bioRxiv preprint doi: https://doi.org/10.1101/2020.06.17.158394; this version posted June 19, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Structural mimicry confers robustness in the cyanobacterial circadian clock Joel Heisler1,2†, Jeffrey A. Swan3†, Joseph G. Palacios3, Cigdem Sancar4, Dustin C. Ernst4, 5 Rebecca K. Spangler3, Clive R. Bagshaw3, Sarvind Tripathi3, Priya Crosby3, Susan S. Golden4,5, Carrie L. Partch3,5*, Andy LiWang1,2,5,6,7,8,9* 1Graduate Program in Chemistry and Chemical Biology, University of California, Merced, CA 95343. 10 2Center for Cellular and Biomolecular Machines, University of California, Merced, CA 95343. 3Department of Chemistry & Biochemistry, University of California, Santa Cruz, CA 95064. 4Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093. 5Center for Circadian Biology, University of California, San Diego, La Jolla, CA 92093. 6School of Natural Sciences, University of California, Merced, CA 95343. 15 7Quantitative & Systems Biology, University of California, Merced, CA 95343. 8Center for Cellular and Biomolecular Machines, University of California, Merced, CA 95343. 9Health Sciences Research Institute, University of California, Merced, CA 95343. †These authors contributed equally to this work 20 *Correspondence should be addressed to A.L. (
[email protected]) or C.L.P. (
[email protected]). Short title: SasA-KaiB mimicry and circadian rhythms 25 30 35 1 bioRxiv preprint doi: https://doi.org/10.1101/2020.06.17.158394; this version posted June 19, 2020.