© in This Web Service Cambridge University Press Cambridge University Press 978-1-107-01221-9
Total Page:16
File Type:pdf, Size:1020Kb
Cambridge University Press 978-1-107-01221-9 - The History of Mathematical Proof in Ancient Traditions Edited by Karine Chemla Index More information Index abacus, see tool for calculation 31, 38, 39–51, 53, 55, 57, 59–60, 428, Abbenes, J. G. J., 191 436 abbreviation, 36–7, 328–40, 349, 355–6 computing reciprocals (or ‘reciprocal absence of demonstrations, 1, 9, 56, 276, 277, algorithm’), 44–7 280, 289 cancelling the eff ect of one another, 45–7, 50, abstraction, 38, 354, 360, 452, 469, 471, 484, 447, 455 485; see also generality, paradigm meaning of, 41–2, 44–6, 52–3, 62, 500, 503, Abū al-Wafāʾ, 286, 289 507 Academy of Science (Paris), 275 procedure for the fi eld with the greatest ācārya, 262, 266, 488 generality, 431–6, 439–40, 442–4, 459, accuracy (indiff erence to visual), see diagram 475–6, 483 Acerbi, F., 205 transparent, 38, 40, 42, 48–9, 63; see also Adelard of Bath, 86, 87, 89, 90, 91, 93, 95, 105, transparency 106, 109, 115, 117, 126–7, 130 use of, in proofs, 49, 426–81, 487–8, 497–8, aggregated shares/parts, see fenlü 503, 508 Akkadian, 384–6, 391, 398, 411, 414 see also factorization, procedure, square root, Akkadian method, 373 text of an algorithm Alexandria, 361 Allard, A., 359 algebra, 6, 9, 11, 43–4, 57, 317–19, 450 Allman, G., 279 in India, 6, 235 allograph, 36, 37, 330, 338, 340–1, 359 Old Babylonian “algebra”, 364–80 Almagest , see Ptolemy numerical interpretation, 369 altitude, 494–6, 498 symbolic, 57, 327–8, 330 An Pingqiu 安平秋, 517 syncopated, 327–8, 330 an-Nayrîzî (Abû l’ Abbâs al-Fadl ibn Hâtim Algebra with Arithmetic and Mensuration , 242, an-Nayrîzî, also Nayzīrī (al-)) 246, 247 Analects ( Th e ), see Lun yu algebraic analysis, see analysis analysis, 6, 12, 44, 280 algebraic formula, 46, 391, 393, 395 algebraic, 6, 9, 242, 245, 246 algebraic proof, 6, 7, 46, 47–51, 57–60 indeterminate, 287 Diophantus’ impact on the text of algebraic in Diophantus’ Arithmetics , 36, 44, 350–3 proof, 39, 318–25 see also demonstration in an algorithmic context, 47–51, 59, Andersen, K., 150 423–86 annotation, 86, 95, 103, 120 history of, 7, 9, 39, 50, 60, 426, 450, 480–4 Anschauungsgeometrie , 276, 280, 285, 289 validity of linked to the set of numbers with anti-Arab ideology, 275 which one operates, 50, 311–26 Antiphon, 296–7 algorithm, 9–10, 18, 38, 45, 51–3, 56, 59–60, Apollonius of Perga, 1, 69, 70, 135, 140 260, 270, 271–2, 359, 423–86, 487–8, Conics 497–8, 500, 503, 506–8 Book I, 149 algorithms reverse of one another, 47, 50; see m a n u s c r i p t Vatican 206 , see manuscripts also reverse algorithm (Greek) as list of operations, 38, 40, 44, 59, 425, 428–9, Proposition I 13, 149 432, 436, 438–54, 500 Proposition I 16, 145–6 574 as statements proved to be correct, 9–10, 18, applications, 13, 274, 287 © in this web service Cambridge University Press www.cambridge.org Cambridge University Press 978-1-107-01221-9 - The History of Mathematical Proof in Ancient Traditions Edited by Karine Chemla Index More information Index 575 approximations, 40, 301, 452–8 Posterior Analytics and Euclid’s Elements , 1, Arabic science, 2, 5, 7, 21–3, 37, 43–4, 48, 26–7 274–5, 286–9 theory of demonstration in the Posterior ‘Arabs’, 5, 274, 287 Analytics, 1, 17, 26–7, 66, 303–4 handling of ‘Greek’ mathematics, 286–9, arithmetic, 9, 33, 267, 294, 297–8, 300, 302, 440, 339–40 451, 459, 473, 482–3, 507 imitators of the Greeks, 289–90 with fractions, 50, 426, 431–6, 441–3, 447, Archimedes, 1, 2, 5, 20, 24–6, 28, 42, 62, 66, 451–80, 483 69, 135, 140, 163–204, 276, 299–300, Arithmetica , see Arithmetics, Diophantus of 305–6, 308, 351, 362 Alexandria Heiberg’s edition of Archimedes’ writings, 20, arithmetical reasoning, 8, 34, 263, 269, 311–26, 24–6, 86 504, 507 Heiberg forcing divisions between types Arithmetics , 35–9, 44, 46, 283–4 of propositions and components of critical analysis of Tannery’s edition, 36 propositions onto texts, 26 see also Diophantus of Alexandria mechanical way of discovery, 28, 42 Arnauld, A., 18 Palimpsest, 86, 147–8, 164–5, 179–80, 187, Arneth, A., 278–9 189, 192, 195 Arnzen, R., 87, 131 Archimedes, works by a r t i fi cial languages, 45–6, 65 Arenarius , 178, 180–1, 186, 188–9, 190, 195, Ā r y a b h a t. a, 244, 282, 487–90, 494, 500–1, 504–8 203 Āryabhat. īya, 51–3, 66, 487, 489–92, 494, Cattle Problem , 178, 186, 188, 203 498–501, 504–8 Centres of Weights of Solids , 171 Āryabhat. īyabhās. ya , 487–508 Conoids and Spheroids , 171, 178, 186, 188–9, Asiatic Society, 230, 232, 239, 242, 257, 273 192–3, 199–201, 203 Assayag, J., 228, 256, 259 Floating Bodies , 164, 171, 178, 186–9, 194, astronomy, 265, 274–5, 294, 297–8, 300, 304, 203 494–8, 508 Measurement of Circle , 164–5, 171, 178–9, history of Indian astronomy, 237, 239, 241, 186–8, 203 258, 261, 262, 264, 272–3, 276, 494–8 Method , 28, 42, 171, 178–9, 186–9, 195–203, inequality of the moon, 275 299–300, 308 practical, 274 proposition 14, 148, 158, 196–8 spherical, 274 Planes in Equilibria , 164, 171, 177–9, 186–9, Athenian public accounts, 10 193–5, 203 Atiyah, M., 16, 17, 64 Polyhedra , 171, 188 August, E. F., 137 Quadrature of Parabola , 171, 178, 186, 188–9, authenticity, 79, 95, 97–9, 100–5, 110 193–4, 203 Autolycus, 139 Sphere and Cylinder , 140, 146, 164–76, autonomous practical knowledge, 381 178–9, 181–4, 186–9, 193–5, 203 auxiliary construction, 209, 220, 221, 224 m a n u s c r i p t Vatican Ottob . 1850, see Averroes, 207, 223 manuscripts (Latin) axiom, 14, 304–5, 308; see also starting points Spiral Lines , 164–5, 171, 176, 178, 186–9, 190, axiomatization, 15, 62 195, 203 axiomatic–deductive structure, 14, 15, 23, Stomachion , 171, 178, 186–9, 203 57–8, 62 Archytas, 190, 295, 298–9, 304 in the nineteenth century, early twentieth Aristarchus, 305 century, 12, 20, 26 On the Sizes and Distances of the Sun and outside mathematics in ancient Greece, 15, 29 Moon , 305 scholia, 156 ba gu wen 八股文 ‘eight-legged essays’, 513 Aristophanes, 297 Babylonian mathematics, 1, 5, 12, 14, 18, 20, 31, Aristotle, 1, 17, 26–7, 66, 295–8, 300, 302–8, 37, 39–49, 50, 55, 59, 62, 65, 370, 377, 325, 362–3, 377, 381 379–81 Prior Analytics and Euclid’s Elements , 377 seen as empirical, 363 © in this web service Cambridge University Press www.cambridge.org Cambridge University Press 978-1-107-01221-9 - The History of Mathematical Proof in Ancient Traditions Edited by Karine Chemla Index More information 576 Index Babylonian mathematics (cont.) Burnyeat, M. F., 303 see also mathematical education Burrow, R., 231–6, 239, 242, 247, 257 Bachet, C., 325 Busard, H. L. L., 86, 89, 130, 152 backtracking huan 還 , 437–8, 447, 457–8, 482–3, 539, 544 Calcidius Bacon, Francis, 381 Plato’s Timaeus, 156 Bailly, C., 512 calculation, 10, 40, 263, 266, 283, 498, 507 Bailly, J.-S., 234, 236–9 as opposed to ‘proof’, 10, 40, Bakhshali manuscript , 260, 501, 503, 506 blind, 37, 507 Banerji, H. C., 247–8, 257 devaluation of, calculation as a mathematical Barker, A. D., 302 activity, 10, 12, 40, 50, 60, 263 Barozzi, 206, 207 see also Babylonian mathematics, Bashmakova, I. G., 328 computation Ben Miled, M., 87, 131 Campanus of Novara, 69, 78, 79, 81, 86, 127, Berezkina, E., 535 130, 134 Berggren, J. L., 149 cân 斤 (Vietnamese, Chinese: jin , measure of Bernays, P., 312 weight), 524, 527–8, 539, 541–2 Bertier, J., 311 Canaan, T., 340 Besthorn, R. O., 130, 138 canon, 53, 64; see also classic Bhāskara I, 51–2, 66, 67, 270–2, 487–508 Cantor, M., 277–83, 285–9 Bhāskara II (also Bhascara, Bhaskaracarya), 66, cao 草 ‘computations’, 531, 533–4 235, 248, 249–50, 254, 264, 276, 290 Cardano, G., 289 Biancani, 206 Carnot, L., 5 Biernatzki, K. L., 275 Carra de Vaux, Bernard, 292 Bija-Ganita (also Vija-Ganita ), 235, 240, 241, c a s e o f fi gure, 23, 58, 90, 111, 115, 124, 128, 243–6, 249, 252, 254, 276, 487 152–3 Biot, E., 1, 5, 56, 66, 275, 511–13 Catena, 206 Biot, J.-B., 5, 9, 245, 274–5 Cavigneaux, A., 384, 405, 410 Birch, A. H., 285 certainty, 2, 11, 12–17, 30, 62, 265, 281 Bīrūnī (al-), 290 actors’ perception of what yields certainty, 14 Blanchard, A., 72, 132, 134, 187 certainty as possibly entailing losses Blue, G., 3, 66 for mathematics and history of Bombelli, R., 284 mathematics, 17, 18, 32, 41, 62 Book of Mathematical Procedures , see Suan shu shu Ceyuan haijing 測圓海鏡, Sea Mirror of the Bos, H., 290 Circle Measurements , 58, 450, 558, 566 Bourbaki, N., 69, 74, 120, 132, 328 Ch’en Liang-ts’so (Chen Liangzuo) 陳良佐, 572 Bouvet, J., 3 Chang’an 長安, 514 Boyer, C. B., 328 chang fa 常法 ‘constant norm’, 527–8, 539 Brahmagupta, 228, 240, 243, 246, 255, 264, Charette, F., 5, 6–9, 10, 53, 228, 257 273, 508 Charpin, D., 387 Brahmasphutasiddhanta , 243–5, 508 Chasles, M., 5, 278 Brentjes, S., 78, 85, 87, 89, 116, 118, 119, 132–3 Chattopadhyaya, D., 273 Bretschneider, E., 279 checking, 10, 44–5, 505, 507 Brianchon, C.