Whole-Genome and Enzymatic Analyses of an Androstenedione

Total Page:16

File Type:pdf, Size:1020Kb

Whole-Genome and Enzymatic Analyses of an Androstenedione Wang et al. Microb Cell Fact (2020) 19:187 https://doi.org/10.1186/s12934-020-01442-w Microbial Cell Factories RESEARCH Open Access Whole-genome and enzymatic analyses of an androstenedione-producing Mycobacterium strain with residual phytosterol-degrading pathways Hongwei Wang1, Shikui Song1, Fei Peng1, Fei Yang1, Tian Chen1, Xin Li1, Xiyao Cheng1,2, Yijun He3, Yongqi Huang1 and Zhengding Su1,2* Abstract Mycobacterium neoaurum strains can transform phytosterols to 4-androstene-3,17-dione (4-AD), a key intermediate for the synthesis of advanced steroidal medicines. In this work, we presented the complete genome sequence of the M. neoaurum strain HGMS2, which transforms β-sitosterol to 4-AD. Through genome annotation, a phytosterol-degrad- ing pathway in HGMS2 was predicted and further shown to form a 9,10-secosteroid intermediate by fve groups of enzymes. These fve groups of enzymes included three cholesterol oxidases (ChoM; group 1: ChoM1, ChoM2 and Hsd), two monooxygenases (Mon; group 2: Mon164 and Mon197), a set of enzymes for side-chain degradation (group 3), one 3-ketosteroid-1,2-dehydrogenase (KstD; group 4: KstD211) and three 3-ketosteroid-9a-hydroxylases (Ksh; group 5: KshA226, KshA395 and KshB122). A gene cluster encoding Mon164, KstD211, KshA226, KshB122 and fatty acid β-oxidoreductases constituted one integrated metabolic pathway, while genes encoding other key enzymes were sporadically distributed. All key enzymes except those from group 3 were prepared as recombinant proteins and their activities were evaluated, and the proteins exhibited distinct activities compared with enzymes identifed from other bacterial species. Importantly, we found that the KstD211 and KshA395 enzymes in the HGMS2 strain retained weak activities and caused the occurrence of two major impurities, i.e., 1,4-androstene-3,17-dione (ADD) and 9-hydroxyl- 4-androstene-3,17-dione (9OH-AD) during β-sitosterol fermentation. The concurrence of these two 4-AD analogs not only lowered 4-AD production yield but also hampered 4-AD purifcation. HGMS2 has the least number of genes encoding KstD and Ksh enzymes compared with current industrial strains. Therefore, HGMS2 could be a potent strain by which the 4-AD production yield could be enhanced by disabling the KstD211 and KshA395 enzymes. Our work also provides new insight into the engineering of the HGMS2 strain to produce ADD and 9OH-AD for industrial application. *Correspondence: [email protected] 1 Key Laboratory of Industrial Fermentation (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan 430068, China Full list of author information is available at the end of the article © The Author(s) 2020. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creat iveco mmons .org/licen ses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creat iveco mmons .org/publi cdoma in/ zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data. Wang et al. Microb Cell Fact (2020) 19:187 Page 2 of 19 Keywords: 1,4-Androstene-3,17-dione (ADD), 3-Hydroxy-9,10-secoandrost-1,3,5(10)-triene-9,17-dione (HSA), 3-Ketosteroid-1,2-dehydrogenase (KstD), 3-Ketosteroid-9α-hydroxylase (ksh), 4-androstene-3,17-dione (4-AD), 9-Hydroxyl-4-androstene-3,17-dione (9OH-AD), 21-Hydroxy-20-methylpregn-4-en-3-one (BA), Biotransformation, Cholesterol oxidases (cho), Monooxygenase (mon), Mycobacterium sp. strain Introduction Mycobacterium sp. VKM Ac-1817D, a strain producing Steroids, including phytosterols and cholesterol, are 9OH-AD and genetically close to NRRL B-3805, revealed ubiquitous in nature and signifcant growth substrates for that phytosterols stimulated the increased expression of microorganisms. Steroids are biologically active organic 260 genes, including those related to steroid catabolism compounds that function either as important compo- in mycobacteria [19]. Other bacteria contain either a sim- nents of cell membranes or as signaling molecules [1]. ilar steroid degradation pathway, e.g., in Pseudomonas sp. Typically, steroid medicinal compounds share a tetracy- NCIB 10590 [20], or distinct steroid metabolic gene clus- clic hydrocarbon ring or gonane structure with diferent ters, e.g., in Nocardioides simplex VKM Ac-2033D [4, 21]. functional groups attached to C17-site. Tree andros- Based on the Ref-Seq database, Mohn et al. recently iden- tane steroids, namely, 4-androstene-3,17-dione (4-AD), tifed 265 putative steroid-degrading bacteria that shared 1,4-androstadiene-3,17-dione (ADD) and 9α-hydroxy- 9,10-secosteroid degradation as a converged pathway [13, 4-androstenediol (9-OH-AD), are the most important 22]. Tis pathway was expanded to form cholesterol-, starting materials that are used to synthesize advanced cholate- and testosterone-degrading pathways through steroid medicines through chemical and/or enzymatic gene duplication, horizontal gene transfer and plasmid modifcation [2, 3]. Currently, one of the most attractive facilitation. However, our understanding of the set of strategies producing these materials is to employ bacte- genes for specifc androstane steroids that are involved in ria to transform phytosterols to androstane steroids [3, phytosterol biotransformation remains limited. 4]. Aerobic side chain degradation of phytosterols is the Genetic manipulation of the phytosterol-transformat- basis for the production of androstane steroids. Bacteria ing strains has been attempted to improve transforma- belonging to the genera Gordonia, Nocardia and Rhodo- tion yield [2]. Knockout of the kasB gene for the cell wall coccus are able to degrade the side chains of phytosterols synthesis of M. neoaurum ATCC 25795 strain enhanced [5–7]. To date, only strains in Mycobacterium genus have the bioconversion of phytosterols to 9OH-AD by 1.4- been found to have the potential to accumulate andros- fold [23]. Null mutation of 3-ketosteroid-9α-hydroxylase tane steroids for industrial applications [2, 3, 8–10]. (Ksh) genes in the M. neoaurum strains led to the sta- Many key enzymes in the steroid degradation pathways ble accumulation of androst-4-ene-3,17-dione (AD) and of pathogenic bacteria have been studied biochemically androst-1,4-diene-3,17-dione (ADD) [24–26]. Muta- [11, 12], although the pathways are not fully understood. tion in 4-AD-producing strain M. phlei M51 blocked Te importance of genomic analyses on steroid degrada- 9α-hydroxylation, strain transformed β-sitosterol to tion pathways in microorganism has recently been drawn 23,24-dinorcholane derivatives, which are useful starting much attention [13]. Many genome sequences of patho- materials for corticosteroid synthesis [27]. genic Mycobacterium tuberculosis strains are available Among the aforementioned three important andros- [14], providing information guidance for understanding tane steroids, 4-AD is one of the most important starting various steroid degradation pathways. However, genomic materials [28] in the synthesis of steroid medicines such data on nonpathogenic mycobacteria, especially andros- as abiraterone [29], testosterone [30], estradiol [31] and tane steroid-producing strains, are still limited so far. M. progesterone [32]. Microbial bioconversion of phytoster- smegmatis MC2 155 is a nonpathogenic model to study ols to 4-AD is still an industrial challenge. Although the drug resistance and shares signifcant genomic similar- complete steroid metabolic pathways of Mycobacterium ity with M. tuberculosis [15]. Mycobacterium neoau- strains are not fully understood, Mycobacterium neoau- rum NRRL B-3805 was the frst industrial strain used rum strains have been successfully utilized for the indus- for the biotransformation of β-sitosterol to 4-AD [16]. trial production of 4-AD and 9OH-AD using β-sitosterol Before its whole genome sequence became available [3, as substrate [2, 33, 34]. However, the transformation 17], biochemical analysis revealed that NRRL B-3805 yields of currently used industrial strains remain unsta- transformed β-sitosterol to 4-AD via eleven catabolic ble, as bioconversion fermentation is often accompa- enzymes acting in fourteen consecutive enzymatic steps nied by either complete degradation of the substrate or to degrade the branched hydrocarbon side-chain of phy- the generation of various metabolic impurities [3, 5]; tosterols [6, 18]. Te global transcriptome analysis of Wang et al. Microb Cell Fact (2020) 19:187 Page 3 of 19 therefore, further exploration of new 4-AD-producing stirred for 30 min. Te mixture was fltrated with auto- strains is required. claved Whatman Grade 4 flter paper (Particle reten- In this work, we attempted to isolate and character- tion > 25 μm, GE, USA). Te fltrate was mixed with 1% ize phytosterol-degrading strains from soils contami- β-sitosterol and 10% skim milk powder and lyophilized nated with vegetable oils. One of the isolates, namely, overnight to reduce the sample volume. Te lyophilized M. neoaurum HGMS2, enabled the accumulation of powder was resuspended in 20 mL of autoclaved Milli- 4-AD in vegetable oil-based media. Terefore, we were Q water. Te suspension was distributed in 0.2 mL ali- initially focused on elucidating the phytosterol deg- quots, and each aliquot was spread on a MOPS agar radation pathway of the strain by genome sequencing plate containing 1% β-sitosterol as the sole carbon.
Recommended publications
  • Suitability of Immobilized Systems for Microbiological Degradation of Endocrine Disrupting Compounds
    molecules Review Suitability of Immobilized Systems for Microbiological Degradation of Endocrine Disrupting Compounds Danuta Wojcieszy ´nska , Ariel Marchlewicz and Urszula Guzik * Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Science, University of Silesia in Katowice, Jagiello´nska28, 40-032 Katowice, Poland; [email protected] (D.W.); [email protected] (A.M.) * Correspondence: [email protected]; Tel.: +48-3220-095-67 Academic Editors: Urszula Guzik and Danuta Wojcieszy´nska Received: 10 September 2020; Accepted: 25 September 2020; Published: 29 September 2020 Abstract: The rising pollution of the environment with endocrine disrupting compounds has increased interest in searching for new, effective bioremediation methods. Particular attention is paid to the search for microorganisms with high degradation potential and the possibility of their use in the degradation of endocrine disrupting compounds. Increasingly, immobilized microorganisms or enzymes are used in biodegradation systems. This review presents the main sources of endocrine disrupting compounds and identifies the risks associated with their presence in the environment. The main pathways of degradation of these compounds by microorganisms are also presented. The last part is devoted to an overview of the immobilization methods used for the purposes of enabling the use of biocatalysts in environmental bioremediation. Keywords: EDCs; hormones; degradation; immobilization; microorganisms 1. Introduction The development of modern tools for the separation and identification of chemical substances has drawn attention to the so-called micropollution of the environment. Many of these contaminants belong to the emergent pollutants class. According to the Stockholm Convention they are characterized by high persistence, are transported over long distances in the environment through water, accumulate in the tissue of living organisms and can adversely affect them [1].
    [Show full text]
  • Interoperability in Toxicology: Connecting Chemical, Biological, and Complex Disease Data
    INTEROPERABILITY IN TOXICOLOGY: CONNECTING CHEMICAL, BIOLOGICAL, AND COMPLEX DISEASE DATA Sean Mackey Watford A dissertation submitted to the faculty at the University of North Carolina at Chapel Hill in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Gillings School of Global Public Health (Environmental Sciences and Engineering). Chapel Hill 2019 Approved by: Rebecca Fry Matt Martin Avram Gold David Reif Ivan Rusyn © 2019 Sean Mackey Watford ALL RIGHTS RESERVED ii ABSTRACT Sean Mackey Watford: Interoperability in Toxicology: Connecting Chemical, Biological, and Complex Disease Data (Under the direction of Rebecca Fry) The current regulatory framework in toXicology is expanding beyond traditional animal toXicity testing to include new approach methodologies (NAMs) like computational models built using rapidly generated dose-response information like US Environmental Protection Agency’s ToXicity Forecaster (ToXCast) and the interagency collaborative ToX21 initiative. These programs have provided new opportunities for research but also introduced challenges in application of this information to current regulatory needs. One such challenge is linking in vitro chemical bioactivity to adverse outcomes like cancer or other complex diseases. To utilize NAMs in prediction of compleX disease, information from traditional and new sources must be interoperable for easy integration. The work presented here describes the development of a bioinformatic tool, a database of traditional toXicity information with improved interoperability, and efforts to use these new tools together to inform prediction of cancer and complex disease. First, a bioinformatic tool was developed to provide a ranked list of Medical Subject Heading (MeSH) to gene associations based on literature support, enabling connection of compleX diseases to genes potentially involved.
    [Show full text]
  • Diabejesg\Re
    DIABEJESG\RE Book Reviews critique publications related to diabetes of in- Information for Authors terest to professionals. Letters & Comments include opinions on topics published in CONTENT the journal or relating to diabetes in general. Diabetes Care publishes original articles and reviews of human Organization Section includes announcement of meetings, spe- and clinical research intended to increase knowledge, stimulate cial events, and American Diabetes Association business. research, and promote better management of people with dia- betes mellitus. Emphasis is on human studies reporting on the GENERAL GUIDELINES pathophysiology and treatment of diabetes and its complications; genetics; epidemiology; psychosocial adaptation; education; and Diabetes Care publishes only material that has not been printed the development, validation, and application of accepted and new previously or is submitted elsewhere without appropriate anno- therapies. Topics covered are of interest to clinically oriented tation. In submitting an article, the author(s) must state in a cov- physicians, researchers, epidemiologists, psychologists, diabetes ering letter (see below) that no part of the material is under con- educators, and other professionals. sideration for publication elsewhere or has already been published, Diabetes publishes original research about the physiology and including tables, figures, symposia, proceedings, preliminary pathophysiology of diabetes mellitus. Submitted manuscripts can communications, books, and invited articles. Conflicts of interest report any aspect of laboratory, animal, or human research. Em- or support of private interests must be clearly explained. All hu- phasis is on investigative reports focusing on areas such as the man investigation must be conducted according to the principles pathogenesis of diabetes and its complications, normal and path- expressed in the Declaration of Helsinki.
    [Show full text]
  • Part I Biopharmaceuticals
    1 Part I Biopharmaceuticals Translational Medicine: Molecular Pharmacology and Drug Discovery First Edition. Edited by Robert A. Meyers. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA. Published 2018 by Wiley-VCH Verlag GmbH & Co. KGaA. 3 1 Analogs and Antagonists of Male Sex Hormones Robert W. Brueggemeier The Ohio State University, Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, Columbus, Ohio 43210, USA 1Introduction6 2 Historical 6 3 Endogenous Male Sex Hormones 7 3.1 Occurrence and Physiological Roles 7 3.2 Biosynthesis 8 3.3 Absorption and Distribution 12 3.4 Metabolism 13 3.4.1 Reductive Metabolism 14 3.4.2 Oxidative Metabolism 17 3.5 Mechanism of Action 19 4 Synthetic Androgens 24 4.1 Current Drugs on the Market 24 4.2 Therapeutic Uses and Bioassays 25 4.3 Structure–Activity Relationships for Steroidal Androgens 26 4.3.1 Early Modifications 26 4.3.2 Methylated Derivatives 26 4.3.3 Ester Derivatives 27 4.3.4 Halo Derivatives 27 4.3.5 Other Androgen Derivatives 28 4.3.6 Summary of Structure–Activity Relationships of Steroidal Androgens 28 4.4 Nonsteroidal Androgens, Selective Androgen Receptor Modulators (SARMs) 30 4.5 Absorption, Distribution, and Metabolism 31 4.6 Toxicities 32 Translational Medicine: Molecular Pharmacology and Drug Discovery First Edition. Edited by Robert A. Meyers. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA. Published 2018 by Wiley-VCH Verlag GmbH & Co. KGaA. 4 Analogs and Antagonists of Male Sex Hormones 5 Anabolic Agents 32 5.1 Current Drugs on the Market 32 5.2 Therapeutic Uses and Bioassays
    [Show full text]
  • Evolution of the Bile Salt Nuclear Receptor FXR in Vertebrates
    Supplemental Material can be found at: http://www.jlr.org/cgi/content/full/M800138-JLR200/DC1 Evolution of the bile salt nuclear receptor FXR in vertebrates † † † †† †† Erica J. Reschly,* Ni Ai, Sean Ekins, ,§,** William J. Welsh, Lee R. Hagey, Alan F. Hofmann, and Matthew D. Krasowski1,* † Department of Pathology,* University of Pittsburgh, Pittsburgh, PA 15261; Department of Pharmacology, University of Medicine and Dentistry of New Jersey, Robert Wood Johnson Medical School, Piscataway, NJ 08854; Collaborations in Chemistry,§ Jenkintown, PA 19046; Department of Pharmaceutical Sciences,** †† University of Maryland, Baltimore, MD 21202; and Department of Medicine, University of California-San Diego, San Diego, CA 92093-0063 Abstract Bile salts, the major end metabolites of cho- Bile salts are water-soluble, amphipathic end metabolites lesterol, vary significantly in structure across vertebrate of cholesterol that facilitate intestinal absorption of lipids species, suggesting that nuclear receptors binding these (1), enhance proteolytic cleavage of dietary proteins (2), Downloaded from molecules may show adaptive evolutionary changes. We com- and have potent antimicrobial activity in the small intestine pared across species the bile salt specificity of the major (3). In addition, bile salt signaling via nuclear hormone re- transcriptional regulator of bile salt synthesis, the farnesoid X receptor (FXR). We found that FXRs have changed speci- ceptors (NHRs) is important for bile salt homeostasis (4). ficity for primary bile salts across species by altering the Bile salts have not been detected in invertebrate animals. shape and size of the ligand binding pocket. In particular, In contrast to steroid hormones and vitamins, whose struc- the ligand binding pockets of sea lamprey (Petromyzon marinus) tures tend to be strongly conserved, bile salts exhibit www.jlr.org and zebrafish (Danio rerio) FXRs, as predicted by homology marked structural diversity across species (5–7).
    [Show full text]
  • 1970Qureshiocr.Pdf (10.44Mb)
    STUDY INVOLVING METABOLISM OF 17-KETOSTEROIDS AND 17-HYDROXYCORTICOSTEROIDS OF HEALTHY YOUNG MEN DURING AMBULATION AND RECUMBENCY A DISSERTATION SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY IN NUTRITION IN THE GRADUATE DIVISION OF THE TEXAS WOI\IIAN 'S UNIVERSITY COLLEGE OF HOUSEHOLD ARTS AND SCIENCES BY SANOBER QURESHI I B .Sc. I M.S. DENTON I TEXAS MAY I 1970 ACKNOWLEDGMENTS The author wishes to express her sincere gratitude to those who assisted her with her research problem and with the preparation of this dissertation. To Dr. Pauline Beery Mack, Director of the Texas Woman's University Research Institute, for her invaluable assistance and gui­ dance during the author's entire graduate program, and for help in the preparation of this dissertation; To the National Aeronautics and Space Administration for their support of the research project of which the author's study is a part; To Dr. Elsa A. Dozier for directing the author's s tucly during 1969, and to Dr. Kathryn Montgomery beginning in early 1970, for serving as the immeclia te director of the author while she was working on the completion of the investic;ation and the preparation of this dis- sertation; To Dr. Jessie Bateman, Dean of the College of Household Arts and Sciences, for her assistance in all aspects of the author's graduate program; iii To Dr. Ralph Pyke and Mr. Walter Gilchrist 1 for their ass is­ tance and generous kindness while the author's research program was in progress; To Mr. Eugene Van Hooser 1 for help during various parts of her research program; To Dr.
    [Show full text]
  • A Thesis Entitled "APPLICATIONS of GAS CHROMATOGRAPHY
    A Thesis entitled "APPLICATIONS OF GAS CHROMATOGRAPHY - MASS SPECTROMETRY IN STEROID CHEMISTRY" Submitted in part fulfilment of the requirements for admittance to the degree of Doctor of Philosophy in The University of Glasgow by T.A. Baillie, B.Sc. University of Glasgow 1973. ProQuest Number: 11017930 All rights reserved INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted. In the unlikely event that the author did not send a com plete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion. uest ProQuest 11017930 Published by ProQuest LLC(2018). Copyright of the Dissertation is held by the Author. All rights reserved. This work is protected against unauthorized copying under Title 17, United States C ode Microform Edition © ProQuest LLC. ProQuest LLC. 789 East Eisenhower Parkway P.O. Box 1346 Ann Arbor, Ml 48106- 1346 ACKNOWLEDGEMENTS I would like to express my sincere thanks to Dr. C.3.W. Brooks for his guidance and encouragement at all times, and to Professors R.A. Raphael, F.R.S., and G.W. Kirby, for the opportunity to carry out this research. Thanks are also due to my many colleagues for useful discussions, and in particular to Dr. B.S. Middleditch who was associated with me in the work described in Section 3 of this thesis. The work was carried out during the tenure of an S.R.C. Research Studentship, which is gratefully acknowledged. Finally, I would like to thank Miss 3.H.
    [Show full text]
  • University Microfilms, Inc., Ann Arbor, Michigan ADRENOCORTICAL STEROID PROFILE IN
    This dissertation has been Mic 61-2820 microfilmed exactly as received BESCH, Paige Keith. ADRENOCORTICAL STEROID PROFILE IN THE HYPERTENSIVE DOG. The Ohio State University, Ph.D., 1961 Chemistry, biological University Microfilms, Inc., Ann Arbor, Michigan ADRENOCORTICAL STEROID PROFILE IN THE HYPERTENSIVE DOG DISSERTATION Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of the Ohio State University By Paige Keith Besch, B. S., M. S. The Ohio State University 1961 Approved by Katharine A. Brownell Department of Physiology DEDICATION This work is dedicated to my wife, Dr. Norma F. Besch. After having completed her graduate training, she was once again subjected to almost social isolation by the number of hours I spent away from home. It is with sincerest appreciation for her continual encouragement that I dedi­ cate this to her. ACKNOWLEDGMENTS I wish to acknowledge the assistance and encourage­ ment of my Professor, Doctor Katharine A. Brownell. Equally important to the development of this project are the experience and information obtained through the association with Doctor Frank A. Hartman, who over the years has, along with Doctor Brownell, devoted his life to the development of many of the techniques used in this study. It is also with extreme sincerity that I wish to ac­ knowledge the assistance of Mr. David J. Watson. He has never complained when asked to work long hours at night or weekends. Our association has been a fruitful one. I also wish to acknowledge the encouragement of my former Professor, employer and good friend, Doctor Joseph W.
    [Show full text]
  • 1,25-Dihydroxyvitamin D3-Induced Genes in Osteoblasts
    1,25-DIHYDROXYVITAMIN D3-INDUCED GENES IN OSTEOBLASTS: UNCOVERING NEW FUNCTIONS FOR MENINGIOMA 1 AND SEMAPHORIN 3B IN SKELETAL PHYSIOLOGY by XIAOXUE ZHANG Submitted in partial fulfillment of the requirements for the Degree of Doctor of Philosophy Thesis advisor: Paul N. MacDonald Department of Pharmacology CASE WESTERN RESERVE UNIVERSITY May 2009 CASE WESTERN RESERVE UNIVERSITY SCHOOL OF GRADUATE STUDIES We hereby approve the thesis/dissertation of _____________________________________________________ candidate for the ______________________degree *. (signed)_______________________________________________ (chair of the committee) ________________________________________________ ________________________________________________ ________________________________________________ ________________________________________________ ________________________________________________ (date) _______________________ *We also certify that written approval has been obtained for any proprietary material contained therein. I dedicate this thesis to my mother and father for their lifelong love, encouragement and sacrifice TABLE OF CONTENTS Table of Contents ii List of Tables iii List of Figures iv Acknowledgements vii Abbreviations x Abstract xiii Chapter I Introduction 1 Chapter II Meningioma 1 (MN1) is a 1,25-dihydroxyvitamin D3- 44 induced transcription coactivator that promotes osteoblast proliferation, motility, differentiation, and function Chapter III Semaphorin 3B (SEMA3B) is a 1,25- 108 dihydroxyvitamin D3-induced gene in osteoblasts that promotes
    [Show full text]
  • (12) Patent Application Publication (10) Pub. No.: US 2011/001412.6 A1 Evans Et Al
    US 2011 0014126A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2011/001412.6 A1 Evans et al. (43) Pub. Date: Jan. 20, 2011 (54) USE OF VITAMIND RECEPTORAGONISTS (60) Provisional application No. 60/985,972, filed on Nov. AND PRECURSORS TO TREAT FIBROSS 6, 2007. (76) Inventors: Ronald M. Evans, La Jolla, CA Publication Classification (US); Michael Downes, San Diego, CA (US); Christopher Liddle, (51) Int. Cl. New South Wales (AU): A 6LX 3/59 (2006.01) Nanthakumar Subramaniam, A6IPL/I6 (2006.01) New South Wales (AU); Caroline CI2O 1/02 (2006.01) Flora Samer, Geneva (CH) A61R 49/00 (2006.01) CI2N 5/071 (2010.01) Correspondence Address: (52) U.S. Cl. ............. 424/9.2: 514/167; 435/29: 435/375 KLARQUIST SPARKMAN, LLP 121 S.W. SALMONSTREET, SUITE 1600 (57) ABSTRACT PORTLAND, OR 97204 (US) This application relates to methods of treating, preventing, (21) Appl. No.: 12/772,981 and ameliorating fibrosis, such as fibrosis of the liver. In particular, the application relates to methods of using a vita (22) Filed: May 3, 2010 min D receptor agonist (Such as vitamin D. Vitamin Dana logs, vitamin D precursors, and vitamin D receptor agonists Related U.S. Application Data precursors) for the treatment of liver fibrosis. Also disclosed (63) Continuation-in-part of application No. 12/266,513, are methods for screening for agents that treat, prevent, and filed on Nov. 6, 2008. ameliorate fibrosis. Stellate Cells Liver RR1,3 AR, ERa ERR1,2,3, AR, ERa CNF GR, MR CNF RARa, GR, MR NF4g Rab NF4ag RARa,b, NOR1 a, RH1 TRa,b WDR NURR1 NOR1 RORa,b,g RORag CAR Receptor SF-1 FXRa,b FXRa,b epissertoup.
    [Show full text]
  • The Hormonal Treatment of Sexual Offenders JOHN Mcd
    The Hormonal Treatment of Sexual Offenders JOHN McD. W. BRADFORD, MB The hormonal treatment of sexual offenders is part of a pharmacological approach to the reduction of the sexual drive. Sexual drive reduction can also be brought about by stereotaxic neurosurgery and castration. These other methods of sexual drive reduction are closely related to the phar­ macological approach, and all are dependent on the complex interactions between higher central nervous system functions, located in the cortex and limbic systems, and neuroendocrine mechanisms mediated via the hypothalamic pituitary axis, the gonads, and their various feed-back mechanisms. The higher functions of the central nervous system are chan­ neled through the hypothalamic-pituitary axis where complex neurological correlates of behavior are transformed into neuroendocrine responses. Gonatrophin releasing factor (GRF) is released from the hypothalamus irregularly in bursts. The ante rio-pituitary in response releases luteinizing hormone (LH) and follicular stimulating hormone (FSH), also in episodic bursts of secretion. In the normal male, FSH acts on the germinal epithelium of the seminiferous tubules to produce spermatazoa. LH stimulates the Leydig cells to secrete testosterone that is then released into the serum where it forms approximately 95 percent of the plasma testosterone. The other 5 percent in secreted from the adrenal cortex through d4- androstenedione. J During puberty, both sexes show an increase in the volume of gonado­ trophin secretion, and in the male this is associated with increased testos­ terone secretion during sleep. There is an associated circadian rhythm resulting in sleep related increases in gonadotrophic hormone production. J Testosterone in the male regulates spermatogenesis and is responsible for the development of secondary sex characteristics.
    [Show full text]
  • Steroids an Overview on 5-Reductase Inhibitors
    Steroids 75 (2010) 109–153 Contents lists available at ScienceDirect Steroids journal homepage: www.elsevier.com/locate/steroids Review An overview on 5␣-reductase inhibitors Saurabh Aggarwal a, Suresh Thareja a, Abhilasha Verma a, Tilak Raj Bhardwaj a,b, Manoj Kumar a,∗ a University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh 160014, India b I. S. F College of Pharmacy, Ferozepur Road, Moga, Punjab 142001, India article info abstract Article history: Benign prostatic hyperplasia (BPH) is the noncancerous proliferation of the prostate gland associated Received 13 July 2009 with benign prostatic obstruction and lower urinary tract symptoms (LUTS) such as frequency, hesitancy, Received in revised form 9 October 2009 urgency, etc. Its prevalence increases with age affecting around 70% by the age of 70 years. High activity of Accepted 20 October 2009 5␣-reductase enzyme in humans results in excessive dihydrotestosterone levels in peripheral tissues and Available online 30 October 2009 hence suppression of androgen action by 5␣-reductase inhibitors is a logical treatment for BPH as they inhibit the conversion of testosterone to dihydrotestosterone. Finasteride (13) was the first steroidal 5␣- Keywords: reductase inhibitor approved by U.S. Food and Drug Administration (USFDA). In human it decreases the 5␣-Reductase inhibitors Androgens prostatic DHT level by 70–90% and reduces the prostatic size. Dutasteride (27) another related analogue ␣ Azasteroids has been approved in 2002. Unlike Finasteride, Dutasteride is a competitive inhibitor of both 5 -reductase Testosterone type I and type II isozymes, reduced DHT levels >90% following 1 year of oral administration. A number BPH of classes of non-steroidal inhibitors of 5␣-reductase have also been synthesized generally by removing 5␣-Dihydrotestosterone one or more rings from the azasteroidal structure or by an early non-steroidal lead (ONO-3805) (261).
    [Show full text]