Diffuse Neutral Hydrogen in the H I Parkes All Sky Survey⋆
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Nuclear Infrared Emission of Low-Luminosity Active Galactic Nuclei
University of Kentucky UKnowledge Physics and Astronomy Faculty Publications Physics and Astronomy 6-7-2012 The ucleN ar Infrared Emission of Low-Luminosity Active Galactic Nuclei R. E. Mason Gemini Observatory E. Lopez-Rodriguez University of Florida C. Packham University of Florida A. Alonso-Herrero Instituto de Física de Cantabria, Spain N. A. Levenson Gemini Observatory, Chile See next page for additional authors Right click to open a feedback form in a new tab to let us know how this document benefits oy u. Follow this and additional works at: https://uknowledge.uky.edu/physastron_facpub Part of the Astrophysics and Astronomy Commons, and the Physics Commons Repository Citation Mason, R. E.; Lopez-Rodriguez, E.; Packham, C.; Alonso-Herrero, A.; Levenson, N. A.; Radomski, J.; Ramos Almeida, C.; Colina, L.; Elitzur, Moshe; Aretxaga, I.; Roche, P. F.; and Oi, N., "The ucleN ar Infrared Emission of Low-Luminosity Active Galactic Nuclei" (2012). Physics and Astronomy Faculty Publications. 471. https://uknowledge.uky.edu/physastron_facpub/471 This Article is brought to you for free and open access by the Physics and Astronomy at UKnowledge. It has been accepted for inclusion in Physics and Astronomy Faculty Publications by an authorized administrator of UKnowledge. For more information, please contact [email protected]. Authors R. E. Mason, E. Lopez-Rodriguez, C. Packham, A. Alonso-Herrero, N. A. Levenson, J. Radomski, C. Ramos Almeida, L. Colina, Moshe Elitzur, I. Aretxaga, P. F. Roche, and N. Oi The Nuclear Infrared Emission of Low-Luminosity Active Galactic Nuclei Notes/Citation Information Published in The Astronomical Journal, v. 144, no. -
Pdf, Integral-Field Stellar and Ionized Gas Kinematics of Peculiar Virgo
The Astrophysical Journal Supplement Series, 216:9 (34pp), 2015 January doi:10.1088/0067-0049/216/1/9 C 2015. The American Astronomical Society. All rights reserved. INTEGRAL-FIELD STELLAR AND IONIZED GAS KINEMATICS OF PECULIAR VIRGO CLUSTER SPIRAL GALAXIES Juan R. Cortes´ 1,2,3,5, Jeffrey D. P. Kenney4, and Eduardo Hardy1,3,5,6 1 National Radio Astronomy Observatory Avenida Nueva Costanera 4091, Vitacura, Santiago, Chile; [email protected], [email protected] 2 Joint ALMA Observatory Alonso de Cordova´ 3107, Vitacura, Santiago, Chile 3 Departamento de Astronom´ıa, Universidad de Chile Casilla 36-D, Santiago, Chile 4 Department of Astronomy, Yale University, P.O. Box 208101, New Haven, CT 06520-8101, USA; [email protected] Received 2014 March 10; accepted 2014 November 7; published 2014 December 24 ABSTRACT We present the stellar and ionized gas kinematics of 13 bright peculiar Virgo cluster galaxies observed with the DensePak Integral Field Unit at the WIYN 3.5 m telescope in order to look for kinematic evidence that these galaxies have experienced gravitational interactions or gas stripping. Two-dimensional maps of the stellar velocity V, stellar velocity dispersion σ, and the ionized gas velocity (Hβ and/or [O iii]) are presented for the galaxies in the sample. The stellar rotation curves and velocity dispersion profiles are determined for 13 galaxies, and the ionized gas rotation curves are determined for 6 galaxies. Misalignments between the optical and kinematical major axes are found in several galaxies. While in some cases this is due to a bar, in other cases it seems to be associated with gravitational interaction or ongoing ram pressure stripping. -
Stellar Tidal Streams As Cosmological Diagnostics: Comparing Data and Simulations at Low Galactic Scales
RUPRECHT-KARLS-UNIVERSITÄT HEIDELBERG DOCTORAL THESIS Stellar Tidal Streams as Cosmological Diagnostics: Comparing data and simulations at low galactic scales Author: Referees: Gustavo MORALES Prof. Dr. Eva K. GREBEL Prof. Dr. Volker SPRINGEL Astronomisches Rechen-Institut Heidelberg Graduate School of Fundamental Physics Department of Physics and Astronomy 14th May, 2018 ii DISSERTATION submitted to the Combined Faculties of the Natural Sciences and Mathematics of the Ruperto-Carola-University of Heidelberg, Germany for the degree of DOCTOR OF NATURAL SCIENCES Put forward by GUSTAVO MORALES born in Copiapo ORAL EXAMINATION ON JULY 26, 2018 iii Stellar Tidal Streams as Cosmological Diagnostics: Comparing data and simulations at low galactic scales Referees: Prof. Dr. Eva K. GREBEL Prof. Dr. Volker SPRINGEL iv NOTE: Some parts of the written contents of this thesis have been adapted from a paper submitted as a co-authored scientific publication to the Astronomy & Astrophysics Journal: Morales et al. (2018). v NOTE: Some parts of this thesis have been adapted from a paper accepted for publi- cation in the Astronomy & Astrophysics Journal: Morales, G. et al. (2018). “Systematic search for tidal features around nearby galaxies: I. Enhanced SDSS imaging of the Local Volume". arXiv:1804.03330. DOI: 10.1051/0004-6361/201732271 vii Abstract In hierarchical models of galaxy formation, stellar tidal streams are expected around most galaxies. Although these features may provide useful diagnostics of the LCDM model, their observational properties remain poorly constrained. Statistical analysis of the counts and properties of such features is of interest for a direct comparison against results from numeri- cal simulations. In this work, we aim to study systematically the frequency of occurrence and other observational properties of tidal features around nearby galaxies. -
1. Introduction
THE ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES, 122:109È150, 1999 May ( 1999. The American Astronomical Society. All rights reserved. Printed in U.S.A. GALAXY STRUCTURAL PARAMETERS: STAR FORMATION RATE AND EVOLUTION WITH REDSHIFT M. TAKAMIYA1,2 Department of Astronomy and Astrophysics, University of Chicago, Chicago, IL 60637; and Gemini 8 m Telescopes Project, 670 North Aohoku Place, Hilo, HI 96720 Received 1998 August 4; accepted 1998 December 21 ABSTRACT The evolution of the structure of galaxies as a function of redshift is investigated using two param- eters: the metric radius of the galaxy(Rg) and the power at high spatial frequencies in the disk of the galaxy (s). A direct comparison is made between nearby (z D 0) and distant(0.2 [ z [ 1) galaxies by following a Ðxed range in rest frame wavelengths. The data of the nearby galaxies comprise 136 broad- band images at D4500A observed with the 0.9 m telescope at Kitt Peak National Observatory (23 galaxies) and selected from the catalog of digital images of Frei et al. (113 galaxies). The high-redshift sample comprises 94 galaxies selected from the Hubble Deep Field (HDF) observations with the Hubble Space Telescope using the Wide Field Planetary Camera 2 in four broad bands that range between D3000 and D9000A (Williams et al.). The radius is measured from the intensity proÐle of the galaxy using the formulation of Petrosian, and it is argued to be a metric radius that should not depend very strongly on the angular resolution and limiting surface brightness level of the imaging data. It is found that the metric radii of nearby and distant galaxies are comparable to each other. -
Chemistry and Star Formation in the Host Galaxies of Type Ia Supernovae
Chemistry and Star Formation in the Host Galaxies of Type Ia Supernovae The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters Citation Gallagher, Joseph S., Peter M. Garnavich, Perry Berlind, Peter Challis, Saurabh Jha, and Robert P. Kirshner. 2005. “Chemistry and Star Formation in the Host Galaxies of Type Ia Supernovae.” The Astrophysical Journal 634 (1): 210–26. https:// doi.org/10.1086/491664. Citable link http://nrs.harvard.edu/urn-3:HUL.InstRepos:41399918 Terms of Use This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http:// nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of- use#LAA The Astrophysical Journal, 634:210–226, 2005 November 20 # 2005. The American Astronomical Society. All rights reserved. Printed in U.S.A. CHEMISTRY AND STAR FORMATION IN THE HOST GALAXIES OF TYPE Ia SUPERNOVAE Joseph S. Gallagher and Peter M. Garnavich Department of Physics, University of Notre Dame, 225 Nieuwland Science Hall, Notre Dame, IN 46556-5670 Perry Berlind F. L. Whipple Observatory, 670 Mount Hopkins Road, P.O. Box 97, Amado, AZ 85645 Peter Challis Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 Saurabh Jha Department of Astronomy, 601 Campbell Hall, University of California, Berkeley, CA 94720-3411 and Robert P. Kirshner Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 Received 2005 March 4; accepted 2005 July 22 ABSTRACT We study the effect of environment on the properties of Type Ia supernovae by analyzing the integrated spectra of 57 local Type Ia supernova host galaxies. -
Appendix A: the HRS+ Members
Appendix A: The HRS+ Members 207 Table A.1: The general properties of galaxies comprising the HRS+ sample. Each column contains: (1) the HRS+ identification 208 number; (2) an alternative name taken from either the New General Catalogue (NGC; Dreyer, 1888), the Catalogue of Galaxies and Clusters of Galaxies (CGCG; Zwicky et al., 1961), Uppsala General Catalogue (UGC; Nilson, 1973), the Virgo Cluster Catalogue (VCC; Binggeli et al., 1985), and the Index Catalogue (IC; Dreyer, 1908); (3) J2000 right ascension, from NED; (4) J2000 declination, from NED; (5) distance; (6) the morphological classification from NED; (7) total 2MASS K band magnitude −2 (Skrutskie et al., 2006); (8) the optical isophotal distance D25 (25 mag arcsec ); (9) the heliocentric radial velocity from NED; (10) the cluster or cloud membership; and (11) the galactic extinction Schlegel et al., 1998. ◦ ′ ′′ −1 HRS+ Alt.Name R.A.(hms) Dec.( ) D (Mpc) Type KStot D25 (′) V (km s ) Member AB (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) 1 CGCG 123-035 10 17 39.66 +22 48 35.9 15.7 Pec 11.59 1.00 1175 Leo Cl. 0.13 2 UGC 5588 10 20 57.13 +25 21 53.4 17.2 S? 11.03 0.52 1291 Leo Cl. 0.10 3 NGC 3226 10 23 27.01 +19 53 54.7 15.3 E2:pec;LINER;Sy3 8.57 3.16 1169 Leo Cl. 0.10 4 NGC 3227 10 23 30.58 +19 51 54.2 15.4 SAB(s)pec;Sy1.5 7.64 5.37 1148 Leo Cl. -
And Ecclesiastical Cosmology
GSJ: VOLUME 6, ISSUE 3, MARCH 2018 101 GSJ: Volume 6, Issue 3, March 2018, Online: ISSN 2320-9186 www.globalscientificjournal.com DEMOLITION HUBBLE'S LAW, BIG BANG THE BASIS OF "MODERN" AND ECCLESIASTICAL COSMOLOGY Author: Weitter Duckss (Slavko Sedic) Zadar Croatia Pусскй Croatian „If two objects are represented by ball bearings and space-time by the stretching of a rubber sheet, the Doppler effect is caused by the rolling of ball bearings over the rubber sheet in order to achieve a particular motion. A cosmological red shift occurs when ball bearings get stuck on the sheet, which is stretched.“ Wikipedia OK, let's check that on our local group of galaxies (the table from my article „Where did the blue spectral shift inside the universe come from?“) galaxies, local groups Redshift km/s Blueshift km/s Sextans B (4.44 ± 0.23 Mly) 300 ± 0 Sextans A 324 ± 2 NGC 3109 403 ± 1 Tucana Dwarf 130 ± ? Leo I 285 ± 2 NGC 6822 -57 ± 2 Andromeda Galaxy -301 ± 1 Leo II (about 690,000 ly) 79 ± 1 Phoenix Dwarf 60 ± 30 SagDIG -79 ± 1 Aquarius Dwarf -141 ± 2 Wolf–Lundmark–Melotte -122 ± 2 Pisces Dwarf -287 ± 0 Antlia Dwarf 362 ± 0 Leo A 0.000067 (z) Pegasus Dwarf Spheroidal -354 ± 3 IC 10 -348 ± 1 NGC 185 -202 ± 3 Canes Venatici I ~ 31 GSJ© 2018 www.globalscientificjournal.com GSJ: VOLUME 6, ISSUE 3, MARCH 2018 102 Andromeda III -351 ± 9 Andromeda II -188 ± 3 Triangulum Galaxy -179 ± 3 Messier 110 -241 ± 3 NGC 147 (2.53 ± 0.11 Mly) -193 ± 3 Small Magellanic Cloud 0.000527 Large Magellanic Cloud - - M32 -200 ± 6 NGC 205 -241 ± 3 IC 1613 -234 ± 1 Carina Dwarf 230 ± 60 Sextans Dwarf 224 ± 2 Ursa Minor Dwarf (200 ± 30 kly) -247 ± 1 Draco Dwarf -292 ± 21 Cassiopeia Dwarf -307 ± 2 Ursa Major II Dwarf - 116 Leo IV 130 Leo V ( 585 kly) 173 Leo T -60 Bootes II -120 Pegasus Dwarf -183 ± 0 Sculptor Dwarf 110 ± 1 Etc. -
Classification of Galaxies Using Fractal Dimensions
UNLV Retrospective Theses & Dissertations 1-1-1999 Classification of galaxies using fractal dimensions Sandip G Thanki University of Nevada, Las Vegas Follow this and additional works at: https://digitalscholarship.unlv.edu/rtds Repository Citation Thanki, Sandip G, "Classification of galaxies using fractal dimensions" (1999). UNLV Retrospective Theses & Dissertations. 1050. http://dx.doi.org/10.25669/8msa-x9b8 This Thesis is protected by copyright and/or related rights. It has been brought to you by Digital Scholarship@UNLV with permission from the rights-holder(s). You are free to use this Thesis in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license in the record and/ or on the work itself. This Thesis has been accepted for inclusion in UNLV Retrospective Theses & Dissertations by an authorized administrator of Digital Scholarship@UNLV. For more information, please contact [email protected]. INFORMATION TO USERS This manuscript has been reproduced from the microfilm master. UMI films the text directly from the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter face, while others may be from any type of computer printer. The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleedthrough, substandard margins, and improper alignment can adversely affect reproduction. In the unlikely event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted. -
Dense Gas in Local Galaxies Revealed by Multiple Tracers
MNRAS 000,1–18 (2020) Preprint 9 March 2021 Compiled using MNRAS LATEX style file v3.0 Dense gas in local galaxies revealed by multiple tracers Fei Li1, Junzhi Wang1,2¢, Feng Gao3, Shu Liu4, Zhi-Yu Zhang5, Shanghuo Li1,6 Yan Gong7, Juan Li1,2 and Yong Shi5 1Shanghai Astronomical Observatory, Chinese Academy of Sciences,80 Nandan Road, Shanghai, 200030, China 2Key Laboratory of Radio Astronomy, Chinese Academy of Sciences, 10 Yuanhua Road, Nanjing, JiangSu 210033, China 3Max-Planck-Institut für Extraterrestrische Physik, Gießenbachstrasse 1, D-85741 Garching bei München, Germany 4CAS Key Laboratory of FAST, National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012, China 5School of Astronomy and Space Science, Nanjing University, Nanjing, 210093, China 6Korea Astronomy and Space Science Institute, 776 Daedeokdae-ro, Yuseong-gu, Daejeon 34055, Republic of Korea 7Max-Planck-Institut für Radioastronomie, Auf dem Hügel 69, 53121, Bonn, Germany Accepted XXX. Received YYY; in original form ZZZ ABSTRACT We present 3 mm and 2 mm band simultaneously spectroscopic observations of HCN 1- 0, HCO¸ 1-0, HNC 1-0, and CS 3-2 with the IRAM 30 meter telescope, toward a sample 5 of 70 sources as nearby galaxies with infrared luminosities ranging from several 10 ! to 12 ¸ more than 10 ! . After combining HCN 1-0, HCO 1-0 and HNC 1-0 data from literature with our detections, relations between luminosities of dense gas tracers (HCN 1-0, HCO¸ 1-0 and HNC 1-0) and infrared luminosities are derived, with tight linear correlations for all tracers. Luminosities of CS 3-2 with only our observations also show tight linear correlation with infrared luminosities. -
A Search For" Dwarf" Seyfert Nuclei. VII. a Catalog of Central Stellar
TO APPEAR IN The Astrophysical Journal Supplement Series. Preprint typeset using LATEX style emulateapj v. 26/01/00 A SEARCH FOR “DWARF” SEYFERT NUCLEI. VII. A CATALOG OF CENTRAL STELLAR VELOCITY DISPERSIONS OF NEARBY GALAXIES LUIS C. HO The Observatories of the Carnegie Institution of Washington, 813 Santa Barbara St., Pasadena, CA 91101 JENNY E. GREENE1 Department of Astrophysical Sciences, Princeton University, Princeton, NJ ALEXEI V. FILIPPENKO Department of Astronomy, University of California, Berkeley, CA 94720-3411 AND WALLACE L. W. SARGENT Palomar Observatory, California Institute of Technology, MS 105-24, Pasadena, CA 91125 To appear in The Astrophysical Journal Supplement Series. ABSTRACT We present new central stellar velocity dispersion measurements for 428 galaxies in the Palomar spectroscopic survey of bright, northern galaxies. Of these, 142 have no previously published measurements, most being rela- −1 tively late-type systems with low velocity dispersions (∼<100kms ). We provide updates to a number of literature dispersions with large uncertainties. Our measurements are based on a direct pixel-fitting technique that can ac- commodate composite stellar populations by calculating an optimal linear combination of input stellar templates. The original Palomar survey data were taken under conditions that are not ideally suited for deriving stellar veloc- ity dispersions for galaxies with a wide range of Hubble types. We describe an effective strategy to circumvent this complication and demonstrate that we can still obtain reliable velocity dispersions for this sample of well-studied nearby galaxies. Subject headings: galaxies: active — galaxies: kinematics and dynamics — galaxies: nuclei — galaxies: Seyfert — galaxies: starburst — surveys 1. INTRODUCTION tors, apertures, observing strategies, and analysis techniques. -
Arxiv:Astro-Ph/9902377V1 26 Feb 1999 Sus Uha H Omcxrybcgon.Ide,Tedis the Indeed, Background
The distribution of absorbing column densities among Seyfert 2 galaxies G. Risaliti Dipartimento di Astronomia e Scienza dello Spazio, Univerit`adi Firenze, L. E. Fermi 5, I-50125, Firenze, Italy R. Maiolino and M. Salvati Osservatorio Astrofisico di Arcetri, L. E. Fermi 5, I-50125 Firenze, Italy ABSTRACT We use hard X-ray data for an “optimal” sample of Seyfert 2 galaxies to derive the distribution of the gaseous absorbing column densities among obscured active nuclei in the local Universe. Of all Seyfert 2 galaxies in the sample, 75% are heavily obscured 23 −2 24 −2 (NH > 10 cm ) and about half are Compton thick (NH > 10 cm ). Intermediate type 1.8–1.9 Seyferts are characterized by an average NH much lower than “strict” Seyfert 2s. No correlation is found between NH and the intrinsic luminosity of the nuclear source. This NH distribution has important consequences for the synthesis of the cosmic X-ray background. Also, the large fraction of Compton thick objects implies that most of the obscuring gas is located within a radius of a few 10 pc from the nucleus. Subject headings: Galaxies: active — Galaxies: nuclei — Galaxies: Seyfert — X-rays: galaxies arXiv:astro-ph/9902377v1 26 Feb 1999 1. Introduction According to the so-called unified model (Antonucci 1993) the same engine is at work in all Active Galactic Nuclei (AGNs). The differences between type 1 and type 2 AGNs are ascribed solely to orientation effects: our line of sight to the nucleus may (type 2) or may not (type 1) be obstructed by optically thick material, perhaps distributed in a toroidal geometry. -
April 14 2018 7:00Pm at the April 2018 Herrett Center for Arts & Science College of Southern Idaho
Snake River Skies The Newsletter of the Magic Valley Astronomical Society www.mvastro.org Membership Meeting President’s Message Tim Frazier Saturday, April 14th 2018 April 2018 7:00pm at the Herrett Center for Arts & Science College of Southern Idaho. It really is beginning to feel like spring. The weather is more moderate and there will be, hopefully, clearer skies. (I write this with some trepidation as I don’t want to jinx Public Star Party Follows at the it in a manner similar to buying new equipment will ensure at least two weeks of Centennial Observatory cloudy weather.) Along with the season comes some great spring viewing. Leo is high overhead in the early evening with its compliment of galaxies as is Coma Club Officers Berenices and Virgo with that dense cluster of extragalactic objects. Tim Frazier, President One of my first forays into the Coma-Virgo cluster was in the early 1960’s with my [email protected] new 4 ¼ inch f/10 reflector and my first star chart, the epoch 1960 version of Norton’s Star Atlas. I figured from the maps I couldn’t miss seeing something since Robert Mayer, Vice President there were so many so closely packed. That became the real problem as they all [email protected] appeared as fuzzy spots and the maps were not detailed enough to distinguish one galaxy from another. I still have that atlas as it was a precious Christmas gift from Gary Leavitt, Secretary my grandparents but now I use better maps, larger scopes and GOTO to make sure [email protected] it is M84 or M86.