, and Jonas P. Quilang1,2* 1Natural Sciences Research Institute, University of the Philippines Diliman, Quezon City 1101 Philippines 2Institute of Biology, College of Science, University of the Philippines Diliman, Quezon City 1101 Philippines 3Institute of Human Genetics, National Institutes of Health University of the Philippines Manila, 625 Pedro Gil St., Ermita, Manila 1000 Philippines The molecular phylogeny of the Philippine tigerperches is first described in this study. Eight species were analyzed: these include one endemic species (Leiopotherapon plumbeus); one introduced species (Bidyanus bidyanus); and six native species (Terapon jarbua, Terapon puta, Terapon theraps, Pelates quadrilineatus, Helotes sexlineatus, and Mesopristes cancellatus). Primers were designed to amplify and sequence the 12S rRNA (12S), cytochrome c oxidase subunit I (COI), and cytochrome b (CytB) genes. The concatenated 12S, COI, and CytB sequences (3529 bp) were used to construct the phylogeny of the tigerperches using Maximum Parsimony (MP), Neighbor Joining (NJ), Maximum Likelihood (ML), and Bayesian Inference (BI) analyses. All four analyses supported the monophyly of tigerperches. Except for the MP tree, all phylogenetic trees showed that Terapon jarbua was the first to have diverged from the rest of the tigerperch species examined. The congeneric T. jarbua, T. puta and T. theraps did not group together, suggesting their non-monophyly. However, SH test on the unconstrained (actual observation) and constrained (the three congeneric species were forced to group together) NJ trees showed no significant difference (p = 0.55).
    [Show full text]
  • Web-ICE Aquatic Database Documentation
    OP-GED/BPRB/MB/2016-03-001 February 24, 2016 ICE Aquatic Toxicity Database Version 3.3 Documentation Prepared by: Sandy Raimondo, Crystal R. Lilavois, Morgan M. Willming and Mace G. Barron U.S. Environmental Protection Agency Office of Research and Development National Health and Environmental Effects Research Laboratory Gulf Ecology Division Gulf Breeze, Fl 32561 1 OP-GED/BPRB/MB/2016-03-001 February 24, 2016 Table of Contents 1 Introduction ............................................................................................................................ 3 2 Data Sources ........................................................................................................................... 3 2.1 ECOTOX ............................................................................................................................ 4 2.2 Ambient Water Quality Criteria (AWQC) ......................................................................... 4 2.3 Office of Pesticide Program (OPP) Ecotoxicity Database ................................................. 4 2.4 OPPT Premanufacture Notification (PMN) ...................................................................... 5 2.5 High Production Volume (HPV) ........................................................................................ 5 2.6 Mayer and Ellersieck 1986 ............................................................................................... 5 2.7 ORD ..................................................................................................................................
    [Show full text]
  • Diversity of Freshwater Fish in Narmada River, Madhya Pradesh
    Journal of Entomology and Zoology Studies 2021; 9(2): 704-709 E-ISSN: 2320-7078 P-ISSN: 2349-6800 Diversity of freshwater fish in Narmada River, www.entomoljournal.com JEZS 2021; 9(2): 704-709 Madhya Pradesh © 2021 JEZS Received: 17-01-2021 Accepted: 26-02-2021 Shivani Pathak and Naresh Lavudya Shivani Pathak College of Fisheries Science, Abstract Junagadh Agricultural University, Veraval, Gujarat, Freshwater fishes are the most threatened group of vertebrates on earth after amphibians and the global India extinction rate of fishes is believed to be more than higher vertebrates. The major forces behind the loss of biodiversity in freshwater are habitat degradation and fragmentation, increased sedimentation, exotic Naresh Lavudya species introduction, water abstraction, over-harvesting, pollution, and global climate change impacts. College of Fisheries Science, The diversity of Freshwater fish in the River Narmada and its tributaries in the central state of Madhya Junagadh Agricultural Pradesh has been reviewed. A total of 176 species from fresh water habitats out of which 13 orders, 46 University, Veraval, Gujarat, families, 107 genera, and 176 species. The order Cypriniformes represented the highest diversity with 79 India species followed by Perciformes (35 species), Siluriformes (32 species), Clupeiformes (11 species), etc. This review presents up-to-date information on freshwater fish diversity of the River Narmada. Freshwater fish diversity information could also provide a baseline for future more complex ecological studies, and planning the conservation and sustainable use of inshore inland water resources. Keywords: Freshwater diversity, Major issues, River Narmada Introduction All over India, freshwater fish diversity is on a decline.
    [Show full text]